Gene Action Changes during Vertebrate Differentiation

  • Lawrence S. Dillon


After the stages in embryogenesis beyond those described in the preceding pages have been attained, the embryos undergo development in such complex manners that delineation of their further progress in complete detail becomes undesirable. Instead of descriptions of the elaborating of all the organs in a restricted number of embryonic types, present needs are better served by selecting representative structures that have been more thoroughly explored at the molecular as well as embryonic levels. In some cases, information from sources other than embryology is employed, too, to make as clear as possible the gene action changes involved. Data from various vertebrates, particularly amphibian, mammalian, and avian representatives, provide the basis for discussion in the present chapter, both because invertebrates have received less attention experimentally and because the details of their morphology are less familiar to the majority of biologists. Then in the following chapter a few aspects of differentiation in selected protistan and invertebrate types are provided, along with a few facets of developmental changes among the green plants.


Hyaluronic Acid Chick Embryo Thin Filament Thick Filament Embryonic Chick 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelev, G. I. 1971. Alpha-fetoprotein in ontogenesis and its association with malignant tumours. Adv. Cancer Res. 14: 295–357.PubMedCrossRefGoogle Scholar
  2. Abraham, E. C., Cope, N. D., Braziel, N. N., and Huisman, T. H. J. 1979. On the chromatographic heterogeneity of human fetal hemoglobin. Biochim. Biophys. Acta 577: 159–169.PubMedCrossRefGoogle Scholar
  3. Abramovich, D. R., Baker, T. G., and Neal, P. 1974. Effect of human chorionic gonadotropin on testosterone secretion by the fetal human testes in organ culture. J. Endocrinol. 60: 179–185.PubMedCrossRefGoogle Scholar
  4. Ackerman, G. A. 1962. Electron microscopy of the bursa of Fabricius of the embryonic chick with particular reference to the lympho-epithelial nodules. J. Cell Biol. 13: 127–146.PubMedCrossRefGoogle Scholar
  5. Ackerman, G. A. 1965. The epithelial origin of the lymphocytes in the thymus of the embryonic hamster. Anat. Rec. 152: 35–54.PubMedCrossRefGoogle Scholar
  6. Ackerman, G. A. 1970. Structural studies of the lymphocyte and lymphocyte development. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 2, pp. 1297–1337.Google Scholar
  7. Ackerman, G. A., Grasso, J. A., and Knouff, R. A. 1961. Erythropoiesis in the early mammalian embryonic liver as revealed by electron microscopy. Lab Invest. 10: 787–796.PubMedGoogle Scholar
  8. Adler, C. P., and Costabel, V. 1975. Cell number in human heart atrophy, hypertrophy, and under the influence of cytostatics. Recent Adv. Stud. Card. Struct. Metab. 6: 343–355.Google Scholar
  9. Affara, N. A., Robert, B., Jacquet, M., Buckingham, M. E., and Gros, F. 1980a. Changes in gene expression during myogenic differentiation. I. Regulation of mRNA sequences expressed during myotube formation. J. Mol. Biol. 140: 441–458.PubMedCrossRefGoogle Scholar
  10. Affara, N. A., Daubas, P., Weydert, A., and Gros, F. 1980b. Changes in gene expression during myogenic differentiation. II. Identification of the proteins encoded by myotube-specific complementary DNA sequences. J. Mol. Biol. 140: 459–470.PubMedCrossRefGoogle Scholar
  11. Ahrens, P. B., Solursh, M., Reiter, R. S., and Singley, C. T. 1979. Position-related capacity for differentiation of limb mesenchyme in cell culture. Dev. Biol. 69: 436–450.PubMedCrossRefGoogle Scholar
  12. Aizawa, S., Mitsui, Y., Kurimoto, F., and Nomura, K. 1980. Cell surface changes accompanying aging in human diploid fibroblasts. Exp. Cell Res. 127: 143–157.PubMedCrossRefGoogle Scholar
  13. Allen, E. R. 1978. Development of vertebrate skeletal muscle. Am. Zool. 18: 101–111.Google Scholar
  14. Amphlett, G. W., Syska, H., and Perry, S. V. 1976. The polymorphic forms of tropomyosin and troponin in developing rabbit skeletal muscle. FEBS Lett. 63: 22–25.PubMedCrossRefGoogle Scholar
  15. Amprino, R. 1965. Aspects of limb morphogenesis in the chicken. In: DeHaan, R. L., and Ursprung, H., eds., Organogenesis, New York, Holt, Rinehart amp; Winston, pp. 255–281.Google Scholar
  16. Amsellem, J., and Nicaise, G. 1980. Ultrastructural study of muscle cells and their connections in the digestive tract. J. Submicrosc. Cytol. 12: 219–231.Google Scholar
  17. Anderson, H., Chacko, S., Abbott, J., and Holtzer, H. 1970. The loss of phenotypic traits by differentiated cells in vitro. Am. J. Pathol. 60: 289–312.PubMedGoogle Scholar
  18. Archer, R. K. 1970. Regulatory mechanisms in eosinophil leukocyte production, release, and distribution. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 2, pp. 917–941.Google Scholar
  19. Arnold, H. H., and Siddiqui, M. A. Q. 1979. Control of embryonic development: Isolation and purification of chick heart myosin light chain mRNA and quantitation with a cDNA probe. Biochemistry 18: 647–654.PubMedCrossRefGoogle Scholar
  20. Awai, M., Okada, S., Takebayashi, J., Kubo, T., Inoue, M., and Seno, S. 1968. Studies on the mechanism of denucleation of the erythroblast. Acta Haematol. 39: 193–209.PubMedCrossRefGoogle Scholar
  21. Bank, A., Rifkind, R. A., and Marks, P. A. 1970. Regulation of globin synthesis. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 1, pp. 701–729.Google Scholar
  22. Bantle, J. A., and Tassava, R. A. 1974. The neurotrophic influence on RNA precursor incorporation into polyribosomes of regenerating adult newt forelimbs. J. Exp. Zool. 189: 101–113.PubMedCrossRefGoogle Scholar
  23. Barker, J. E. 1980. Hemoglobin switching in sheep: Characteristics of BFU-E derived colonies from fetal liver. Blood 56: 495–500.PubMedGoogle Scholar
  24. Barker, J. E., Pierce, J. E., and Nienhuis, A. W. 1980. Hemoglobin switching in sheep: A comparison of the erythropoietin-induced switch to HbC and the fetal to adult hemogloin switch. Blood 56: 488–494.PubMedGoogle Scholar
  25. Bartelmez, S. H., Dodge, W. H., Mahmoud, A. A. F., and Bass, D. A. 1980. Stimulation of eosinophil production in vitro by eosinophilopoietin and spleen-cell-derived eosinophil growth-stimulating factor. Blood 56: 706–711.PubMedGoogle Scholar
  26. Bast, R. E., Singer, M., and Ilan, J. 1979. Nerve-dependent changes in content of ribosomes, polysomes, and nascent peptides in newt limb regenerates. Dev. Biol. 70: 13–26.PubMedCrossRefGoogle Scholar
  27. Beams, H. W., and Kessel, R. G. 1966. Electron microscope and ultracentrifugation studies on the rat reticulocyte. Am. J. Anat. 118: 471–508.PubMedCrossRefGoogle Scholar
  28. Benoff, S., and Nadal-Ginard, B. 1980. Transient induction of poly(A)-short myosin heavy chain mRNA during terminal differentiation of L myoblasts. J. Mol. Biol. 140: 283–298.PubMedCrossRefGoogle Scholar
  29. Bernhard, W., and Granboulan, N. 1968. Electron microscopy of the nucleolus in vertebrate cells. In: Dalton, A. J., and Haguenau, J., eds., Ultrastructure in Biological Systems, New York, Academic Press, Vol. 3, pp. 81–149.Google Scholar
  30. Berrill, N. J., and Karp, G. 1976. Development, New York, McGraw-Hill.Google Scholar
  31. Bertles, J. F. 1970. The occurrence and significance of fetal hemoglobins. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 1, pp. 731–765.Google Scholar
  32. Bertles, J. F. 1974. Human fetal hemoglobin: Significance in disease. Ann. N.Y. Acad. Sci. 241: 638–652.PubMedCrossRefGoogle Scholar
  33. Bester, A. J., Kennedy, D. S., and Heywood, S. M. 1975. Two classes of translational control RNA: Their role in the regulation of protein synthesis. Proc. Natl. Acad. Sci. USA 72: 1523–1527.PubMedCrossRefGoogle Scholar
  34. Beug, H., and Graf, T. 1977. Isolation of clonal strains of chicken embryo fibroblasts. Exp. Cell Res. 107: 417–428.PubMedCrossRefGoogle Scholar
  35. Bischoff, R. 1979. Tissue culture studies on the origin of myogenic cells during muscle regeneration in the rat. In: Mauro, A., ed., Muscle Regeneration, New York, Raven Press, pp. 13–29.Google Scholar
  36. Bishop, S. P., and Hine, P. 1974. Cardiac muscle cytoplasmic and nuclear changes during canine neonatal growth. Recent Adv. Stud. Card. Struct. Metab. 8: 77–98.Google Scholar
  37. Block, E. 1967. The conversion of 7-3H-pregnenolone and 4-14C-progesterone to testosterone and androstenedione by mammalian fetal testes in vitro. Steroids 9: 415–430.CrossRefGoogle Scholar
  38. Bornstein, P., Ehrlich, H. P., and Wyke, A. W. 1972. Procollagen: Conversion of the precursor to collagen by a neutral protease. Science 175: 544–546.PubMedCrossRefGoogle Scholar
  39. Bostrom, S. L., and Johansson, G. 1972. Enzyme activity patterns in white and red muscle of the eel (Anguilla anguilla) at different developmental stages. Comp. Biochem. Physiol. 42B: 533–542.Google Scholar
  40. Bragg, P. W., Dym, H. P., and Heywood, S. M. 1980. Embryonic chick myosin heavy chain mRNA is poly(A)+. FEBS Lett. 113: 177–182.PubMedCrossRefGoogle Scholar
  41. Brinkmann, A. O. 1977. Testosterone synthesis in vitro by the fetal testis of the guinea pig. Steroids 29: 861–873.PubMedCrossRefGoogle Scholar
  42. Brodsky, W. Y., Arefyeva, A. M., and Uryvaeva, I. V. 1980. Mitotic polyploidization of mouse heart myocytes during the first postnatal week. Cell Tissue Res. 210: 133–144.PubMedCrossRefGoogle Scholar
  43. Broyles, R. H., Johnson, G. M., Maples, P. B., and Kindell, G. R. 1981. Two erythropoieticGoogle Scholar
  44. microenvironments and two larval red cell lines in bullfrog tadpoles. Dev. Biol. 81:299–314.Google Scholar
  45. Brunst, V. V. 1950. Influence of X-rays on limb regeneration in urodele amphibians. Q. Rev. Biol. 25: 1–29.CrossRefGoogle Scholar
  46. Bryant, S. V., French, V., and Bryant, P. J. 1981. Distal regeneration and symmetry. Science 212: 993–1002.PubMedCrossRefGoogle Scholar
  47. Bûcher, N. L. R. 1963. Regeneration of mammalian liver. Int. Rev. Cytol. 15: 245–300.PubMedCrossRefGoogle Scholar
  48. Buckingham, M. E., Caput, D., Cohen, A., Whalen, R. G., and Gros, F. 1974. The synthesis and stability of cytoplasmic mRNA during myoblast differentiation in culture. Proc. Natl. Acad. Sci. USA 71: 1466–1470.PubMedCrossRefGoogle Scholar
  49. Buhl, A. E., Pasztor, L. M., and Resko, J. A. 1979. Sex steroids in guinea pig fetuses after sexual differentiation of the gonads. Biol. Reprod. 21: 905–908.PubMedCrossRefGoogle Scholar
  50. Buhler, R. H. O., and Kàgi, J. H. R. 1974. Human hepatic metallothioneins. FEBS Lett. 39: 229–234.PubMedCrossRefGoogle Scholar
  51. Bunn, H. F., Gabbay, K. H., and Gallop, P. M. 1978. The glycosylation of hemoglobin: Relevance to diabetes mellitus. Science 200: 21–27.PubMedCrossRefGoogle Scholar
  52. Burnstock, G. 1970. Structure of smooth muscle and its innervation. In: Biilbring, E., Brading, A. F., Jones, A. W., and Tomita, T., eds., Smooth Muscle, Baltimore, Williams amp; Wilkins, pp. 1–69.Google Scholar
  53. Butler, E. G. 1933. The effects of X-irradiation on limb regeneration of the fore limb of Amblystoma larvae. J. Exp. Zool. 65: 271–316.CrossRefGoogle Scholar
  54. Cagnioni, M., Fantini, F., Morace, G., and Ghetti, A. 1965. Failure of testosterone propionate to induce the early-androgen syndrome in rats previously injected with progesterone. J. Endocrinol. 33: 527–528.CrossRefGoogle Scholar
  55. Caplan, A. I., Niedergang, C., Okazaki, H., and Mandel, P. 1979. Poly(ADP ribose) levels as a function of chick limb mesenchymal cell development as studied in vitro and in vivo. Dev. Biol. 72: 102–109.PubMedCrossRefGoogle Scholar
  56. Capone, R. J., Weinreb, E. L., and Chapman, G. B. 1964. Electron microscope studies on normal human myeloid elements. Blood 23: 300–320.PubMedGoogle Scholar
  57. Cardenas, J. M., Bandman, E., and Strohman, R. C. 1978. Hybrid isozymes of pyruvate kinase appear during avian cardiac development. Biochem. Biophys. Res. Commun. 80: 593–599.PubMedCrossRefGoogle Scholar
  58. Carlson, B. M. 1968. Regeneration of the completely excised gastrocnemius muscle in the frog and rat from minced muscle fragments. J. Morphol. 125: 447–472.PubMedCrossRefGoogle Scholar
  59. Carlson, B. M. 1978. Types of morphogenetic phenomena in vertebrate regenerating systems. Am. Zool. 18: 869–882.Google Scholar
  60. Carlsson, R. N. K., and Ingvarsson, B. I. 1979. Localization of «-fetoprotein and albumin in pig liver during fetal and neonatal development. Dev. Biol. 73: 1–10.PubMedCrossRefGoogle Scholar
  61. Carpenter, K. L., and Turpen, J. B. 1979. Experimental studies on hematopoiesis in the pronephros of Rana pipiens. Differentiation 14: 167–174.PubMedCrossRefGoogle Scholar
  62. Castro-Malaspina, H., Gay, R. E., Resnick, G., Kapoor, N., Meyers, P., Chiarieri, D., McKenzie, S., Broxmeyer, H. E., and Moore, M. A. S. 1980. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56: 289–301.PubMedGoogle Scholar
  63. Ceico, A. 1964. Electron microscopic observations of young rat liver. Z. Zellforsch. Mikrosk. Anat. 62: 717–742.CrossRefGoogle Scholar
  64. Chacko, S. 1979. Cardiac muscle differentiation and growth in developing chick embryos. In: Mauro, A., ed., Muscle Regeneration, New York, Raven Press, pp. 363–381.Google Scholar
  65. Chedid, A., and Nair, V. 1974. Ontogenesis of cytoplasmic organelles in rat hepatocytes and the effects of prenatal phénobarbital on endoplasmic reticulum development. Dev. Biol. 39: 49–62.PubMedCrossRefGoogle Scholar
  66. Chi, J. C., Fellini, S. A., and Holtzer, H. 1975. Differences among myosins synthesized in non- myogenic cells, presumptive myoblasts, and myoblasts. Proc. Natl. Acad. Sci. USA 72: 4999–5003.PubMedCrossRefGoogle Scholar
  67. Clements, J. A., Reyes, F. I., Winters, J. S. D., and Faiman, C. 1976. Studies on human sexual development. III. Fetal pituitary and serum and amniotic fluid concentrations of LH, CG, and FSH. J. Clin. Endocrinol. Metab. 42: 9–19.PubMedCrossRefGoogle Scholar
  68. Colbert, D. A., Tedeschi, M. V., Atryzek, V., and Fausto, N. 1977. Diversity of poly(A) mRNA sequences in normal and 12-hr regenerating liver. Dev. Biol. 59: 111–123.PubMedCrossRefGoogle Scholar
  69. Cole, R. J., Regan, T., White, S. L., and Cheek, E. M. 1975. The relationship between erythro- poietin-dependent cellular differentiation and colony-forming ability in prenatal haemopoietic tissue. J. Embryol. Exp. Morphol. 34: 575–588.PubMedGoogle Scholar
  70. Colonno, R. J. 1981. Accumulation of newly synthesized mRNAs in response to human fibroblast Q3) interferon. Proc. Natl. Acad. Sci. USA 78: 4763–4766.PubMedCrossRefGoogle Scholar
  71. Comings, D. E. 1966. The inactive X-chromosome. Lancet 1966 (2): 1137–1138.CrossRefGoogle Scholar
  72. Conrad, G. W., Hart, G. W., and Chen, Y. 1977a. Differences in vitro between fibroblast-like cells from cornea, heart, and skin of embryonic chicks. J. Cell Sci. 26: 119–137.PubMedGoogle Scholar
  73. Conrad, G. W., Hamilton, C., and Haynes, E. 1977b. Differences in glycosaminoglycans synthesized by fibroblast-like cells from chick cornea, heart, and skin. J. Biol. Chem. 252: 6861–6870.PubMedGoogle Scholar
  74. Craig, M. L., and Russell, E. S. 1964. A development change in haemoglobins correlated with an embryonic red cell population in the mouse. Dev. Biol. 10: 191–201.PubMedCrossRefGoogle Scholar
  75. Cunha, G. R. 1975. Age-dependent loss of sensitivity of female urogenital sinus to androgenic conditions as a function of the epithelial-stromal interaction in mice. Endocrinology 97: 665–673.PubMedCrossRefGoogle Scholar
  76. Cutts, J. H., Krause, W. J., and Leeson, C. R. 1980. Changes in the erythrocytes of the developing opossum, Didelphis virginiana. Blood Cells 6: 55–62.PubMedGoogle Scholar
  77. Dallner, G., Siekovitz, P., and Palade, G. E. 1965. Synthesis of microsomal membranes and their enzymic constituents in developing rat liver. Biochem. Biophys. Res. Commun. 20: 135–141.PubMedCrossRefGoogle Scholar
  78. Dallner, G., Siekovitz, P., and Palade, G. E. 1966a. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocytes. J. Cell Biol. 30: 73–96.PubMedCrossRefGoogle Scholar
  79. Dallner, G., Siekovitz, P., and Palade, G. E. 1966b. Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocytes. J. Cell Biol. 30: 97–117.PubMedCrossRefGoogle Scholar
  80. Dearlove, G. E., and Stocum, D. L. 1974. Denervation-induced changes in soluble protein content during forelimb regeneration in adult newt, Notophthalmus viridescens. J. Exp. Zool. 190: 317–327.PubMedCrossRefGoogle Scholar
  81. de la Chapelle, A., Fantoni, A., and Marks, P. A. 1969. Differentiation of mammalian somatic cells: DNA synthesis and haemoglobin synthesis in foetal mice. Proc. Natl. Acad. Sci. USA 63: 812–819.PubMedCrossRefGoogle Scholar
  82. DeLuca, S., Heinegard, D., Hascall, V. C., Kimura, J. H., and Caplan, A. I. 1977. Chemical and physical changes in proteoglycans during development of chick limb bud chondrocytes grown in vitro. J. Biol. Chem. 252: 6600–6608.Google Scholar
  83. Dessau, W., von der Mark, H., von der Mark, K., and Fischer, S. 1980. Changes in the patterns of collagens and fibronectin during limb-bud chondrogenesis. J. Embryol. Exp. Morphol. 57: 51–60.PubMedGoogle Scholar
  84. Detwiler, S. R., and van Dyke, R. H. 1934. The development and functions of dedifferentiated fore limbs in Amblystoma. J. Exp. Zool. 68: 321–346.CrossRefGoogle Scholar
  85. Devlin, R. B., and Emerson, C. P. 1978. Coordinate regulation of contractile protein synthesis during myoblast differentiation. Cell 13: 599–611.PubMedCrossRefGoogle Scholar
  86. Devlin, R. B., and Emerson, C. P. 1979. Coordinate accumulation of contractile protein mRNAs during myoblast differentiation. Dev. Biol. 69: 202–216.PubMedCrossRefGoogle Scholar
  87. Dhoot, G. K., and Perry, S. V. 1979. Distribution of polymorphic forms of troponin components and tropomyosin in skeletal muscle. Nature (London) 278: 714–716.CrossRefGoogle Scholar
  88. Dillon, L. S. 1981. Ultrastructure, Macromolecules, and Evolution, New York, Plenum Press.CrossRefGoogle Scholar
  89. Dinsmore, C. E. 1974. Morphogenetic interactions between minced limb muscle and transplanted blastemas in the axolotl. J. Exp. Zool. 187: 223–232.CrossRefGoogle Scholar
  90. DiPersio, J. F., Brennan, J. K., and Lichtman, M. A. 1978. Granulocyte growth modulators elaborated by human cell lines. ICN-UCLA Symp. Mol. Cell. Biol. 10: 433–444.Google Scholar
  91. Doetschman, T. C., Dym, H. P., Siegel, E. J., and Heywood, S. M. 1980. Myoblast stored myosin heavy chain transcripts are precursors to the myotube polysomal myosin heavy chain mRNAs. Differentiation 16: 149–162.PubMedCrossRefGoogle Scholar
  92. Dover, G. J., and Boyer, S. H. 1981. Quantitation of hemoglobins within individual red cells: Asynchronous biosynthesis of fetal and adult hemoglobin during erythroid maturation in normal subjects. Blood 56: 1082–1091.Google Scholar
  93. Dresden, M. H. 1969. Denervation effects on newt limb regeneration: DNA, RNA, and protein synthesis. Dev. Biol. 19: 311–320.PubMedCrossRefGoogle Scholar
  94. Dresler, S. L., Runkel, D., Stenzel, P., Brimhall, B., and Jones, R. T. 1974. Multiplicity of the hemoglobin a chains in dogs and variations among related species. Ann. N.Y. Acad. Sci. 241: 411–415.PubMedCrossRefGoogle Scholar
  95. Drews, U., Kocher-Becker, U., and Drews, U. 1972. The induction of visceral cartilage from cranial neural crest by pharyngeal endoderm in hanging drop cultures and the locomotory behavior of the neural crest cells during cartilage differentiation. Wilhelm Roux Arch. Dev. Biol. 171: 17–37.CrossRefGoogle Scholar
  96. Durante, M. 1956. Cholinesterase in the development of Ciona intestinalis (Ascidia). Experientia 12: 307–308.PubMedCrossRefGoogle Scholar
  97. Dyche, W. J. 1979. A comparative study of the differentiation and involution of the Mullerian duct and Wolffian duct in the male and female fetal mouse. J. Morphol. 162: 175–210.PubMedCrossRefGoogle Scholar
  98. Ebbe, S. 1970. Megakaryocytopoiesis. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 2, pp. 1587–1610.Google Scholar
  99. Edgerton, V. R. 1978. Mammalian muscle fiber types and their adaptability. Am. Zool. 18: 113–125.Google Scholar
  100. Elgin, S. C. R., and Weintraub, H. 1975. Chromosomal proteins and chromatin structure. Annu. Rev. Biochem. 44: 725–774.PubMedCrossRefGoogle Scholar
  101. Elias, H. 1955. Origin and early development of the liver in various vertebrates. Acta Hepatol. 3: 1–56.Google Scholar
  102. Emerson, C. P. 1977. Control of myosin synthesis during myoblast differentiation. In: Pathogenesis of Human Muscular Dystrophies, Proc. 5th Int. Conf. Muse. Dyst. Assoc., Durango, Colorado, 1976, pp. 799–809.Google Scholar
  103. Emerson, C. P., and Beckner, S. K. 1975. Activation of myosin synthesis in fusing and mono- nucleated myoblasts. J. Mol. Biol. 93: 431–447.PubMedCrossRefGoogle Scholar
  104. Eppenberger, H. M., Eppenberger, M., Richterich, R., and Aebi, H. 1964. The ontogeny of creatine kinase isozymes. Dev. Biol. 10: 1–16.PubMedCrossRefGoogle Scholar
  105. Epperlein, H. H. 1974. The ectomesenchymal-endodermal interaction system (EEIS) of Triturus alpestris in tissue culture. I. Observations on attachment, migration, and differentiation of neural crest cells. Differentiation 2: 151–168.PubMedCrossRefGoogle Scholar
  106. Epperlein, H. H., and Lehmann, R. 1975. Ectomesenchymal-endodermal interaction system of Triturus alpestris in tissue culture. 2. Observations on differentiation of visceral cartilage. Differentiation 4: 159–174.CrossRefGoogle Scholar
  107. Erslev, A. J., Kansu, E., and Caro, J. 1978. The biogenesis and metabolism of erythropoietin. ICN-UCLA Symp. Mol. Cell. Biol. 10: 1–14.Google Scholar
  108. Erslev, A. J., Caro, J., Kansu, E., and Silver, R. 1980. Renal and extrarenal erythropoietin pro¬duction in anaemic rats. Br. J. Haematol. 45: 65–72.PubMedCrossRefGoogle Scholar
  109. Fantoni, A., de la Chapelle, A., Chui, D., Rifkind, R. A., and Marks, P. A. 1969. Control mechanism of the conversion from synthesis of embryonic to adult haemoglobin. Ann. N.Y. Acad. Sci. 165: 194–204.PubMedCrossRefGoogle Scholar
  110. Filburn, C. R. 1969. Changes in acid phosphatase isozymes during Xenopus tail resorption. Am. Zool. 9: 1128–1129.Google Scholar
  111. Filburn, C. R. 1973. Acid phosphatase isozymes of Xenopus laevis tadpole tails. I. Separation and partial characterization. Arch. Biochem. Biophys. 159: 683–693.CrossRefGoogle Scholar
  112. Filburn, C. R., and Vanable, J. W. 1973. Acid phosphatase isozymes of Xenopus laevis tadpole tails. II. Changes in activity during tail regression. Arch. Biochem. Biophys. 159: 694–703.CrossRefGoogle Scholar
  113. Finch, R. A. 1969. The influence of the nerve on lower jaw regeneration in the adult newt (Triturus viridescens). J. Morphol. 129: 401–414.PubMedCrossRefGoogle Scholar
  114. Flavin, M., Duprat, A. M., and Rosa, J. 1979. Ontogenic changes in the haemoglobins of the salamander, Pleurodeles waltlii. Cell Differ. 8: 405–410.CrossRefGoogle Scholar
  115. Ford, C. E., Hamerton, J. L., Barnes, D. W. H., and Loutit, J. F. 1956. Cytological identification of radiation-chimaeras. Nature (London) 177: 452–454.CrossRefGoogle Scholar
  116. Forsberg, J. G. 1973. Cervicovaginal epithelium: Its origin and development. Am. J. Obstet. Gynecol. 115: 1025–1043.PubMedGoogle Scholar
  117. Forsyth, J. 1946. The histology of anuran limb regeneration. J. Morphol. 79: 287–317.PubMedCrossRefGoogle Scholar
  118. Frank, G., and Weeds, A. G. 1974. The amino acid sequence of the alkali light chains of rabbit skeletal-muscle myosin. Eur. J. Biochem. 44: 317–334.PubMedCrossRefGoogle Scholar
  119. Friar, P. M., Strasberg, P. M., Freeman, K. B., and Peterson, A. C. 1979. Mitochondrial malic enzyme in mosaic skeletal muscle of mouse chimeras. Biochem. Genet. 17: 693–713.CrossRefGoogle Scholar
  120. Fritz, P. J., White, E. L., and Pruitt, K. M. 1975. Intracellular turnover of lactate dehydrogenase isozymes. In: Market, C. L., ed., Isozymes, New York, Academic Press, Vol. 3, pp. 347–358.Google Scholar
  121. Gabbiani, G., Schmid, E., Winter, S., Chaponnier, C., de Chastonay, C., Vanderkerckhove, J., Weber, K., and Franke, W. W. 1981. Vascular smooth muscle cells differ from other smooth muscle cells: Predominance of vimentin filaments and a specific a-type actin. Proc. Natl. Acad. Sci. USA 78: 298–302.Google Scholar
  122. Galli, F. E., and Wasserman, G. F. 1973. Steroid synthesis by gonads of 7- and 10-day-old chick embryos. Gen. Comp. Endocrinol. 21: 77–83.PubMedCrossRefGoogle Scholar
  123. Garcia, A. M. 1964. Feulgen-DNA values in megakaryocytes. J. Cell Biol. 20: 342–345.CrossRefGoogle Scholar
  124. Garrett, D. M., and Conrad, G. W. 1979. Fibroblast-like cells from embryonic chick corena, heart, and skin are antigenically distinct. Dev. Biol. 70: 50–70.PubMedCrossRefGoogle Scholar
  125. Gartner, T. K., and Podleski, T. R. 1975. Evidence that a membrane bound lectin mediates fusion of L6 myoblasts. Biochem. Biophys. Res. Commun. 67: 972–978.PubMedCrossRefGoogle Scholar
  126. Gartner, T. K., and Podleski, T. R. 1976. Evidence that the type and specific activity of lectins control fusion of L6 myoblasts. Biochem. Biophys. Res. Commun. 70: 1142–1149.PubMedCrossRefGoogle Scholar
  127. Geiduschek, J. B., and Singer, S. J. 1979. Molecular changes in the membranes of mouse eryth- roid cells accompanying differentiation. Cell 16: 149–163.PubMedCrossRefGoogle Scholar
  128. Gelfand, E. W., Dosch, H. M., and Shore, A. 1978. The role of the thymus and thymus microen- vironment in T-cell differentiation. ICN-UCLA Symp. Mol. Cell. Biol. 10: 277–293.Google Scholar
  129. Gitlin, D. 1975. Normal biology of «-fetoprotein. Ann. N.Y. Acad. Sci. 259: 7–16.PubMedCrossRefGoogle Scholar
  130. Gliicksmann, A. 1951. Cell death in normal vertebrate ontogeny. Biol. Rev. 26: 59–86.CrossRefGoogle Scholar
  131. Goldsmith, P. K. 1981. Postnatal development of some membrane-bound enzymes of rat liver and kidney. Biochim. Biophys. Acta 672: 45–56.PubMedCrossRefGoogle Scholar
  132. Goldstein, M. A., Claycomb, W. C., and Schwartz, A. 1973. DNA synthesis and mitosis in well- differentiated mammalian cardiocytes. Science 183: 212–213.CrossRefGoogle Scholar
  133. Goldstein, M. A., Schroeter, J. P., and Sass, R. L. 1979. The Z lattice in canine cardiac muscle. J. Cell Biol. 83: 187–204.PubMedCrossRefGoogle Scholar
  134. Goldstein, M. A., Stromer, M. H., Schroeter, J. P., and Sass, R. L. 1980. Optical reconstruction of nemaline rods. Exp. Neurol. 70: 83–97.PubMedCrossRefGoogle Scholar
  135. Goldwasser, E., and Inana, G. 1978. Molecular aspects of the initiation of erythropoiesis. ICN- UCLA Symp. Mol. Cell. Biol. 10: 15–35.Google Scholar
  136. Goode, D. 1975. Mitosis of embryonic heart muscle cells in vitro. Cytobiologie Z. Exp. Zellforsch. 11: 203–229.Google Scholar
  137. Gordon, A. S., and Zanjani, E. D. 1970. Some aspects of erythropoietin physiology. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 1, pp. 413–457.Google Scholar
  138. Gorin, M. B., Cooper, D. L., Eiferman, F., van de Rijn, P., and Tilghman, S. M. 1981. The evolution of «-fetoprotein and albumin. I. A comparison of the primary amino acid sequences of mammalian «-fetoprotein and albumin. J. Biol. Chem. 256: 1954–1959.PubMedGoogle Scholar
  139. Goy, R. W., Bridson, W. E., and Young, W. C. 1964. Period of maximum susceptibility of the prenatal female guinea pig to masculinizing actions of testosterone propionate. J. Comp. Physiol. Psychol. 57: 166–174.PubMedCrossRefGoogle Scholar
  140. Gratzer, W. B., and Allison, A. C. 1960. Multiple haemoglobins. Biol. Rev. 35: 459–506.PubMedCrossRefGoogle Scholar
  141. Grim, M., and Carlson, B. M. 1979. The formation of muscles in regenerating limbs of the newt after denervation of the blastema. J. Embryol. Exp. Morphol. 54: 99–111.PubMedGoogle Scholar
  142. Grobstein, C. 1955. Tissue disaggregation in relation to determination and stability of cell type. Ann. N.Y. Acad. Sci. 60: 1095–1106.PubMedCrossRefGoogle Scholar
  143. Groenendijk-Huijbers, M. M. 1962. The cranio-caudal regression of the right Miillerian duct in the chick embryo as studied by castration experiments and estrogen treatment. Anat. Rec. 142: 9–20.PubMedCrossRefGoogle Scholar
  144. Gross, J., and Kirk, D. 1958. The heat precipitation of collagen from neutral salt solutions. J. Biol. Chem. 233: 355–360.PubMedGoogle Scholar
  145. Gross, S. R., and Bromwell, K. 1977. Postnatal development of phosphorylase kinase in mouse skeletal muscle. Arch. Biochem. Biophys. 184: 1–11.PubMedCrossRefGoogle Scholar
  146. Griineberg, H. 1963. The Pathology of Development: A Study of Inherited Skeletal Disorders in Animals, New York, Wiley.Google Scholar
  147. Gudernatsch, J. F. 1912. Wilhelm Roux Arch. Entwicklungsmech. Org. 35: 457–483.Google Scholar
  148. Guichard, A., Cedard, L., and Haffen, K. 1973. Aspect comparatif de la synthèse de steroides sefuels par les gonades embryonnaires de poulet à différents stades du développement: L’étude en culture organotypique à partir de précurseurs radioactifs. Gen. Comp. Endocrinol. 20: 16–28.PubMedCrossRefGoogle Scholar
  149. Haffen, K. 1975. Sex differentiation of avian gonads in vitro. Am. Zool. 15: 257–272.Google Scholar
  150. Hâgâ, P., and Kristiansen, S. 1981. Role of the kidney in foetal erythropoiesis: Erythropoiesis and erythropoietin levels in newborn mice with renal agenesis. J. Embryol. Exp. Morphol. 61: 165–173.PubMedGoogle Scholar
  151. Hall, B. K., and Tremaine, R. 1979. Ability of neural crest cells from the embryonic chick to differentiate into cartilage before their migration away from the neural tube. Anat. Rec. 194: 469–476.PubMedCrossRefGoogle Scholar
  152. Hamburger, V. 1938. Morphogenetic and axial self-differentiation of transplanted limb primoridia of 2-day chick embryos. J. Exp. Zool. 77: 379–399.CrossRefGoogle Scholar
  153. Hamburger, V. 1939. The development and innervation of transplanted limb primordia of chick embryos. J. Exp. Zool. 80: 347–390.CrossRefGoogle Scholar
  154. Hamburger, V., and Hamilton, H. L. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88: 49–92.CrossRefGoogle Scholar
  155. Hamerman, D., Todaro, G. J., and Green, H. 1965. The production of hyaluronate by spontaneously established cell lines and viral transformed lines of fibroblastic origin. Biochim. Biophys. Acta 101: 343–351.CrossRefGoogle Scholar
  156. Hamilton, H. L. 1952. Lillie’s Development of the Chick, New York, Holt.Google Scholar
  157. Hamilton, T. H. 1961. Studies on the physiology of urogenital differentiation in the chick embryo. J. Exp. Zool. 146: 265–274.PubMedCrossRefGoogle Scholar
  158. Hampé, A. 1960. Sur l’induction et la compétance dans les relations entre l’épiblaste et le més- enchyme de la patte de poulet. J. Embryol. Exp. Morphol. 8: 246–250.PubMedGoogle Scholar
  159. Hannah, R., Simkins, R., and Eisen, H. J. 1980. Synthesis of «-fetoprotein and albumin by fetal mouse liver cultured in chemically defined medium. Dev. Biol. 77: 244–252.PubMedCrossRefGoogle Scholar
  160. Hardingham, T. E., Fitton-Jackson, S., and Muir, H. 1972. Replacement of proteoglycans in embryonic chick cartilage in organ culture after treatment with testicular hyaluronidase. Biochem. J. 129: 101–112.PubMedGoogle Scholar
  161. Harkins, R. N., Black J. A., and Rittenberg, M. B. 1977. M2 isozyme of pyruvate kinase from human kidney as the product of a separate gene. Biochemistry 16: 3831–3837.PubMedCrossRefGoogle Scholar
  162. Harris, M., ed. 1974. Poly(ADP-ribose): An International Symposium, U.S. Department of Health, Education and Welfare, Publication 74–477.Google Scholar
  163. Harrison, R. G. 1904. An experimental study of the relation of the nervous system to the devel¬oping musculature in the embryo of the frog. Am. J. Anat. 3: 197–220.CrossRefGoogle Scholar
  164. Harrison, R. G. 1907. Experiments in transplanting limbs and their bearing upon the problems of the development of nerves. J. Exp. Zool. 4: 239–281.CrossRefGoogle Scholar
  165. Harrison, R. G. 1921. On relations of symmetry in transplanted limbs. J. Exp. Zool. 32: 1–136.CrossRefGoogle Scholar
  166. Hascall, V. C., and Heinegard, D. 1974. Aggregation of cartilage proteoglycans. J. Biol. Chem. 249: 4232–4241.PubMedGoogle Scholar
  167. Hay, D. A., and Low, F. N. 1972. The fine structure of progressive stages of myocardial mitosis in chick embryos. Am. J. Anat. 134: 175–202.PubMedCrossRefGoogle Scholar
  168. Hay, E. D. 1958. The fine structure of blastema cells and differentiating cartilage cells in regenerating limbs of Amblystoma larvae. J. Biophys. Biochem. Cytol. 4: 583–591.PubMedCrossRefGoogle Scholar
  169. Hay, E. D. 1959. Electron microscopic observations of muscle dedifferentiation in regenerating Amblysoma limbs. Dev. Biol. 1: 555–585.CrossRefGoogle Scholar
  170. Hay, E. D., and Fischman, D. A. 1961. Origin of the blastema in regenerating limbs of the newt Triturus viridescens. Dev. Biol. 3: 26–59.PubMedCrossRefGoogle Scholar
  171. Hayashi, J., Ishimoda, T., and Hirabayashi, T. 1977. On the heterogeneity and organ specificity of chicken tropomyosins. J. Biochem. 81: 1487–1495.PubMedGoogle Scholar
  172. Hessler, A. C., and Landesman, R. 1981. An investigation of the prolactin-thyroxine synergism in newt limb regeneration. J. Morphol. 167: 103–108.CrossRefGoogle Scholar
  173. Heywood, S. M., and Kennedy, D. S. 1976. Purification of myosin translational control RNA and its interaction with myosin mRNA. Biochemistry 15: 3314–3319.PubMedCrossRefGoogle Scholar
  174. Hirai, K. I., Nagata, K., Maeda, M., and Ichikawa, Y. 1979. Changes in ultrastructure and enzyme activities during differentiation of myeloid leukemia cells to normal macrophages. Exp. Cell Res. 124: 269–283.PubMedCrossRefGoogle Scholar
  175. Hirakow, R., and Krause, W. J. 1980. Postnatal differentiation of ventricular myocardial cells of the opossum (Didelphis virginiana Kerr) and T-tubule formation. Cell Tissue Res. 210: 95–100.PubMedCrossRefGoogle Scholar
  176. Hirsch, F. W., Nail, K. N., Busch, F. N., Morris, H. P., and Busch, H. 1978a. Comparison of abundant cytosol proteins in rat liver, Novikoff hepatoma, and Morris hepatoma by two- dimensional gel electrophoresis. Cancer Res. 38: 1514–1522.PubMedGoogle Scholar
  177. Hirsch, F. W., Nail, K. N., Spohn, W. H., and Busch, H. 1978b. Enrichment of special Novikoff hepatoma and regenerating liver mRNA by hybridization to cDNA cellulose. Proc. Natl. Acad. Sci. USA 75: 1736–1739.PubMedCrossRefGoogle Scholar
  178. Hodgson, G. S. 1967. Effect of vinblastine and 4-amino-N10-methyl-pteroylglutamic acid on the erythropoietin responsive cell. Proc. Soc. Exp. Biol. Med. 125: 1206–1209.PubMedCrossRefGoogle Scholar
  179. Hodgson, G. S. 1970. Mechanism of action of erythropoietin. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 1, pp. 459–469.Google Scholar
  180. Hoh, J. F. Y. 1979. Developmental changes in chicken skeletal myosin isoenzymes. FEBS Lett. 98: 267–270.PubMedCrossRefGoogle Scholar
  181. Hoh, J. F. Y., and Yeoh, G. P. S. 1979. Rabbit skeletal myosin isoenzymes from fetal, fast-twitch and slow-twitch muscles. Nature (London) 280: 321–323.CrossRefGoogle Scholar
  182. Hoh, J. F. Y., McGrath, P. A., and White, R. I. 1976. Electrophoretic analysis of multiple forms of myosin in fast-twitch and slow-twitch muscles of the chick. Biochem. J. 157: 87–95.PubMedGoogle Scholar
  183. Holder, N. 1978. The onset of osteogenesis in the developing chick limb. J. Embryol. Exp. Morphol. 44: 15–29.PubMedGoogle Scholar
  184. Holder, N., Tank, P. W., and Bryant, S. V. 1980. Regeneration of symmetrical forelimbs in the axolotl, Ambystoma mexicanum. Dev. Biol. 74: 302–314.PubMedCrossRefGoogle Scholar
  185. Hollyday, M., and Hamburger, V. 1976. Reduction of naturally occurring motor neuron loss by enlargement of the periphery. J. Comp. Neurol. 170: 311–320.PubMedCrossRefGoogle Scholar
  186. Hollyday, M., and Mendell, L. 1976. Analysis of moving supernumerary limbs of Xenopus laevis. Exp. Neurol. 51: 316–329.PubMedCrossRefGoogle Scholar
  187. Holmes, L. B., and Trelstad, R. L. 1977. Patterns of cell polarity in the developing mouse limb. Dev. Biol. 59: 164–173.PubMedCrossRefGoogle Scholar
  188. Holmes, L. B., and Trelstad, R. L. 1980. Cell polarity in precartilage mouse limb mesenchyme cells. Dev. Biol. 78: 511–520.PubMedCrossRefGoogle Scholar
  189. Holtfreter, J. 1968. Mesenchyme and epithelia in inductive and morphogenetic processes. In: Fleischmajer, R., ed., Epithelial-Mesenchymal Interactions, Baltimore, Williams amp; Wilkins, pp. 1–30.Google Scholar
  190. Holtzer, H., Abbott, J., Lash, H., and Holtzer, S. 1960. The loss of phenotypic traits by differentiated cells in vitro. I. Dedifferentiation of cartilage cells. Proc. Natl. Acad. Sci. USA 46: 1533–1542.PubMedCrossRefGoogle Scholar
  191. Holtzer, H., Croop, J., Dienstman, S., Ishikawa, H., and Somlyo, A. P. 1975. Effects of cyto- chalasin B and colcemide on myogenic cultures. Proc. Natl. Acad. Sci. USA 72: 513–517.PubMedCrossRefGoogle Scholar
  192. Horn, E. C. 1942. An analysis of neutron and X-ray effects on regeneration of the forelimb of larva\ Amblystoma. J. Morphol. 71: 185–219.CrossRefGoogle Scholar
  193. Horstadius, S. 1950. The Neural Crest: Its Properties and Derivatives in Light of Experimental Research, London, Oxford University Press.Google Scholar
  194. Hostetler, J. R., and Ackerman, G. A. 1966. The relationship between the histological localization of alkaline phosphatase activity and appearance of lymphocytes in lymphocytic tissue of the embryonic and neonatal rabbit. Anat. Rec. 156: 191–214.PubMedCrossRefGoogle Scholar
  195. Hsu, L., Trupin, G. L., and Roisen, F. J. 1979. The role of satellite cells and myonuclei during myogenesis in vitro. In: Mauro, A., ed., Muscle Regeneration, New York, Raven Press, pp. 115–120.Google Scholar
  196. Hsu, T. C. 1962. Differential rate in RNA synthesis between euchromatin and heterochromatin. Exp. Cell Res. 27: 332–334.PubMedCrossRefGoogle Scholar
  197. Hudson, G. 1960. Eosinophil populations in blood and bone marrow of normal pigs. Am. J. Physiol. 198: 1171–1173.PubMedGoogle Scholar
  198. Huehns, E. R., Flynn, F. V., Butler, E. A., and Beaven, G. H. 1961. Two new haemoglobin variants in a very young human embryo. Nature (London) 189: 496–497.CrossRefGoogle Scholar
  199. Huhtaniemi, I. T., Korenbrot, C. C., and Jaffe, R. B. 1977. HCG binding and stimulation of testosterone biosynthesis in the human fetal testes. J. Clin. Endocrinol. Metab. 44: 963–967.PubMedCrossRefGoogle Scholar
  200. Hurle, J. M., and Lafarga, M. 1978. Cytokinesis in developing cardiac muscle cells: An ultrastruc- tural study in the chick embryo. Rev. Biol. Cell. 33: 195–198.Google Scholar
  201. Hurle, J. M., and Ojeda, J. L. 1979. Cell death during the development of the truncus and conus of the chick embryo heart. J. Anat. 129: 427–439.PubMedGoogle Scholar
  202. Hurle, J. M., Lafarga, M., and Ojeda, J. L. 1977. Cytological and cytochemical studies of the necrotic area of the bulbus of the chick embryo heart: Phagocytosis by developing myocardial cells. J. Embryol. Exp. Morphol. 41: 161–170.PubMedGoogle Scholar
  203. Hurle, J. M., Lafarga, M., and Ojeda, J. L. 1978. In vivo phagocytosis by developing myocardial cells: An ultrastructural study. J. Cell Sci. 33: 363–369.PubMedGoogle Scholar
  204. Hynes, R. O. 1976. Cell surface proteins and malignant transformation. Biochim. Biophys. Acta 458: 73–107.PubMedGoogle Scholar
  205. Ibsen, K. H., Murray, L., and Maries, S. W. 1976. Electrofocusing and kinetic studies of adult and embryonic chicken pyruvate kinases. Biochemistry 15: 1064–1073.PubMedCrossRefGoogle Scholar
  206. Innis, M. A., and Miller, D. L. 1977. A quantitation of rat «-fetoprotein mRNA with a complementary DNA probe. J. Biol. Chem. 252: 8469–8475.PubMedGoogle Scholar
  207. Innis, M. A., and Miller, D. L. 1980. «-Fetoprotein gene expression. J. Biol. Chem. 255: 8994–8996.Google Scholar
  208. Iscove, N. N. 1978. Erythropoietin-independent stimulation of early erythropoiesis in adult marrow cultures by conditioned media from lectin-stimulated mouse spleen cells. ICN-UCLA Symp. Mol. Cell. Biol. 10: 37–52.Google Scholar
  209. Javois, L. C., and Iten, L. E. 1981. Position of origin of donor posterior chick wing bud tissue transplanted to an anterior host site determines the extra structures formed. Dev. Biol. 82: 329–342.PubMedCrossRefGoogle Scholar
  210. Javois, L. C., Iten, L. E., and Murphy, D. J. 1981. Formation of supernumerary structures by the embryonic chick wing depends on the position and orientation of a graft in a host limb bud. Dev. Biol. 82: 343–349.PubMedCrossRefGoogle Scholar
  211. Johnson, M. A., Mastaglia, F. L., Montgomery, A. G., Pope, B., and Weeds, A. G. 1980. Changes in myosin light chains in the rat soleus after thyroidectomy. FEBS Lett. 110: 230–235.PubMedCrossRefGoogle Scholar
  212. Johnston, I. A., Ward, P. S., and Goldspink, G. 1975. Studies on the swimming musculature of the rainbow trout. I. Fibre types. J. Fish Biol. 7: 451–458.CrossRefGoogle Scholar
  213. Johnston, M. C. 1966. A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anat. Rec. 156: 143–156.PubMedCrossRefGoogle Scholar
  214. Jones, C. L. 1979. The morphogenesis of the thigh of the mouse with special reference to tetrapod muscle homologies. J. Morphol. 162: 275–310.PubMedCrossRefGoogle Scholar
  215. Jost, A. 1947. Expériences de décapitation de l’embryon de lapin. C. R. Acad. Sci. 225: 322–324.Google Scholar
  216. Jost, A. 1970. Hormonal factors in the sex differentiation of the mammalian foetus. Philos. Trans. R. Soc. London Ser. B 259: 119–131.CrossRefGoogle Scholar
  217. Jost, A., Vigier, B., Prépin, J., and Perchellet, J. P. 1973. Studies on sex differentiation in mammals. Recent Prog. Horm. Res. 29: 1–35.PubMedGoogle Scholar
  218. Jurand, A. 1965. Ultrastructural aspects of early development of the forelimb buds in the chick and mouse. Proc. R. Soc. London Ser. B 162: 387–405.CrossRefGoogle Scholar
  219. Just, J. J., Schwager, J., Weber, R., Fey, H., and Pfister, H. 1980. Immunological analysis of hemoglobin transition during metamorphosis of normal and isogenic Xenopus. Wilhelm Roux Arch. Dev. Biol. 188: 75–80.CrossRefGoogle Scholar
  220. Kabat, D. 1974. The switch from fetal to adult hemoglobin in humans: Evidence suggesting a role for y-fi gene linkage. Ann. N.Y. Acad. Sci. 241: 119–131.PubMedCrossRefGoogle Scholar
  221. Karasawa, K., Kimata, K., Ito, K., Kato, Y., and Suzuki, S. 1979. Morphological and biochemical differentiation of limb bud cells cultured in chemically defined medium. Dev. Biol. 70: 287–305.PubMedCrossRefGoogle Scholar
  222. Karlsson, B. W. 1970. Fetoprotein and albumen levels in the blood serum of developing neonatal pigs. Biol. Neonate 34: 259–268.Google Scholar
  223. Karrer, H. E., and Cox, J. 1960. EM observations on developing chick embryo liver: Golgi complex and its possible role in the formation of glycogen. J. Ultrastruct. Res. 4: 149–165.PubMedCrossRefGoogle Scholar
  224. Karrer, H. E., and Cox, J. 1961. EM observations on chick embryo liver: Glycogen, bile canalic- uli, inclusion bodies and hematopoiesis. J. Ultrastruct. Res. 5: 116–141.PubMedCrossRefGoogle Scholar
  225. Kawai, N., Nishiyama, F., and Hirano, H. 1979. Changes of lectin-binding sites on the embryonic muscle cell surface in the developing ascidian, Halocynthia aurantium. Exp. Cell Res. 122: 293–304.PubMedCrossRefGoogle Scholar
  226. Keller, L. R., and Emerson, C. P. 1980. Synthesis of adult myosin light chains by embryonic muscle culture. Proc. Natl. Acad. Sci. USA 77: 1020–1024.PubMedCrossRefGoogle Scholar
  227. Keller, R. H., Calvanico, N. J., and Tomasi, T. B. 1976. Immunosuppressive properties of AFP: Role of estrogens. In: Fishman, W. H., and Sell, S., eds. Onco Developmental Gene Expression, New York, Academic Press, pp. 287–295.Google Scholar
  228. Kelly, A. M., and Chacko, S. 1976. Myofibril organization and mitosis in cultured cardiac muscle cells. Dev. Biol 48: 421–430.PubMedCrossRefGoogle Scholar
  229. Kennedy, D. S., Siegel, E., and Hey wood, S. M. 1978. Purification of myosin mRNP translational control RNA and its inhibition of myosin and globin messenger translation. FEBS Lett. 90: 209–214.PubMedCrossRefGoogle Scholar
  230. Keppler, D., Lesch, R., Reutter, W., and Decker, K. 1968. Experimental hepatitis induced by D- galactosamine. Exp. Mol. Pathol. 9: 279–290.PubMedCrossRefGoogle Scholar
  231. Kioussis, D., Eiferman, F., van de Rijn, P., Gorin, M. B., Ingram, R. S., and Tilghman, S. M. 1981. The evolution of «-fetoprotein and albumin genes in the mouse. II. The structures of the «-fetoprotein and albumin genes in the mouse. J. Biol. Chem. 256: 1960–1967.PubMedGoogle Scholar
  232. Klee, H. J., DiPetro, D., Fournier, M. J., and Fischer, M. S. 1978. Characterization of tRNA from liver of the developing amphibian Rana catesbeiana. J. Biol Chem. 253: 8074–8080.PubMedGoogle Scholar
  233. Kleihauer, E., and Stöffler, G. 1968. Embryonic hemoglobins of different animal species. Mol. Gen. Genet. 101: 59–69.PubMedCrossRefGoogle Scholar
  234. Kleinebeckel, K. 1979. Movements of supernumerary hindlimbs after innervation by single lumbar spinal nerves of Xenopuslaevis. Experientia 35: 506–507.PubMedCrossRefGoogle Scholar
  235. Klingman, D., and Nameroff, M. 1980a. Analysis of the myogenic lineage in chick embryos. I. Studies on the terminal cell division. Exp. Cell Res. 125: 201–210.CrossRefGoogle Scholar
  236. Klingman, D., and Nameroff, M. 1980b. Analysis of the myogenic lineage in chick embryos. II. Evidence for a deterministic lineage in the final stages. Exp. Cell Res. 127: 237–247.CrossRefGoogle Scholar
  237. Klotz, C., Swynghedauw, B., Mendes, H., Marotte, F., and Leger, J. J. 1981. Evidence for new forms of cardiac myosin heavy chains in mechanical heart overloading and in ageing. Eur. J. Biochem. 115: 415–421.PubMedCrossRefGoogle Scholar
  238. Ko, D. S., Page, R. C., and Narayanan, A. S. 1977. Fibroblast heterogeneity and prostaglandin regulation of subpopulations. Proc. Natl. Acad. Sci. USA 74: 3429–3432.PubMedCrossRefGoogle Scholar
  239. Königsberg, I. R. 1971. Diffusion-mediated control of myoblast fusion. Dev. Biol. 26: 133–152.PubMedCrossRefGoogle Scholar
  240. Korneliussen, H., Dahl, H. A., and Paulsen, J. E. 1978. Histochemical definition of muscle fibre types in the trunk musculature of a teleost fish (cod, Gadus morhua). Histochemistry 55: 1–16.PubMedCrossRefGoogle Scholar
  241. Kosher, R. A., and Savage, M. P. 1980. Studies on the possible role of cAMP in limb morphogenesis and differentiation. J. Embryol. Exp. Morphol. 56: 91–105.PubMedGoogle Scholar
  242. Kovach, J. S., Marks, P. A., Russell, E. S., and Epler, H. 1967. Erythroid cell development in fetal mice: Ultrastructural characteristics and hemoglobin synthesis. J. Mol. Biol. 25: 131–142.PubMedCrossRefGoogle Scholar
  243. Krasner, G. N., and Bryant, S. V. 1980. Distal transformation from double-half forearms in the axolotl Ambystoma mexicanum. Dev. Biol. 74: 315–325.PubMedCrossRefGoogle Scholar
  244. Kuroda, M., and Masaki, T. 1980. Extractability of actin and actinlike protein from myosin- removed myofibrils of skeletal muscle. J. Biochem. 88: 605–608.PubMedGoogle Scholar
  245. Lajtha, L. G. 1970 Stem cell kinetics. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 1, pp. 111–131.Google Scholar
  246. Lajtha, L. G., Pozzi, L. V., Schofield, R., and Fox, M. 1969. Kinetic properties of haemopoietic stem cells. Cell Tissue Kinet. 2: 39–49.Google Scholar
  247. Lamb, A. H. 1976. The projection patterns of the ventral horn to the hind limb during development. Dev. Biol. 54: 82–99.PubMedCrossRefGoogle Scholar
  248. Lamb, A. H. 1977. Neuronal death in the development of the somatotopic projections of the ventral horn Xenopus. Brain Res. 134: 145–150.PubMedCrossRefGoogle Scholar
  249. Lamb, A. H. 1979a. Ventral horn cell counts in a Xenopus with naturally occurring supernumerary hind limbs. J. Embryol. Exp. Morphol. 49: 13–16.PubMedGoogle Scholar
  250. Lamb, A. H. 1979b. Evidence that some developing limb motoneurons die for reasons other than peripheral competition. Dev. Biol. 71: 8–21.PubMedCrossRefGoogle Scholar
  251. Lee-Huang, S., Sierra, J. M., Naranjo, R., Filipowicz, W., and Ochoa, S. 1977. Eucaryotic oligonucleotides affecting mRNA translation. Arch. Biochem. Biophys. 180: 276–287.PubMedCrossRefGoogle Scholar
  252. Leibovitch, M. P., Leibovitch, S. A., Harel, J., and Krüh, J. 1979. Changes in the frequency and diversity of mRNA populations in the course of myogenic differentiation. Eur. J. Biochem. 98: 321–326.CrossRefGoogle Scholar
  253. Leknes, I. L. 1980. Ultrastructure of atrial endocardium and myocardium in three species of Gadidae (Teleostei). Cell Tissue Res. 210: 1–10.PubMedGoogle Scholar
  254. Le Lièvre, C. 1974. Rôle des cellules mesectodermiques issues des crêtes neurales céphaliques dans la formation des arcs branchiaux et du squelette viscéral. J. Embryol. Exp. Morphol. 31: 453–477.PubMedGoogle Scholar
  255. Le Lièvre, C. 1978. Participation of neural crest derived cells in the genesis of the skull in birds. J. Embryol. Exp. Morphol. 47: 17–37.PubMedGoogle Scholar
  256. Lemanski, L. F., Marx, B. S., and Hill, C. S. 1977. Evidence for abnormal heart induction in cardiac-mutant salamanders (Ambystoma mexicanum). Science 196: 894–896.CrossRefGoogle Scholar
  257. Lemanski, L. F., Paulson, D. J., and Hill, C. S. 1979. Normal anterior endoderm corrects the heart defect in cardiac mutant salamanders (Ambystoma mexicanum). Science 204: 860–862.PubMedCrossRefGoogle Scholar
  258. Lemanski, L. F., Fuldner, R. A., and Paulson, D. J. 1980. Immunofluorescence studies for myosin, a-actinin and tropomyosin in developing hearts of normal and cardiac lethal mutant Mexican axolotls, Ambystoma mexicanum. J. Embryol. Exp. Morphol. 55: 1–15.PubMedGoogle Scholar
  259. Lentz, T. L. 1969. Cytological studies of muscle dedifferentiation and differentiation during limb regeneration of the newt Triturus. Am. J. Anat. 124: 447–480.PubMedCrossRefGoogle Scholar
  260. Levine, R. F. 1980. Isolation and characterization of normal human megakaryocytes. Br. J. Haematol. 45: 487–497.PubMedCrossRefGoogle Scholar
  261. Liao, W. S., Conn, A. R., and Taylor, J. M. 1980. Changes in rat «x-fetoprotein and albumin mRNA levels during fetal and neonatal development. J. Biol. Chem. 255: 10036–10039.PubMedGoogle Scholar
  262. Linsenmayer, T. F., Toole, B. P., and Trelstad, R. L. 1973. Temporal and spatial transitions in collagen types during embryonic chick limb development. Dev. Biol. 35: 232–239.PubMedCrossRefGoogle Scholar
  263. Littau, V. C., Allfrey, V. G., Frenster, J. H., and Mirsky, A. E. 1964. Active and inactive regions of nuclear chromatin as revealed by EM radiography. Proc. Natl. Acad. Sci. USA 52: 93–100.PubMedCrossRefGoogle Scholar
  264. Loomis, W. F., Wahrmann, J. P., and Luzzati, D. 1973. Temperature-sensitive variants of an established myoblast line. Proc. Natl. Acad. Sci. USA 70: 425–429.PubMedCrossRefGoogle Scholar
  265. Lough, J., and Ingram, V. M. 1978. Change in a nuclear phosphoprotein during in vitro myoge- nesis. Exp. Cell Res. 114: 349–356.PubMedCrossRefGoogle Scholar
  266. Lowey, S., and Risby, D. 1971. Light chains from fast and slow muscle myosins. Nature (London) 234: 81–85.CrossRefGoogle Scholar
  267. Lowy, P. H. 1970. Preparation and chemistry of erythropoietin. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 1, pp. 395–412.Google Scholar
  268. Lufti, A. 1971. The fate of chondrocytes during cartilage erosion in the growing tibia in the domestic fowl (Gallus domesticus). Acta Anat. 79: 27–35.CrossRefGoogle Scholar
  269. Luzzatto, A. C. 1981. Hepatocyte differentiation during early fetal development in the rat. Cell Tissue Res. 215: 133–142.PubMedCrossRefGoogle Scholar
  270. Lyon, J. B. 1970. The X-chromosome and the enzymes controlling muscle glycogen: Phosphorylase kinase. Biochem. Genet. 4: 169–185.PubMedCrossRefGoogle Scholar
  271. McCulloch, E. A. 1970. Control of hematopoiesis at the cellular level. In: Gordon, A. S. ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 1, pp. 133–159.Google Scholar
  272. McEwen, B. S., Lieberburg, I., Macluskey, N., and Plapinger, L. 1976. Interactions of testosterone and estradiol with the neonatal rat brain protective mechanism and possible relationship to sexual differentiation. Ann. Biol. Anim. Biochim. Biophys. 16: 471–478.CrossRefGoogle Scholar
  273. Maden, M. 1976. Blastemal kinetics and pattern formation during amphibian limb regeneration. J. Embryol. Exp. Morphol. 36: 561–574.PubMedGoogle Scholar
  274. Maden, M. 1979a. Neurotropic and X-ray blocks in the blastemal cell cycle. J. Embryol. Exp. Morphol. 50: 169–173.PubMedGoogle Scholar
  275. Maden, M. 1979b. The role of irradiated tissue during pattern formation in the regeneration limb. J. Embryol. Exp. Morphol. 50: 235–242.PubMedGoogle Scholar
  276. Maden, M. 1980. Intercalary regeneration in the amphibian limb and the rule of distal transformation. J. Embryol. Exp. Morphol. 56: 201–209.PubMedGoogle Scholar
  277. Maden, M., and Goodwin, B. C. 1980. Experiments on developing limb buds of the axolotl, Ambystoma mexicanum. J. Embryol. Exp. Morphol. 57: 177–187.PubMedGoogle Scholar
  278. Maden, M., and Wallace, H. 1976. How X-rays inhibit amphibian limb regeneration. J. Exp. Zool. 197: 105–113.PubMedCrossRefGoogle Scholar
  279. Mailman, M. L., and Dresden, M. H. 1979. Denervation effects on newt limb regeneration: Collagen and collagenase. Dev. Biol. 71: 60–70.PubMedCrossRefGoogle Scholar
  280. Malpoix, P. 1964. Influence of extraneous RNA on the differentiation of haematopoietic tissue in chick embryos. Nature (London) 203: 520–521.CrossRefGoogle Scholar
  281. Man, N. T., Morris, G. E., and Cole, R. J. 1980a. Two-dimensional gel analysis of nuclear proteins during muscle differentiation in vitro. I. Changes in nuclear protein content. Exp. Cell Res. 126: 375–382.PubMedCrossRefGoogle Scholar
  282. Man, N. T., Morris, G. E., and Cole, R. J. 1980b. Two-dimensional gel analysis of nuclear proteins during muscle differentiation in vitro. II. Changes in protein phosphorylation. Exp. Cell Res. 126: 383–390.PubMedCrossRefGoogle Scholar
  283. Manasek, F. J. 1968. Mitosis in developing cardiac muscle. J. Cell Biol. 37: 191–196.PubMedCrossRefGoogle Scholar
  284. Manasek, F. J. 1969. Myocardial cell death in the embryonic chick ventricle. J. Embryol. Exp. Morphol. 21: 271–s284.PubMedGoogle Scholar
  285. Markert, C. L., and Urspring, H. 1962. The ontogeny of isozyme patterns of lactate dehydrogenase in the mouse. Dev. Biol. 5: 363–381.CrossRefGoogle Scholar
  286. Marks, P. A., and Rifkind, R. A. 1972. Protein synthesis: Its control in erythropoiesis. Science 175: 955–961.PubMedCrossRefGoogle Scholar
  287. Masseyeff, R., Gilli, J., Krebs, B., Calluaud, A., and Bonet C. 1975. Evolution of «-fetoprotein serum levels throughout life in humans and rats, and during pregnancy in the rat. Ann. N.Y. Acad. Sci. 259: 17–28.PubMedCrossRefGoogle Scholar
  288. Matsuda, G., Suzuyama, Y., Maita, T., and Umegane, T. 1977. The L-2 light chain of chicken skeletal muscle myosin. FEBS Lett. 84: 53–56.PubMedCrossRefGoogle Scholar
  289. Mauro, A. 1961. Satellite cells of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9: 493–495.PubMedCrossRefGoogle Scholar
  290. Metealf, D., and Moore, M. A. S. 1971. Haemopoietic Cells, Amsterdam, North-Holland.Google Scholar
  291. Midttun, B. 1980. Ultrastructure of atrial and ventricular myocardium in the pike Esox lucius and mackerel Scomber scombrus L. Cell Tissue Res. 211: 41–50.PubMedCrossRefGoogle Scholar
  292. Miller, M. M., Klotz, J. L., and Teplitz, R. L. 1979. Characterization of a chick embryonic erythrocyte antigen using immunochemical electron microscopy. Exp. Cell Res. 124: 159–169.PubMedCrossRefGoogle Scholar
  293. Milojevic, B. D. 1924. Beiträge zum Frage über die Determination der Regenerate. Wilhelm Roux Arch. Entwicklungsmech. Org. 103: 80–94.Google Scholar
  294. Milunsky, A., Spielvogel, C., and Kanfer, J. N. 1972. Lysosomal enzyme variations in cultured normal skin fibroblasts. Life Sci. 11: 1101–1107.CrossRefGoogle Scholar
  295. Mirand, E. A., and Murphy, G. P. 1980. Extrarenal erythropoietin activity in man and experimental animals. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton- Century-Crofts, Vol. 1, pp. 495–518.Google Scholar
  296. Miura, Y., and Wilt, F. H. 1970. The formation of blood islands in dissociated-reaggregated chick embryo yolk sac cells. Exp. Cell Res. 59: 217–226.PubMedCrossRefGoogle Scholar
  297. Moore, M. A. S., and Metealf, D. 1970. Ontogeny of the hematopoietic system: Yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br. J. Haematol. 18: 279–296.PubMedCrossRefGoogle Scholar
  298. Moore, M. A. S., and Owen, J. J. T. 1965. Chromosome marker studies on the development of the haematopoietic system in the chick embryo. Nature (London) 208: 965, 989–990.Google Scholar
  299. Moore, M. A. S., and Owen, J. J. T. 1966. Experimental studies on the development of the bursa of Fabricius. Dev. Biol. 14: 40–51.PubMedCrossRefGoogle Scholar
  300. Moore, M. A. S., and Owen, J. J. T. 1967a. Stem cell migration in developing myeloid and lymphoid systems. Lancet 1967 (2): 958–959.Google Scholar
  301. Moore, M. A. S., and Owen, J. J. T. 1967b. Experimental studies on the development of the thymus. J. Exp. Med. 126: 715–725.PubMedCrossRefGoogle Scholar
  302. Moore, M. A. S., McNeill, T. A., and Haskill, J. S. 1970. Density distribution analysis of in vivo and in vitro colony forming cells in developing fetal liver. J. Cell. Physiol. 75: 181–192.PubMedCrossRefGoogle Scholar
  303. Moore, M. A. S., Kurland, J., and Broxmeyer, H. E. 1976. The granulocytic and monocytic stem cell. In: Cairnie, A. B., Lala, P. K., and Osmund, D. G., eds., Stem Cells of Renewing Cell Populations, New York, Academic Press, pp. 181–188.CrossRefGoogle Scholar
  304. Morris, N. P., Fessler, L. I., Weinstock, A., and Fessler, J. H. 1975. Procollagen assembly and secretion in embryonic chick bone. J. Biol. Chem. 250: 5719–5726.PubMedGoogle Scholar
  305. Morzlock, F. V., and Stocum, D. L. 1972. Neural control of RNA synthesis in regenerating limbs of the adult newt Triturus viridescens. Wilhelm Roux Arch. Dev. Biol. 171: 170–180.CrossRefGoogle Scholar
  306. Moss, F. P., and Leblond, C. P. 1971. Satellite cells as the source of nuclei in muscles of growing rats. Anat. Rec. 170: 421–436.PubMedCrossRefGoogle Scholar
  307. Moss, P. S., and Strohman, R. C. 1976. Myosin synthesis by fusion-arrested chick embryo myoblasts in cell culture. Dev. Biol. 48: 431–437.PubMedCrossRefGoogle Scholar
  308. Mourelle, M., and Rubalcava, B. 1981. Regeneration of the liver after carbon tetrachloride. J. Biol. Chem. 256: 1656–1660.PubMedGoogle Scholar
  309. Muguruma, M., Muguruma, Y., and Fukazawa, T. 1980. Contribution of Z-line constituents to the formation of contraction bands of chicken myofibrils on addition of Mg2+-ATP. J. Biochem. 88: 145–149.PubMedGoogle Scholar
  310. Muller, C. J. 1961. Molecular Evolution, Assem, The Netherlands, Van Gorcum.Google Scholar
  311. Murgita, R. A., Goidl, E. A., Kontiainen, S., and Wigzell, H. 1977. «-Fetoprotein induces suppressor T cells in vitro. Nature (London) 1267: 257–259.Google Scholar
  312. Myklebust, R., Dalen, H., and Saetersdal, T. S. 1980. A correlative transmission and scanning electron microscope study of the pigeon myocardial cell. Cell Tissue Res. 207: 31–41.PubMedCrossRefGoogle Scholar
  313. Naftolin, F., Ryan, K. J., and Petro, Z. 1971. Aromatization of androstenedione by the dien- cephalon. J. Clin. Endocrinol. Metab. 33: 368–370.PubMedCrossRefGoogle Scholar
  314. Nag, A. C. 1972. Ultrastructure and ATPase activity of red and white muscle fibres of the caudal region of a fish, Salmo gairdneri. J. Cell Biol. 55: 42–57.PubMedCrossRefGoogle Scholar
  315. Nag, A. C., and Foster, J. D. 1981. Myogenesis in the adult mammalian skeletal muscle in vitro. J. Anat. 132: 1–18.PubMedGoogle Scholar
  316. Nakeff, A., and Bryan, J. E. 1978. Megakaryocyte proliferation and its regulation as revealed by CFU-M analysis. ICN-UCLA Symp. Mol. Cell. Biol. 10: 241–259.Google Scholar
  317. Nameroff, M., and Holtzer, H. 1967. The loss of phenotypic traits by differentiated cells. IV. Changes in polysaccharides produced by dividing chondrocytes. Dev. Biol. 16: 250–281.PubMedCrossRefGoogle Scholar
  318. Nayak, N. C., and Mital, I. 1977. The dynamics of «-fetoprotein and albumin synthesis in human and rat liver during normal ontogeny. Am. J. Pathol. 86: 359–374.PubMedGoogle Scholar
  319. Newman, S. A. 1977. Lineage and pattern in the developing wing bud. In: Ede, D. A., Hinchcliffe, J. R., and Balls, M., eds., Vertebrate Limb and Somite Morphogenesis, London, Cambridge University Press, pp. 181–197.Google Scholar
  320. Newman, S. A. 1980. Fibroblast progenitor cells of the embryonic chick limb. J. Embryol. Exp. Morphol. 56: 191–200.PubMedGoogle Scholar
  321. Newman, S. A., and Frisch, H. L. 1979. Dynamics of skeletal pattern formation in developing chick limb. Science 205: 662–668.PubMedCrossRefGoogle Scholar
  322. Nist, C., von der Mark, K., Hay, E. D., Olsen, B. R., Bornstein, P., Ross, R., and Dehm, P. 1975. Location of procollagen in chick corneal and tendon fibroblasts with ferritin-conjugated antibodies. J. Cell Biol. 65: 75–87.PubMedCrossRefGoogle Scholar
  323. Nogami, H., and Urist, M. R. 1970. A substratum of bone matrix for differentiation of mesenchymal cells in chondro-osseus tissues in vitro. Exp. Cell Res. 63: 404–410.PubMedCrossRefGoogle Scholar
  324. Novák, E., Drummond, G. I., Skála, J., and Hahn, P. 1972. Developmental changes in cAMP, protein kinase, phosphorylase kinase, and phosphorylase in liver, heart, and skeletal muscle of the rat. Arch. Biochem. Biophys. 150: 511–518.PubMedCrossRefGoogle Scholar
  325. Nunzi, M. G., Burighel, P., and Schiaffino, S. 1979. Muscle cell differentiation in the ascidean heart. Dev. Biol. 68: 371–380.PubMedCrossRefGoogle Scholar
  326. Nute, P. E. 1974. Multiple hemoglobin ct-chain loci in monkeys, apes, and man. Ann. N.Y. Acad. Sci. 241: 39–60.PubMedCrossRefGoogle Scholar
  327. Oberpriller, J., and Oberpriller, J. C. 1971. Mitosis in adult newt ventricle. J. Cell Biol. 49: 560–563.PubMedCrossRefGoogle Scholar
  328. Obinata, T., Hasegawa, T., Masaki, T., and Hayashi, T. 1976. The subunit structure of myosin from skeletal muscle of the early chick embryo. J. Biochem. 79: 521–531.PubMedGoogle Scholar
  329. Obinata, T., Shimada, Y., and Matsuda, R. 1979. Troponin in embryonic chick skeletal muscle cells in vitro. J. Cell Biol. 81: 59–66.PubMedCrossRefGoogle Scholar
  330. Odell, T. T., Jackson, C. W., and Gosslee, D. G. 1965. Maturation of rat megakaryocytes studied by microspectrophotometric measurement of DNA. Proc. Soc. Exp. Biol. Med. 119: 1194–1199.PubMedCrossRefGoogle Scholar
  331. Ojeda, J. L., and Hurle, J. M. 1975. Cell death during the formation of tubular heart of the chick embryo. J. Embryol. Exp. Morphol. 33: 523–534.PubMedGoogle Scholar
  332. Olsen, B. R., Berg, R. A., Kishida, Y., and Prockop, D. J. 1975. Further characterization of embryonic tendon fibroblasts and use of immunoferritin techniques to study collagen biosynthesis. J. Cell Biol. 64: 340–355.PubMedCrossRefGoogle Scholar
  333. O’Neill, M. C., and Stockdale, F. E. 1972. Differentiation without cell division in cultured skeletal muscle. J. Cell Biol. 29: 410–417.Google Scholar
  334. Ontell, M. 1974. Muscle satellite cells: A validated technique for light microscopic identification and a quantitative study of changes in their population following denervation. Anat. Rec. 178: 211–228.PubMedCrossRefGoogle Scholar
  335. Ordahl, C. P., and Caplan, A. I. 1978. High diversity in the poly(A) RNA populations of embryonic myoblasts. J. Biol. Chem. 253: 7683–7691.PubMedGoogle Scholar
  336. Ordahl, C. P., Kioussis, D., Tilghman, S. M., Ovitt, C. E., and Fornwald, J. 1980. Molecular cloning of developmentally regulated, low-abundance mRNA sequences from embryonic muscle. Proc. Natl. Acad. Sci. USA 77: 4519–4523.PubMedCrossRefGoogle Scholar
  337. Orlic, D. 1970. Ultrastructural analysis of erythropoiesis. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 1, pp. 271–296.Google Scholar
  338. Osculati, F., Amati, S., Petrini, E., Franceschini, F., and Cinti, S. 1978. Ultrastructural investigation of the Purkinje fibers of rabbit’s and cat’s hearts. J. Submicrosc. Cytol. 10: 185–197.Google Scholar
  339. Ovadia, M., Parker, C. H., and Lash, J. W. 1980. Changing patterns of proteoglycan synthesis during chondrogenic differentiation. J. Embryol. Exp. Morphol. 56: 59–70.PubMedGoogle Scholar
  340. Owen, J. J. T., and Ritter, M. A. 1969. Tissue interaction in the development of thymus lymphocytes. J. Exp. Med. 129: 431–437.PubMedCrossRefGoogle Scholar
  341. Owen, J. J. T., Raff, M. C., and Cooper, M. D. 1976. Studies of the generation of B-lymphocytes in the mouse embryo. Eur. J. Immunol. 5: 468–473.PubMedCrossRefGoogle Scholar
  342. Paone, D. B., Cutts, J. H., and Krause, W. J. 1975. Megakaryocytopoiesis in the liver of the developing opossum, Didelphis virginiana. J. Anat. 120: 239–252.PubMedGoogle Scholar
  343. Parker, R. C. 1932a. The fundamental characteristics of nine races of fibroblasts. Science 76: 219–220.PubMedCrossRefGoogle Scholar
  344. Parker, R. C. 1932b. The stability of functionally distinct races of fibroblasts. Science 76: 446–447.PubMedCrossRefGoogle Scholar
  345. Paterson, B., and Strohman, R. C. 1972. Myosin synthesis in cultures of differentiating chick embryo skeletal muscle. Dev. Biol. 29: 113–138.PubMedCrossRefGoogle Scholar
  346. Peachey, L. D. 1965. Sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J. Cell Biol. 25: 209–233.PubMedCrossRefGoogle Scholar
  347. Pearson, H. A. 1974. Pathophysiology of thalassemias. Ann. N.Y. Acad. Sci. 241: 274–279.PubMedCrossRefGoogle Scholar
  348. Pelloni-Muller, G., Ermini, M., and Jenny, F. 1976. Changes in myosin light and heavy chain stoichiometry during development of rabbit fast, slow and cardiac muscle. FEBS Lett. 70: 113–117.PubMedCrossRefGoogle Scholar
  349. Peschle, C., Tallarida, G., Leone, G., and Condorelli, M. 1967. Richerche sul fattore eritropoietico renale. V. Estrazione di un fattore renale generante eritropoietino dopo incubazione con plasma omologo. Prog. Med. (Rome) 23: 911–919.Google Scholar
  350. Peschle, C., Migliaccio, G., Covelli, A., Lettieri, F., Migliaccio, A. R., Condorelli, M., Comi, P., Pozzoli, M. L., Giglioni, B., Ottolenghi, S., Cappellini, M. D., Polli, E., and Gianni,A. M. 1980. Hemoglobin synthesis in individual bursts from normal adult blood: All bursts and subcolonies synthesize Gy- and Ay-globin chains. Blood 56: 218–226.PubMedGoogle Scholar
  351. Pescitelli, M. J., and Stocum, D. L. 1981. Nonsegmental organization of positional information in regenerating Ambystoma limbs. Dev. Biol. 82: 69–85.PubMedCrossRefGoogle Scholar
  352. Peters, T. 1975. Serum albumin. In: Putnam, F. W., ed., The Plasma Proteins, New York, Academic Press, Vol. 1, pp. 133–181.Google Scholar
  353. Pexieder, T. 1972. The tissue dynamics of heart morphogenesis. I. The phenomena of cell death. Z. Anat. Entwicklungsgesch. 138: 241–254.PubMedCrossRefGoogle Scholar
  354. Playfair, J. H. L., and Cole, L. J. 1965. Quantitative studies on colony-forming units in isogenic radiation chimaeras. J. Cell. Comp. Physiol. 65: 7–18.CrossRefGoogle Scholar
  355. Podleski, T. R., Greenberg, I., and Nichols, S. C. 1979a. Studies on lectin activity during my- ogenesis. Exp. Cell Res. 122: 305–316.PubMedCrossRefGoogle Scholar
  356. Podleski, T. R., Greenberg, I., Schlessinger, J., and Yamada, K. M. 1979b. Fibronectin delays the fusion of myoblasts. Exp. Cell Res. 122: 317–326.PubMedCrossRefGoogle Scholar
  357. Polezhaev, L. 1936. La valeur de la structure de l’organe et les capacités du blastème régénératif dans le processus de la détermination du régénérât. Bull. Biol. Fr. Belg. 70: 54–85.Google Scholar
  358. Polezhaev, L. 1972. Loss and Restoration of Regenerative Capacity, Cambridge, Mass., Harvard University Press.Google Scholar
  359. Price, D., Ortiz, E., and Zaaijer, J. J. P. 1967. Organ culture studies of hormone secretion in endocrine glands of fetal guinea pigs. III. The relation of testicular hormones to sex differ¬entiation of the reproductive ducts. Anat. Rec. 157: 27–42.PubMedCrossRefGoogle Scholar
  360. Proudfoot, N. J., Shander, M. H. M., Manley, J. L., Gefter, M. L., and Maniatis, T. 1980. Structure and in vitro transcription of human globin genes. Science 209: 1329–1336.PubMedCrossRefGoogle Scholar
  361. Raeside, J. I., and Middleton, A. T. 1979. Development of testosterone secretion in the fetal pig testis. Biol. Reprod. 21: 985–989.PubMedCrossRefGoogle Scholar
  362. Reiners, J. J., and Busch, H. 1980. Transcriptional and posttranscriptional modulation of cytoplasmic RNAs in regenerating liver and Novikoff hepatoma. Biochemistry 19: 833–841.PubMedCrossRefGoogle Scholar
  363. Revel, J. P., and Hay, E. D. 1963. An autoradiographic and electron microscopic study of collagen synthesis in differentiating cartilage. Z. Zellforsch. Mikrosk. Anat. 61: 110–144.PubMedCrossRefGoogle Scholar
  364. Rich, I. N., and Kubanek, B. 1979. The ontogeny of erythropoiesis in the mouse detected by the erythroid colony-forming technique. J. Embryol. Exp. Morphol. 50: 57–74.PubMedGoogle Scholar
  365. Richardson, B. J., and Russell, E. M. 1969. Changes with age in the proportion of nucleated red blood cell types and in the type of haemoglobin in kangaroo pouch young. Aust. J. Exp. Biol. Med. Sa. 47: 563–580.Google Scholar
  366. Richmond, A., and Elmer, W. A. 1980. Purification of a mouse embryo extract component which enhances chondrogenesis in vitro. Dev. Biol. 76: 366–383.PubMedCrossRefGoogle Scholar
  367. Rifkind, R. A., Cantor, L. N., Cooper, M., Levy, J., Maniatis, G. M., Bank, A., and Marks, P. A. 1974. Ontogeny of erythropoiesis in the fetal mouse. Ann. N.Y. Acad. Sci. 241: 113–118.PubMedCrossRefGoogle Scholar
  368. Rigaudiere, N. 1977. Evolution des teneurs en testosterone et dihydrotestosterone dans le plasma, le testicule et l’ovaire chez le cobaye au cours de lavie foetale. C. R. Acad. Sci. 285: 989–992.Google Scholar
  369. Riordan, J. R., and Richards, V. 1980. Human fetal liver contains both zinc- and copper-rich forms of metallothionein. J. Biol. Chem. 255: 5380–5383.PubMedGoogle Scholar
  370. Rosenberg, S. A., Speiss, P. J., and Schwarz, S. 1980. In vitro growth of murine T-cells. IV. Use of T-cell growth factor to clone lymphoid cells. Cell. Immunol. 54: 293–306.PubMedCrossRefGoogle Scholar
  371. Rosse, W. F., and Waldmann, T. A. 1966. Factors controlling erythropoiesis in birds. Blood 27: 654–661.PubMedGoogle Scholar
  372. Rosse, W. F., Waldmann, T. A., and Hull, E. 1963. Factors stimulating erythropoiesis in frogs. Blood 22: 66–72.PubMedGoogle Scholar
  373. Roy, R. K., Sreter, F. A., and Sarkar, S. 1979a. Changes in tropomyosin subunits and myosin light chains during development of chicken and rabbit striated muscles. Dev. Biol. 69: 15–30.PubMedCrossRefGoogle Scholar
  374. Roy, R. K., Mabuchi, K., Sarkar, S., Mis, C., and Sreter, F. A. 1979b. Changes in tropomyosin subunit pattern in chronic electrically stimulated rabbit fast muscles. Biochem. Biophys. Res. Commun. 89: 181–187.PubMedCrossRefGoogle Scholar
  375. Rubenstein, N. A., and Holtzer, H. 1979. Fast and slow muscles in tissue culture synthesize only fast myosin. Nature (London) 280: 323–325.CrossRefGoogle Scholar
  376. Rubenstein, N. A., Pepe, F., and Holtzer, H. 1977. Myosin types during development of embryonic chicken fast and slow muscles. Proc. Natl. Acad. Sci. USA 74: 4524–4527.CrossRefGoogle Scholar
  377. Rucknagel, D. L., and Winter, W. P. 1974. Duplication of structural genes for hemoglobin a and 3 chains in man. Ann. N.Y. Acad. Sci. 247: 80–92.CrossRefGoogle Scholar
  378. Rudolph, R., and Woodard, M. 1978. Spatial orientation of microtubules in contractile fibroblasts in vivo. Anat. Rec. 191: 169–182.PubMedCrossRefGoogle Scholar
  379. Rugh, R. 1968. The Mouse: Reproduction and Development, Minneapolis, Minn., Burgess, pp. 253–259.Google Scholar
  380. Rumyantsev, P. P. 1972. Electron microscope study of the myofibril partial disintegration and recovery in the mitotically dividing cardiac muscle cells. Z. Zellforsch. Mikrosk. Anat. 129: 471–499.PubMedCrossRefGoogle Scholar
  381. Ruoslahti, E., and Engvall, E. 1980. Complexing of fibronectin glycosaminoglycans and collagen. Biochim. Biophys. Acta 631: 350–358.PubMedCrossRefGoogle Scholar
  382. Rushbrook, J. I., and Stracher, A. 1979. Comparison of adult, embryonic, and dystrophic myosin heavy chains from chicken muscle by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and peptide mapping. Proc. Natl. Acad. Sci. USA 76: 4331–4334.PubMedCrossRefGoogle Scholar
  383. Rytomaa, T. 1960. Organ distribution and histochemical properties of eosinophil granulocytes in rat. Acta Pathol. Scand. 50 (Suppl. 140): 1–118.Google Scholar
  384. Saetersdal, T., Odegarden, S., Rotevatn, S., and Engedal, H. 1980. Atrial specific granules of the human auricle in embryogenesis, tissue culture, and hypertrophy. Cell Tissue Res. 209: 345–351.PubMedCrossRefGoogle Scholar
  385. Sainte-Marie, G., and Sin, Y. M. 1970. Morphologic aspects and kinetics of the formation of neutrophils and eosinophils. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 2, pp. 1109–1142.Google Scholar
  386. Sala-Trepat, J. M., Dever, J., Sargent, T. D., Thomas, K., Sell, S., and Bonner, J. 1979. Changes in expression of albumin and «-fetoprotein genes during rat liver development and neoplasia. Biochemistry 18: 2167–2178.PubMedCrossRefGoogle Scholar
  387. Sarkar, S., Sreter, F. A., and Gergeley, J. 1971. Light chains of myosins from white, red and cardiac muscles. Proc. Natl. Acad. Sci. USA 68: 946–950.PubMedCrossRefGoogle Scholar
  388. Sartore, S., Gorza, L., Bormioli, S. P., Libera, L. D., and Schiaffino, S. 1981. Myosin types and fiber types in cardiac muscle. 1. Ventricular myocardium. J. Cell Biol. 88: 226–233.PubMedCrossRefGoogle Scholar
  389. Satoh, N. 1979. On the ‘clock’ mechanism determining the time of tissue-specific enzyme development during ascidean embryogenesis. J. Embryol. Exp. Morphol. 54: 131–139.PubMedGoogle Scholar
  390. Saunders, J. W. 1948. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108: 363–403.PubMedCrossRefGoogle Scholar
  391. Saunders, J. W. 1966. Death in embryonic systems. Science 154: 604–612.PubMedCrossRefGoogle Scholar
  392. Saunders, J. W., and Fallon, J. F. 1966. Cell death in morphogenesis. In: Locke, M., ed., Major Problems in Developmental Biology, New York, Academic Press, pp. 289–314.Google Scholar
  393. Scadding, S. R. 1977. Phylogenic distribution of limb regeneration capacity in adult Amphibia. J. Exp. Zool. 202: 57–69.CrossRefGoogle Scholar
  394. Schiltz, J. R., and Ward, S. 1980. Effects of chick embryo extract fractions on collagen and glycosaminoglycan metabolism by chick chondroblasts. Biochim. Biophys. Acta 628: 343–354.PubMedCrossRefGoogle Scholar
  395. Schiltz, J. R., Mayne, R., and Holtzer, H. 1973. Synthesis of collagen and glycosaminoglycans by dedifferentiated chondroblasts in culture. Differentiation 1: 97–108.CrossRefGoogle Scholar
  396. Schmidt, A. 1969. Cellular Biology of Vertebrate Regeneration and Repair, Chicago, University of Chicago Press.Google Scholar
  397. Scholia, C. A., Tedeschi, M. V., and Fausto, N. 1980. Gene expression and the diversity of polysomal mRNA sequences in regenerating liver. J. Biol. Chem. 255: 2855–2860.Google Scholar
  398. Schotte, O. E., and Hummel, K. P. 1939. Lens induction at the expense of regenerating tissues of amphibians. J. Exp. Zool. 80: 131–166.CrossRefGoogle Scholar
  399. Schreiber, G., Rotermund, H. M., Maeno, H., Weigand, K., and Lesch, R. 1969. The proportion of the incorporation of leucine into albumin to that into total protein in rat liver and hepatoma Morris 5123TC. Eur. J. Biochem. 10: 355–361.PubMedCrossRefGoogle Scholar
  400. Schreiber, G., Lesch, R., Weinssen, U., and Zähringer, J. 1970. The distribution of albumin synthesis throughout the liver lobule. J. Cell Biol. 47: 285–289.PubMedCrossRefGoogle Scholar
  401. Schroeder, W. A., and Huisman, T. H. J. 1974. Multiple cistrons for fetal hemoglobins in man. Ann. N.Y. Acad. Sci. 241: 70–79.PubMedCrossRefGoogle Scholar
  402. Schroeder, W. A., Huisman, T. H. J., Brown, A. K., Uy, R., Bouver, N. G., Lerch, P. O., Shelton, J. R., Shelton, J. B., and Apell, G. 1971. Postnatal changes in the chemical heterogeneity of human fetal hemoglobin. Pediatr. Res. 5: 493–499.CrossRefGoogle Scholar
  403. Scornik, O. A., and Botbol, V. 1976. Role of changes in protein degradation in the growth of regenerating livers. J. Biol. Chem. 251: 2891–2897.PubMedGoogle Scholar
  404. Scott-Savage, P., and Hall, B. K. 1979. The timing of the onset of osteogenesis in the tibia of the embryonic chick. J. Morphol. 162: 453–464.PubMedCrossRefGoogle Scholar
  405. Scott-Savage, P., and Hall, B. K. 1980. Differentiation ability of the tibial periosteum from the embryonic chick. Acta Anat. 106: 129–140.PubMedCrossRefGoogle Scholar
  406. Searls, R. L. 1965. An autoradiographic study of the uptake of S35 sulfate during the differentiation of limb bud cartilage. Dev. Biol. 11: 155–168.PubMedCrossRefGoogle Scholar
  407. Searls, R. L. 1973, Chondrogenesis. In: Coward, S. J., ed., Developmental Regulation, New York, Academic Press, pp. 219–250.Google Scholar
  408. Sell, S. 1974. The catabolism of ar-fetoprotein and albumin in rats bearing Morris hepatoma 7777. Cancer Res. 34: 1608–1611.PubMedGoogle Scholar
  409. Shainberg, A., Yagil, G., and Yaffe, D. 1971. Alterations of enzymatic activities during muscle differentiation in vitro. Dev. Biol. 25: 1–29.PubMedCrossRefGoogle Scholar
  410. Shambaugh, J., and Elmer, W. A. 1980. Analysis of glycosaminoglycans during chondrogenesis of normal and brachypod mouse limb mesenchyme. J. Embryol. Exp. Morphol. 56: 225–238.PubMedGoogle Scholar
  411. Shimada, Y., and Obinata, T. 1977. Polarity of actin filaments at the initial stage of myofibril assembly in myogenic cells in vitro. J. Cell Biol. 72: 777–785.PubMedCrossRefGoogle Scholar
  412. Sholl, S. A., and Goy, R. W. 1978. Androgen and estrogen synthesis in the fetal guinea pig gonad. Biol. Reprod. 18: 160–169.PubMedCrossRefGoogle Scholar
  413. Shreiner, D. P., Weinberg, J., and Enoch, D. 1980. Plasma thrombopoietic activity in humans with normal and abnormal platelet counts. Blood 56: 183–188.PubMedGoogle Scholar
  414. Shyamala, G., and Gorski, J. 1967. Interrelationship of estrogen receptors in the nucleus and cytosol. J. Cell Biol. 35: 125A–126A.Google Scholar
  415. Shyamala, G., and Gorski, J. 1969. Estrogen receptors in the rat uterus. J. Biol. Chem. 244: 1097–1103.PubMedGoogle Scholar
  416. Siegel, C. D. 1970. Possible hematopoietic mechanisms in nonmammalian vertebrates. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 1, pp. 67–76.Google Scholar
  417. Simpkins, H., Thompson, L. M., Waldeck, N., Gross, D. S., and Mooney, D. 1981. Conformational changes in rat liver chromatin after liver regeneration. Biochem. J. 193: 671–678.PubMedGoogle Scholar
  418. Simpson, C. F., and Kling, J. M. 1967. The mechanism of denucleation in circulating erythro- blasts. J. Cell Biol. 35: 237–245.PubMedCrossRefGoogle Scholar
  419. Singer, M. 1952. The influence of the nerve in regeneration of the amphibian extremity. Q. Rev. Biol. 27: 169–199.PubMedCrossRefGoogle Scholar
  420. Singer, M. 1974. Neurotrophic control of limb regeneration in the newt. Ann. N.Y. Acad. Sci. 228: 308–321.PubMedCrossRefGoogle Scholar
  421. Singer, M., and Caston, J. D. 1972. Neurotrophic dependence of macromolecular synthesis in the early limb regenerate of the newt. J. Embryol. Exp. Morphol. 28: 1–11.PubMedGoogle Scholar
  422. Singer, M., and Craven, L. 1948. The growth and morphogenesis of the regenerating forelimb of adult Triturus following denervation at various stages of development. J. Exp. Zool. 108: 272–308.CrossRefGoogle Scholar
  423. Singer, M., and Ilan, J. 1977. Nerve-dependent regulation of absolute rates of protein synthesis in newt limb regenerates. Dev. Biol. 57: 174–187.PubMedCrossRefGoogle Scholar
  424. Sippel, A. E., Kurtz, D. T., Morris, H. P., and Feigelson, P. 1976. Comparison of in vivo translation rates and mRNA levels of a2v-gl°tulin in rat liver and Morris hepatoma 5123D. Cancer Res. 36: 3588–3593.PubMedGoogle Scholar
  425. Skutelsky, E., and Danon, D. 1967. An electron microscope study of nuclear elimination from the late erythroblast. J. Cell Biol. 33: 625–635.PubMedCrossRefGoogle Scholar
  426. Skutelsky, E., and Farquhar, M. G. 1976. Variations in distribution of Con A receptor sites and anionic groups during red cell differentiation in the rat. J. Cell Biol. 71: 218–231.PubMedCrossRefGoogle Scholar
  427. Slack, J. M. W. 1976. Determination of polarity in the amphibian limb. Nature (London) 261: 44–46.CrossRefGoogle Scholar
  428. Slack, J. M. W. 1980a. Regulation and potency in the forelimb rudiment of the axolotl embryo. J. Embryol. Exp. Morphol. 57: 203–217.PubMedGoogle Scholar
  429. Slack, J. M. W. 1980b. Morphogenetic properties of the skin in axolotl limb regeneration. J. Embryol. Exp. Morphol. 58: 265–288.PubMedGoogle Scholar
  430. Slater, C. R. 1976. Control of myogenesis in vitro by chick embryo extract. Dev. Biol. 50: 264–284.PubMedCrossRefGoogle Scholar
  431. Smith, P. B. 1980. Postnatal development of glycogen- and cyclic AMP-metabolizing enzymes in mammalian skeletal muscle. Biochim. Biophys. Acta 628: 19–25.PubMedCrossRefGoogle Scholar
  432. Snell, K. 1974. Pathways of gluconeogenesis from L-serine in the neonatal rat. Biochem. J. 142: 433–436.PubMedGoogle Scholar
  433. Snell, K. 1980. Liver enzymes of serine metabolism during neonatal development of the rat. Biochem. J. 190: 451–455.PubMedGoogle Scholar
  434. Snow, M. H. 1979. Origin of regenerating myoblasts in mammalian skeletal muscle. In: Mauro, A., ed., Muscle Regeneration, New York, Raven Press, pp. 91–100.Google Scholar
  435. Sohal, G. S., and Holt, R. K. 1980. Role of innervation on the embryonic development of skeletal muscle. Cell Tissue Res. 210: 383–393.PubMedCrossRefGoogle Scholar
  436. Solursh, M., and Reiter, R. S. 1980. Evidence for histogenic interactions during in vitro limb chondrogenesis. Dev. Biol. 78: 141–150.PubMedCrossRefGoogle Scholar
  437. Solursh, M., Reiter, R. S., Ahrens, P. B., and Pratt, R. M. 1979. Increase in levels of cAMP during avian limb chondrogenesis in vitro. Differentiation 15: 183–186.PubMedCrossRefGoogle Scholar
  438. Sommer, J. R., and Johnson, E. A. 1968. Cardiac muscle: A comparative study of Purkinje fibers and ventricular fibers. J. Cell Biol. 36: 497–526.PubMedCrossRefGoogle Scholar
  439. Sommer, J. R., Wallace, N. R., and Junker, J. 1980. The intermediate cisternae of the sarcoplasmic reticulum of skeletal muscle. J. Ultrastruct. Res. 71: 126–142.PubMedCrossRefGoogle Scholar
  440. Stark, R., and Searls, R. 1973. A description of chick wing development and a model of morphogenesis. Dev. Biol. 33: 138–153.PubMedCrossRefGoogle Scholar
  441. Stocum, D. L. 1968a. The urodele limb regeneration blastema: A self-organizing system. I. Differentiation in vitro. Dev. Biol. 18: 441–456.PubMedCrossRefGoogle Scholar
  442. Stocum, D. L. 1968b. The urodele limb regeneration blastema: A self-organizing system. II. Mor-phogenesis and differentiation of autografted whole and fractional blastemas. Dev. Biol. 18: 457–480.PubMedCrossRefGoogle Scholar
  443. Stocum, D. L. 1975a. Outgrowth and pattern formation during limb ontogeny and regeneration. Differentiation 3: 167–182.PubMedCrossRefGoogle Scholar
  444. Stocum, D. L. 1975b. Regulation after proximal or distal transposition of limb regeneration blastemas and determination of the proximal boundary of the regenerate. Dev. Biol. 45: 112–136.PubMedCrossRefGoogle Scholar
  445. Stocum, D. L. 1978. Regeneration of symmetrical hindlimbs in larval salamanders. Science 200: 790–793.PubMedCrossRefGoogle Scholar
  446. Strandholm, J. J., Cardenas, J. M., and Dyson, R. D. 1975. Pyruvate kinase isozymes in adult and fetal tissue of chicken. Biochemistry 14: 2242–2246.PubMedCrossRefGoogle Scholar
  447. Strandholm, J. J., Dyson, R. D., and Cardenas, J. M. 1976. Bovine pyruvate isozymes and hybrid isozymes. Arch. Biochem. Biophys. 173: 125–131.PubMedCrossRefGoogle Scholar
  448. Studitsky, A. N. 1963. Dynamics of the development of myogenic tissue under conditions of explantation and transplantation. In: Rose, G. G., ed., Cinemicrography in Cell Biology, New York, Academic Press, pp. 171–200.Google Scholar
  449. Sugavara, S., Tsuneoka, K., and Shikita, M. 1980. Colony-stimulating factor and the proliferation of X-irradiated myeloid stem cells. Biochem. Biophys. Res. Commun. 96: 1488–1493.PubMedCrossRefGoogle Scholar
  450. Suleiman, S. A., Jones, G. L., Singh, H., and Labrecque, D. R. 1980. Changes in lysosomal cathepsins during liver regeneration. Biochim. Biophys. Acta 627: 17–22.PubMedCrossRefGoogle Scholar
  451. Summerbell, D. 1974. A quantitative analysis of the effect of excision of the AER from the chick limb bud. J. Embryol. Exp. Morphol. 32: 651–660.PubMedGoogle Scholar
  452. Summerbell, D., and Stirling, R. V. 1981. The innervation of dorsoventrally reversed chick wings: Evidence that motor axons do not actively seek out their appropriate targets. J. Embryol. Exp. Morphol. 61: 233–247.PubMedGoogle Scholar
  453. Taban, C. H., Constantinidis, J., Cathieni, M., and Guntern, R. 1977. Présence de catécholamines dans le nerf et la blastème de triton observée à l’histofluorescence. Acta Anat. 99: 234.Google Scholar
  454. Taban, C. H., Cathieni, M., Guntern, R., and Constantinidis, J. 1978. Histofluorescence of monoamines in newt forelimb regenerates. Wilhelm Roux Arch. Dev. Biol. 185: 79–94.CrossRefGoogle Scholar
  455. Takami, H., and Busch, H. 1979. Two-dimensional gel electrophoretic comparison of proteins of nuclear fractions of normal liver and Novikoff hepatoma. Cancer Res. 39: 507–518.PubMedGoogle Scholar
  456. Takami, H., Busch, F. N., Morris, H. P., and Busch, H. 1979. Comparison of salt-extractable nuclear proteins of regenerating liver, fetal liver, and Morris hepatomas 9618A and 3924A. Cancer Res. 39: 2096–2105.PubMedGoogle Scholar
  457. Tank, P. W. 1978. The occurrence of supernumerary limbs following blastemal transplantation in the regenerating forelimb of the axolotl Ambystoma mexicanum. Dev. Biol. 62: 143–161.PubMedCrossRefGoogle Scholar
  458. Tank, P. W. 1979. Positional information in the forelimb of the axolotl: Experiments with double- half tissues. Dev. Biol. 73: 11–24.PubMedCrossRefGoogle Scholar
  459. Tarbutt, R. G., and Cole, R. J. 1970. Cell population kinetics of erythroid tissue in the liver of foetal mice. J. Embryol. Exp. Morphol. 24: 429–446.PubMedGoogle Scholar
  460. Tauber, R., and Reutter, W. 1978. Protein degradation in the plasma membrane of regenerating liver and Morris hepatomas. Eur. J. Biochem. 83: 37–45.PubMedCrossRefGoogle Scholar
  461. Tavassoli, M., and Crosby, W. H. 1973. Fate of the nucleus of the marrow erythroblast. Science 179: 912–913.PubMedCrossRefGoogle Scholar
  462. Teichberg, V. I., Silman, I., Beutsch, D. D., and Resheff, G. 1975. A /3-D-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc. Natl. Acad. Sci. USA 72: 1383–1387.PubMedCrossRefGoogle Scholar
  463. Teng, C. S., and Teng, C. T. 1975a. Studies on sex organ development: Isolation and characterization of an oestrogen receptor from chick Miillerian duct. Biochem. J. 150: 183–190.PubMedGoogle Scholar
  464. Teng, C. S., and Teng, C. T. 1975b. Studies on sex-organ development: Ontogeny of cytoplasmic oestrogen receptor in chick Miillerian duct. Biochem. J. 150: 191–194.PubMedGoogle Scholar
  465. Teng, C. S., and Teng, C. T. 1976. Studies on sex-organ development: Oestrogen receptor translocation in the developing chick Miillerian duct. Biochem. J. 154: 1–9.PubMedGoogle Scholar
  466. Teng, C. S., and Teng, C. T. 1978. Studies on sex-organ development. Biochem. J. 172: 361–370.PubMedGoogle Scholar
  467. Teng, C. T., and Teng, C. S. 1977. Studies on sex-organ development: The hormonal regulation of steroidogenesis and adenosine 3’: 5’-cyclic monophosphate in embryonic-chick ovary. Biochem. J. 162: 123–124.PubMedGoogle Scholar
  468. Terasawa, T., Ogawa, M., Porter, P. N., and Karam, J. D. 1980. Gy and Ay globin-chain biosynthesis by adult and umbilical cord blood erythropoietic bursts and reticulocytes. Blood 56: 93–97.PubMedGoogle Scholar
  469. Thornton, C. S. 1938. The histogenesis of muscle in the regenerating forelimb of larval Amblys- toma punctatum. J. Morphol. 62: 17–47.CrossRefGoogle Scholar
  470. Thornton, C. S. 1970. Amphibian limb regeneration and its relation to nerves. Am. Zool. 10: 113–118.PubMedGoogle Scholar
  471. Thorogood, P. V., and Hinchliffe, J. R. 1975. An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. J. Embryol. Exp. Morphol. 33: 581–606.PubMedGoogle Scholar
  472. Till, J. E., McCulloch, E. A., and Siminovitch, L. 1964. Isolation of variant cell lines during serial transplantation of hematopoietic cells derived from fetal liver. J. Natl. Cancer Inst. 33: 707–720.PubMedGoogle Scholar
  473. Tillack, T. W., Boland, R., and Martonosi, A. 1974. The ultrastructure of developing sarcoplasmic reticulum. J. Biol. Chem. 249: 624–633.PubMedGoogle Scholar
  474. Trampusch, H. A. L. 1951. Regeneration inhibited by X-rays and its recovery. K. Ned. Akad. Wet. Amsterdam C54: 373–385.Google Scholar
  475. Trampusch, H. A. L. 1958. The action of X-rays on the morphogenetic field. K. Ned. Akad. Wet. Amsterdam C61: 417–430.Google Scholar
  476. Trampusch, H. A. L. 1966. Regeneration from interocular grafts. Arch. Zool. Ital. 51: 787–822.Google Scholar
  477. Trelstad, R. L. 1971. Vacuoles in the embryonic chick corneal epithelium, an epithelium which produces collagen. J. Cell Biol. 48: 689–694.PubMedCrossRefGoogle Scholar
  478. Trelstad, R. L., and Hayashi, K. 1979. Tendon collagen fibrillogenesis: Intracellular subassemblies and cell surface changes associated with fibril growth. Dev. Biol. 71: 228–242.PubMedCrossRefGoogle Scholar
  479. Trelstad, R. L., Hayashi, K., and Toole, B. P. 1974. Epithelial collagens and glycosaminoglycans in the embryonic cornea. J. Cell Biol. 62: 815–830.PubMedCrossRefGoogle Scholar
  480. Trotter, J. A., and Nameroff, M. 1976. Myoblast differentiation in vitro: Morphological differentiation of mononucleated myoblasts. Dev. Biol. 49: 548–555.PubMedCrossRefGoogle Scholar
  481. Trupin, G. L. 1979. The identification of myogenic cells in regenerating skeletal muscle. I. Early anuran regenerates. Dev. Biol. 68: 59–71.PubMedCrossRefGoogle Scholar
  482. Trupin, G. L., and Hsu, L. 1979. The identification of myogenic cells in regenerating skeletal muscle. II. Early mammalian regenerates. Dev. Biol. 68: 72–81.PubMedCrossRefGoogle Scholar
  483. Trupin, G. L., Hsu, L., and Hsieh, Y. H. 1979. Satellite cell mimics in regenerating skeletal muscle. In: Mauro, A., ed., Muscle Regeneration, New York, Raven Press, pp. 101–114.Google Scholar
  484. Tse, T. P. H., Morris, H. P., and Taylor, J. M. 1978. Molecular basis of reduced albumin syn¬thesis in Morris hepatoma 7777. Biochemistry 17: 3121–3127.PubMedCrossRefGoogle Scholar
  485. Turner, D. C., Gmiir, R., Lebherz, H. G., Siegrist, M., Wallimann, T., and Eppenberger, H. M. 1976. Differentiation in cultures derived from embryonic chicken muscle. Dev. Biol. 48:284– 291.Google Scholar
  486. Turpen, J. B. 1980. Early embryogenesis of hematopoietic cells in Rana pipiens. In: Horton, J. D., ed., Development and Differentiation of Vertebrate Lymphocytes, Amsterdam, Elsevier/North-Holland, pp. 15–24.Google Scholar
  487. Turpen, J. B., Volpe, E. P., and Cohen, N. C. 1973. Ontogeny and peripheralization of thymic lymphocytes. Science 182: 931–933.PubMedCrossRefGoogle Scholar
  488. Turpen, J. B., Turpen, C. J., and Flajnik, M. 1979. Experimental analysis of hematopoietic cell development in the liver of larval Rana pipiens. Dev. Biol. 69: 466–479.PubMedCrossRefGoogle Scholar
  489. Ullrick, W. C., Toselli, P. A., Saide, J. D., and Phear, W. P. C. 1977a. Fine structure of the vertebrate Z-disc. J. Mol. Biol. 115: 61–74.PubMedCrossRefGoogle Scholar
  490. Ullrick, W. C., Toselli, P. A., Chase, D., and Dasse, K. 1977b. Are there extensions of thickGoogle Scholar
  491. filaments to the Z line in vertebrate and invertebrate striated muscle? J. Ultrastruct. Res. 60:263–271.Google Scholar
  492. Umanski, E. 1937. Untersuchung des Regenerations Vorganges bei Amphibien mittels ausschaltung der Einzelnen gewebe durch Röntgenbestrahlung. Biol. Zh. 6: 757–758.Google Scholar
  493. Umanski, E. 1938. The regeneration potencies of axolotl skin studied by means of exclusion of the regeneration capacity of tissues through exposure to X-rays. Bull. Biol. Med. Exp. 6: 141–145.Google Scholar
  494. Upholt, W. B., Vertel, B. M., and Dorfman, A. 1979. Translation and characterization of mRNAs in differentiating chicken cartilage. Proc. Natl. Acad. Sci. USA 76: 4847–4851.PubMedCrossRefGoogle Scholar
  495. Urist, M. R., Dowell, T. A., Hay, P. H., and Strates, B. S. 1968. Inductive substrates for bone formation. Clin. Orthop. 59: 59–96.PubMedGoogle Scholar
  496. Urist, M. R., Iwata, H., Ceccotti, P. L., Dorfman, R. L., Boyd, S. D., McDowell, R. M., and Chien, C. 1973. Bone morphogenesis in implants of insoluble bone gelatine. Proc. Natl. Acad. Sci. USA 70: 3511–3515.PubMedCrossRefGoogle Scholar
  497. Urist, M. R., Granstein, R., Nogami, H., Svenson, L., and Murphy, R. 1977. Transmembrane bone morphogenesis across multiple-walled diffusion chambers. Arch. Surg. (Chicago) 112: 612–619.CrossRefGoogle Scholar
  498. Urist, M. R., Terashima, Y., Nakagawa, M., and Stamos, C. 1978. Cartilage tissue differentiation from mesenchymal cells derived from nature muscle in tissue culture. In Vitro 14: 697–706.PubMedCrossRefGoogle Scholar
  499. Urist, M. R., Mikulski, A., and Lietze, A. 1979. Solubilized and insolubilized bone morphoge- netic protein. Proc. Natl. Acad. Sci. USA 76: 1828–1832.PubMedCrossRefGoogle Scholar
  500. Vainchenker, W., Testa, U., Dubart, A., Beuzard, Y., Breton-Gorius, J., and Rosa, J. 1980. Acceleration of the hemoglobin switch in cultures of neonate erythroid precursors by adult cells. Blood 56: 541–548.PubMedGoogle Scholar
  501. Valet, J. P., Marceau, N., and Deschenes, J. 1981. Restricted specialization of differentiating hepatocytes in terms of albumin and «-fetoprotein production. Cell Biol. Int. Rep. 5: 307–314.PubMedCrossRefGoogle Scholar
  502. van der Rhee, H. J., van der Burghde Winter, C. P. M., and Daems, W. T. 1979. The differentiation of monocytes into macrophages, epitheloid cells, and multinucleated giant cells in subcutaneous granulomas. I. Fine structure. Cell Tissue Res. 197: 355–379.PubMedCrossRefGoogle Scholar
  503. VanDenbos, G., and Frieden, E. 1976. DNA synthesis and turnover in the bullfrog tadpole during metamorphosis. J. Biol. Chem. 251: 4111–4114.PubMedGoogle Scholar
  504. Vanderkerckhove, J., and Weber, K. 1979. The complete amino acid sequence of actins from bovine aorta, heart, fast skeletal muscle and rabbit slow skeletal muscle. Differentiation 14: 123–133.CrossRefGoogle Scholar
  505. Vasan, N. S., and Lash, J. W. 1977. Heterogeneity of proteoglycans in developing chick limb cartilage. Biochem. J. 164: 179–183.PubMedGoogle Scholar
  506. Vasan, N. S., and Lash, J. W. 1979 Monomeric and aggregate proteoglycans in the chondrogenic differentiation of embryonic chick limb buds. J. Embryol. Exp. Morphol. 49: 47–59.PubMedGoogle Scholar
  507. Vbrovä, G. 1963. Changes in motor reflexes produced by tentomy. J. Physiol. (London) 169: 513–526.Google Scholar
  508. Vedvick, T. S., Wheeler, S. A., and Koenig, H. M. 1980. Switching of the nonallelic forms of fetal hemoglobin during late gestation. Blood 56: 732–735.PubMedGoogle Scholar
  509. Veis, A., Anesey, J., and Musseil, S. 1967. A limiting microfibril model for the three-dimensional arrangement within collagen fibers. Nature (London) 215: 931–934.CrossRefGoogle Scholar
  510. Vertel, B. M., and Fischman, D. A. 1976. Myosin accumulation in mononucleated cells of chick muscle cultures. Dev. Biol. 48: 438–445.PubMedCrossRefGoogle Scholar
  511. von der Mark, H., and von der Mark, K. 1979. Isolation and characterization of collagen A and B chains from chick embryos. FEBS Lett. 99: 101–105.PubMedCrossRefGoogle Scholar
  512. von der Mark, H., von der Mark, K., and Gay, S. 1976. Study of differential collagen synthesis during development of the chick embryo by immunofluorescence. Dev. Biol. 48: 237–249.PubMedCrossRefGoogle Scholar
  513. von der Mark, K. 1979. Immunological and biochemical studies of collagen type transition during in vitro chondrogenesis of chick limb mesodermal cells. J. Cell Biol. 13: 136–741.Google Scholar
  514. Wahli, W., Abraham, I., and Weber, R. 1978. Retention of the differentiated state by larval Xenopus liver cells in primary culture. Wilhelm Roux Arch. Dev. Biol. 185: 235–248.CrossRefGoogle Scholar
  515. Wallace, H., and Maden, M. 1976. Irradiation inhibits the regeneration of aneurogenic limbs. J. Exp. Zool. 195: 353–358.PubMedCrossRefGoogle Scholar
  516. Watabe, H. 1974. Purification and chemical characterization of «-fetoprotein from rat and mouse. Int. J. Cancer 13: 377–388.PubMedCrossRefGoogle Scholar
  517. Watanabe, A., Taketa, K., and Kosaka, K. 1975. Microheterogeneity of rat «-fetoprotein. Ann. N.Y. Acad. Sci. 259: 95–108.PubMedCrossRefGoogle Scholar
  518. Watanabe, K., Sasaki, F., Takahama, H., and Iseki, H. 1980. Histogenesis and distribution of red and white muscle fibres of urodelan larvae. J. Anat. 130: 83–96.PubMedGoogle Scholar
  519. Weber, R. 1962. Induced metamorphosis in isolated tails of Xenopus larvae. Experientia 18: 84–85.PubMedCrossRefGoogle Scholar
  520. Weinstock, M. 1972. Collagen formation—Observations on its intracellular packaging and transport. Z. Zellforsch. Mikrosk. Anat. 129: 455–470.PubMedCrossRefGoogle Scholar
  521. Weinstock, M. 1977. Centrosymmetrical crossbanded structures in the matrix of rat incisor predentin and dentin. J. Ultrastruct. Res. 61: 218–229.PubMedCrossRefGoogle Scholar
  522. Weiss, E., Gross, V., and Heinrich, P. C. 1976. Changes in chromatin during the development of liver cell injury induced by galactosamine. FEBS Lett. 64: 193–196.PubMedCrossRefGoogle Scholar
  523. Weiss, L. 1970. The histology of the bone marrow. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 1, pp. 79–92.Google Scholar
  524. Weiss, P. 1925. Unabhängigkeit der Extremititätenregeneration vom Skelett (bei Triton cristatus). Arch. Mikrosk. Anat. Entwicklungsmech. 104: 359–394.CrossRefGoogle Scholar
  525. Weiss, P. 1927. Potenzprüfung am Regenerationsblastem. Wilhelm Roux Arch. Entwicklungsmech. Org. 122: 379–394.CrossRefGoogle Scholar
  526. Weiss, P. 1941. Nerve patterns: The mechanics of nerve growth. Growth 5: 163–203.Google Scholar
  527. Weniger, J. P., and Zeis, A. 1971. Biosynthèsis d’oestrogènes par les ébauches gonadiques de poulet. Gen. Comp. Endocrinol. 16: 391–395.PubMedCrossRefGoogle Scholar
  528. Wertz, R. L., and Donaldson, D. J. 1979. Effects of X-rays on nerve-dependent (limb) and nerve- independent (jaw) regeneration in the adult newt, Notophthalmus viridescens. J. Embryol. Exp. Morphol. 53: 315–325.PubMedGoogle Scholar
  529. Wetzel, B. K. 1970a. The fine structure and cytochemistry of developing granulocytes, with special reference to the rabbit. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 2, pp. 769–817.Google Scholar
  530. Wetzel, B. K. 1970b. The comparative fine structure of normal and diseased mammalian granulocytes. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century- Crofts, Vol. 2, pp. 819–872.Google Scholar
  531. Whittaker, J. R. 1973. Segregation during ascidian embryogenesis of egg cytoplasmic information for tissue-specific enzyme development. Proc. Natl. Acad. Sci. USA 70: 2096–2100.PubMedCrossRefGoogle Scholar
  532. Whittaker, J. R., Ortolani, G., and Farinella-Ferruza, N. 1977. Autonomy of acetylcholinesterase differentiation in muscle cells of ascidian embryos. Dev. Biol. 55: 196–200.PubMedCrossRefGoogle Scholar
  533. Wilkinson, J. M. 1978. The components of troponin from chicken fast skeletal muscle: A comparison of troponin T and troponin I from breast and leg muscle. Biochem. J. 169: 229–238.PubMedGoogle Scholar
  534. Wilkinson, J. M. 1980. Troponin C from rabbit slow skeletal and cardiac muscle is the product of a single gene. Eur. J. Biochem. 103: 179–188.PubMedCrossRefGoogle Scholar
  535. Wilkinson, J. M., and Grand, R. J. A. 1978. Comparison of amino acid sequence of troponin I from different striated muscles. Nature (London) 271: 31–35.CrossRefGoogle Scholar
  536. Williams, N., and Eger, R. R. 1978. Purification and characterization of clonable murine granulocyte-macrophage precursor cell populations. In: Golde, D. W., Cline, M. J., Metealf, D., and Fox, C. F., eds., Hematopoietic Cell Differentiation, New York, Academic Press, pp. 385–398.Google Scholar
  537. Wilt, F. H. 1967. The control of embryonic hemoglobin synthesis. Adv. Morphog. 6: 89–125.PubMedGoogle Scholar
  538. Wilt, F. H. 1974. The beginnings of erythropoiesis in the yolk sac of the chick embryo. Ann. N.Y. Acad. Sci. 241: 99–112.PubMedCrossRefGoogle Scholar
  539. Wolff, ET., and Wolff, EM. 1947. Sur les stades de réceptivité aux hormones femelles des gonades et des voies genitales chez l’embryon de poulet mâle. C. R. Séances Soc. Biol. 141: 415–416.Google Scholar
  540. Wolff, ET., and Wolff, EM. 1951. The effects of castration on bird embryos. J. Exp. Zool. 116: 59–97.CrossRefGoogle Scholar
  541. Woodroofe, M. N., and Lemanski, L. F. 1981. Two actin variants in developing axolotl heart. Dev. Biol. 82: 172–179.PubMedCrossRefGoogle Scholar
  542. Yamada, K. M., and Olden, K. 1978. Fibronectins—Adhesive glycoproteins of cell surface and blood. Nature (London) 275: 179–184.CrossRefGoogle Scholar
  543. Yntema, C. L. 1959. Regeneration in sparsely innervated and aneurogenic forelimbs of Ambystoma larvae. J. Exp. Zool. 140: 101–124.PubMedCrossRefGoogle Scholar
  544. Yoffey, J. M. 1980. Transitional cells of hemopoietic tissues: Origin, structure, and development potential. Int. Rev. Cytol. 62: 311–359.PubMedCrossRefGoogle Scholar
  545. Zeichner, M., and Breitkreutz, D. 1978. Isolation of low molecular weight RNAs from connective tissue. Arch. Biochem. Biophys. 188: 410–417.PubMedCrossRefGoogle Scholar
  546. Zevin-Sonkin, D., and Yaffe, D. 1980. Accumulation of muscle-specific RNA sequences during myogenesis. Dev. Biol. 74: 326–334.PubMedCrossRefGoogle Scholar
  547. Zucker-Franklin, D. 1980. Ultrastructural evidence for the common origin of human mast cells and basophils. Blood 56: 534–540.PubMedGoogle Scholar
  548. Zuckerman, S. 1940. The histogenesis of tissues sensitive to oestrogens. Biol. Rev. 15: 231–271.CrossRefGoogle Scholar
  549. Zwilling, E. 1961. Limb morphogenesis. Adv. Morphog. 1: 301–329.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations