Advertisement

Gene Action Changes during Early Embryogenesis

  • Lawrence S. Dillon

Abstract

The early events in the development of the fertilized egg into an embryo involve little or no growth but simply successive divisions (cleavages) into increasingly numerous, but even smaller, cells. Among metazoans, the first clusters, or plates, of cells thus produced are followed by more complexly organized series of stages, most of which are considered to be universal in occurrence in animals of all types, while in plants quite different stages are to be found. As customary, in the present section the most thoroughly explored aspects of the topic, embryogenesis in metazoans, is presented first, followed by the less thoroughly investigated ones to provide a full spectrum. While descriptions of embryonic stages necessarily occupy a large share of the pages, the changes in gene expressions observed in altered cell shape, behavior, and fates remain the major objective. Despite the abundance of evidence of the proteinaceous nature of those genie changes, only a relatively small proportion have been specifically identified.

Keywords

Early Embryogenesis Cleavage Stage Neural Plate Primitive Streak Animal Pole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, H. T., Johnson, L. F., Penman, S., and Green, H. 1974. Changes in RNA in relation to growth of the fibroblast. II. The lifetime of mRNA, rRNA, and tRNA in resting and growing cells. Cell 1: 161–165.Google Scholar
  2. Abrams, R. 1951. Synthesis of nucleic acid purines in the sea urchin embryo. Exp. Cell Res. 2: 235–242.Google Scholar
  3. Adamson, E. D., and Woodland, H. R. 1974. Histone synthesis in early amphibian development. J. Mol. Biol. 88: 263–285.PubMedGoogle Scholar
  4. Adamson, E. D., and Woodland, H. R. 1977. Changes in the rate of histone synthesis during oocyte maturation and very early development in Xenopus laevis. Dev. Biol. 57: 136–149.PubMedGoogle Scholar
  5. Agrell, I. 1958. A cytoplasmic production of RNA during the cell cycle of the micromeres in the sea urchin embryo. Ark. Zool. (2) 11: 435–440.Google Scholar
  6. Amaldi, P. P., Felicetti, L., and Campioni, N. 1977. Flow of informational RNA from cytoplasmic poly(A)-containing particles to polyribosomes in Artemia salina cysts at early stages of development. Dev. Biol. 59: 49–61.PubMedGoogle Scholar
  7. Anderson, K. V., and Lengyel, J. A. 1981. Changing rates of DNA and RNA synthesis in Dro- sophila embryos. Dev. Biol. 82: 127–138.PubMedGoogle Scholar
  8. Arceci, R. J., and Gross, P. R. 1980. Histone gene expression: Progeny of isolated early blasto- meres make the same change as in the embryo. Science 209: 607–609.PubMedGoogle Scholar
  9. Arceci, R. J., Senger, D. R., and Gross, P. R. 1976. The programmed switch in lysine-rich histone synthesis at gastrulation. Cell 9: 171–178.PubMedGoogle Scholar
  10. Arthur, C. G., Weide, C. M., Vincent, W. S., and Goldstein, E. S. 1979. mRNA sequence diversity during early embryogenesis in Drosophila melanogaster. Exp. Cell Res. 121: 87–94.Google Scholar
  11. Azar, Y., and Eyal-Giladi, H. 1979. Marginal zone cells—The primitive streak-inducing component of the primary hypoblast in the chick. J. Embryol. Exp. Morphol. 52: 79–88.PubMedGoogle Scholar
  12. Azar, Y., and Eyal-Giladi, H. 1981. Interaction of epiblast and hypoblast in the formation of the primitive streak and the embryonic axis in chick, as revealed by hypoblast-rotation experiments. J. Embryol. Exp. Morphol. 61: 133–144.PubMedGoogle Scholar
  13. Bachvarova, R., and DeLeon, V. 1980. Polyadenylated RNA of mouse ova and loss of maternal RNA in early development. Dev. Biol. 74: 1–8.PubMedGoogle Scholar
  14. Bagshaw, J. C., Acey, R., and Helder, J. C. 1980. RNA polymerases and transcriptional switches in developing Artemia. In: Persoone, G., Sorgeloos, P., Roels, O., and Jaspers, E., eds., The Brine Shrimp Artemia, Wetteren, Belgium, Universa Press.Google Scholar
  15. Ballantine, J. E. M., Woodland, H. R., and Sturgess, E. A. 1979. Changes in protein synthesis during development of Xenopus laevis. J. Embryol. Exp. Morphol. 51: 137–153.PubMedGoogle Scholar
  16. Barlow, P. W., and Sherman, M. I. 1972. The biochemistry of differentiation of mouse tropho- blast: Studies on polyploidy. J. Embryol. Exp. Morphol. 27: 447–465.PubMedGoogle Scholar
  17. Barth, L. G., and Barth, L. J. 1968. The role of sodium chloride in the process of induction by lithium chloride in cells of the Rana pipiens gastrula. J. Embryol. Exp. Morphol. 19: 387–396.PubMedGoogle Scholar
  18. Batten, B. E., and Haar, J. L. 1979. Fine structural differentiation of germ layers in the mouse at the time of mesoderm formation. Anat. Rec. 194: 125–142.PubMedGoogle Scholar
  19. Bellairs, R. 1979. The mechanism of somite segmentation in the chick embryo. J. Embryol. Exp. Morphol. 51: 227–243.PubMedGoogle Scholar
  20. Bellairs, R., and Veini, M. 1980. An experimental analysis of somite segmentation in the chick embryo. J. Embryol. Exp. Morphol. 55: 93–108.PubMedGoogle Scholar
  21. Bergami, M., Mansour, T. E., and Scarano, E. 1968. Properties of glycogen phosphorylase before and after fertilization in the sea urchin eggs. Exp. Cell Res. 49: 650–655.PubMedGoogle Scholar
  22. Berrill, N. J., and Karp, G. 1976. Development, New York, McGraw-Hill.Google Scholar
  23. Bevelander, G., and Nakahara, H. 1960. Development of the skeleton of the sand dollar. Publ. Am. Assoc. Adv. Sci. 64: 41–56.Google Scholar
  24. Biggers, J. D., Whitten, W. K., and Whittingham, D. G. 1971. The culture of mouse embryos in vitro. In: Daniell, J. C., ed., Methods in Mammalian Embryology, San Francisco, Freeman, pp. 86–116.Google Scholar
  25. Black, J. W., Duncan, W. A. M., Durant, C. J., Ganellin, C. R., and Parsons, E. M. 1972. Definition and antagonism of histamine H2-receptors. Nature (London) 236: 385–390.Google Scholar
  26. Borthwick, H. A. 1931. Carrot seed germination. Proc. Am. Soc. Hortic. Sci. 28: 310–314.Google Scholar
  27. Bownes, M. 1975. A photographic study of development in the living embryo of Drosophila melanogaster. J. Embryol. Exp. Morphol. 33: 789–801.PubMedGoogle Scholar
  28. Bownes, M., and Kalthoff, K. 1974. Embryonic defects in Drosophila eggs after partial irradiation at different wavelengths. J. Embryol. Exp. Morphol. 31: 329–345.PubMedGoogle Scholar
  29. Brachet, J. 1977. An old enigma: The gray crescent of amphibian eggs. Curr. Top. Dev. Biol. 11: 133–186.PubMedGoogle Scholar
  30. Brachet, J., Hanocq, F., and VanGansen, P. 1970. A cytochemical and ultrastructural analysis of in vitro maturation in amphibian oocytes. Dev. Biol. 21: 157–195.PubMedGoogle Scholar
  31. Brady, T. 1973. Feulgen cytophotometric determination of the DNA content of the embryo proper and suspensor cells of Phaseolus coccineus. Cell Differ. 2: 65–75.Google Scholar
  32. Brakel, C. L., and Blumenthal, A. B. 1977. Multiple forms of Drosophila embryo DNA polymerase: Evidence for proteolytic conversion. Biochemistry 16: 3137–3143.PubMedGoogle Scholar
  33. Brandhorst, B. P. 1976. HnRNA of animal cells and its relationship to mRNA. In: McConkey, E. H., ed., Protein Synthesis: A Series of Advances II, New York, Dekker, pp. 1–67.Google Scholar
  34. Brandhorst, B. P., and Bannet, M. 1978. Terminal completion of poly(A) synthesis in sea urchin embryos. Dev. Biol. 63: 421–431.PubMedGoogle Scholar
  35. Brandhorst, B. P., Verma, D. P. S., and Fromson, D. 1979. Polyandenylated and non-polyanden- ylated mRNA fractions from sea urchin embryos code for the same abundant proteins. Dev. Biol. 71: 128–141.PubMedGoogle Scholar
  36. Brandt, W. F., Strickland, W. N., Strickland, M., Carlisle, L., Woods, D., and von Holt, C. 1979. A histone programme during the life cycle of the sea urchin. Eur. J. Biochem. 94: 1–10.PubMedGoogle Scholar
  37. Bravo, R., and Knowland, J. 1979. Classes of proteins synthesized in oocytes, eggs, embryos and differentiated tissues of Xenopus laevis. Differentiation 13: 101–108.PubMedGoogle Scholar
  38. Brinster, R. L. 1973. Parental glucose phosphate isomerase activity in three-day mouse embryos. Biochem. Genet. 9: 187–191.PubMedGoogle Scholar
  39. Bryant, P. J. 1979. Pattern formation, growth control and cell interactions in Drosophila imaginal discs. Symp. Soc. Dev. Biol. 37: 295–316.Google Scholar
  40. Burnside, B., Kozak, C., and Kafatos, F. C. 1973. Tubulin determination by an isotope dilution vinblastine precipitation method. J. Cell Biol. 59: 755–767.PubMedGoogle Scholar
  41. Busby, S., and Bakken, A. H. 1979. A quantitative electron microscopic analysis of transcription in sea urchin embryos. Chromosoma 71: 249–262.PubMedGoogle Scholar
  42. Busby, S., and Bakken, A. H. 1980. Transcription in developing sea urchins: Electron microscopic analysis of cleavage, gastrula and prism stages. Chromosoma 79: 85–104.PubMedGoogle Scholar
  43. Byrd, E. W., and Kasinsky, H. E. 1973. Histone synthesis during early embryogenesis in Xenopus laevis. Biochemistry 12: 246–253.PubMedGoogle Scholar
  44. Byrd, E. W., and Kasinsky, H. E. 1974. Nuclear accumulation of newly synthesized histones in early Xenopus development. Biochim. Biophys. Acta 331: 430–441.Google Scholar
  45. Calcarco, P. G., and Brown, E. H. 1969. An ultrastructural and cytological study of preimplan- tation development of the mouse. J. Exp. Zool. 171: 253–284.Google Scholar
  46. Carroll, A. G., and Ozaki, H. 1979. Changes in the histones of the sea urchin Strongylocentrotus purpuratus at fertilization. Exp. Cell Res. 119: 307–315.PubMedGoogle Scholar
  47. Cather, J. N., and Verdonk, N. H. 1974. The development of Bithynia tentaculata after removal of the polar lobe. J. Embryol. Exp. Morphol. 31: 415–422.PubMedGoogle Scholar
  48. Cather, J. N., Verdonk, N.H., and Dohmen, M. R. 1976. Role of the vegetal body in the regulation of development in Bithynia tentaculata (Prosobranchia, Gastropoda). Am. Zool. 16: 455–468.Google Scholar
  49. Chan, L. N., and Gehring, W. 1971. Determination of blastoderm cells in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68: 2217–2221.PubMedGoogle Scholar
  50. Chapman, V. M., Whitten, W. K., and Ruddle, F. H. 1971. Activation of glucose phosphate isomerase-1 (Gpi-1) in preimplantation stages of mouse embryo. Dev. Biol. 26: 153–158.PubMedGoogle Scholar
  51. Childs, G., Maxson, R., and Kedes, L. H. 1979. Histone gene expression during sea urchin embryogenesis. Dev. Biol. 73: 153–173.PubMedGoogle Scholar
  52. Church, R. B. 1970. Differential gene activity. In: Fraser, F. S., and McKusick, V. A., eds., Congenital Malformations, Amsterdam, Excerpta Medica, pp. 19–28.Google Scholar
  53. Church, R. B., and Brown, I. R. 1972. Tissue specificity of genetic transcription. In: Ursprung, H., éd., Results and Problems in Cell Differentiation, Berlin, Springer-Verlag, Vol. 3, pp. 11–24.Google Scholar
  54. Clandinin, M. T., and Schultz, G. A. 1975. Levels and modifications of methionyl-tRNA in preimplantation rabbit embryos. J. Mol. Biol. 93: 517–528.PubMedGoogle Scholar
  55. Clement, A. C. 1952. Experimental studies on germinal localization in Ilyanassa. I. The role of the polar lobe in determination of the cleavage pattern and its influence in later development. J. Exp. Zoo I. 121: 593–626.Google Scholar
  56. Clement, A. C. 1971. Ilyanassa. In: Reverberi, G., ed., Experimental Embryology of Marine and Fresh-water Invertebrates, Amsterdam, North-Holland, pp. 188–214.Google Scholar
  57. Clement, A. C. 1976. Cell determination and organogenesis in molluscan development: A reappraisal based on deletion experiments in Ilyanassa. Am. Zool. 16: 447–453.Google Scholar
  58. Cognetti, G., Kedes, L. H., and Gross, P. R. 1969. Unpublished results. (Fide Cognetti., 1974.)Google Scholar
  59. Cognetti, G., Spinelli, G., and Vivoli, A. 1974. Synthesis of histones during sea urchin oogenesis. Biochim. Biophys. Acta 349: 447–455.PubMedGoogle Scholar
  60. Cohen, L. H., Newrock, K. M., and Zweidler, A. 1975. Stage specific switches in histone syn¬thesis during embryogenesis of the sea urchin. Science 190: 994–997.PubMedGoogle Scholar
  61. Cohn, R. H., Lowry, J. C., and Kedes, L. H. 1976. Histone genes of the sea urchin S. purpuratus cloned in E. coli. Cell 9: 147–161.Google Scholar
  62. Conklin, E. G. 1897. The embryology of Crepidula. J. Morphol. 13: 1–226.Google Scholar
  63. Conklin, E. G. 1932. The embryology of Amphioxus. J. Morphol. 54: 69–151.Google Scholar
  64. Costello, D. P. 1961. On the orientation of centrioles in dividing cells and its significance. Biol. Bull. 120: 285–312.Google Scholar
  65. Costello, D. P., and Henley, C. 1976. Spiralian development: A perspective. Am. Zool. 16: 277–291.Google Scholar
  66. Cowden, R. R., and Lehman, H. E. 1963. A cytochemical study of differentiation in early echi- noid development. Growth 27: 185–197.PubMedGoogle Scholar
  67. Crampton, H. E. 1896. Experimental studies on gastropod development. Wilhelm Roux Arch.Entwicklungsmech. Org. 3: 1–19.Google Scholar
  68. Cremonini, R., and Cionini, P. G. 1977. Extra DNA synthesis in embryo suspensor cells of Phas- eolus coccineus. Protoplasma 91: 303–313.Google Scholar
  69. Crerar, M., and Pearlman, R. E. 1976. DNA polymerase from Tetrahymena pyriformis. J. Biol. Chem. 249: 3123–3131.Google Scholar
  70. Croce, C. M., Talaveri, A., Basilico, C., and Miller, O. J. 1977. Suppression of production of mouse 28S rRNA in mouse-human hybrids segregating mouse chromosomes. Proc. Natl. Acad. Sci. USA 74: 694–697.PubMedGoogle Scholar
  71. Dalcq, A., and Jones-Seaton, A. 1949. La répartition des éléments basophiles dans l’oeuf du rat et du lapin et son intérêt pour la morphologie. Bull. Clin. Sci. Acad. R. Belg. 35: 500–511.Google Scholar
  72. Dan, K. 1960. Cytoembryology of echinoderms and amphibia. Int. Rev. Cytol. 9: 321–365.PubMedGoogle Scholar
  73. Dan, K. 1978. Unequal division: Its cause and significance. In: Dirksen, E. R., Prescott, D. M., and Fox, C. F., eds., Cell Reproduction: In Honor of Daniel Mazia, New York, Academic Press, pp. 557–561.Google Scholar
  74. Dan, K., and Nakajima, T. 1956. On the morphology of the mitotic apparatus isolated from echi- noderm eggs. Embryologia 3: 187–194.Google Scholar
  75. Dan, K., and Okazaki, K. 1956. Cytoembryological studies of sea urchins. III. Role of the secondary mesenchyme cells in the formation of the primitive gut in sea urchin larvae. Biol. Bull. 110: 29–42.Google Scholar
  76. Dan, K., Ito, S., and Mazia, D. 1952. Study of the course of formation of the mitotic apparatus in Arbacia and Mactra by isolation techniques. Biol. Bull. 103: 292.Google Scholar
  77. Dan, K., Noguchi, M., and Uemura, I. 1979. Studies on unequal division in sea urchin embryos: Inequality of ribosomal content. In: Ebert, J. D., and Okada, T. S., eds., Mechanisms of Cell Change, New York, Wiley, pp. 33–48.Google Scholar
  78. Daniel, J. C., and Olson, J. D. 1966. Cell movement, proliferation and death in the formation of the embryonic axis of the rabbit. Anat. Rec. 156: 123–128.PubMedGoogle Scholar
  79. Danilchik, M. V., and Hille, M. B. 1981. Sea urchin egg and embryo ribosomes: Differences in translational activity in a cell-free system. Dev. Biol. 84: 291–298.PubMedGoogle Scholar
  80. Dan-Sohkawa, M., and Fujisawa, H. 1980. Cell dynamics of the blastulation process in the starfish, Asterina pectinifera. Dev. Biol. 77: 328–339.PubMedGoogle Scholar
  81. Darnell, J. E. 1968. Ribonucleic acids from animal cells. Bacteriol. Rev. 32: 262–290.PubMedGoogle Scholar
  82. Davidson, E. H., and Britten, R. J. 1979. Regulation of gene expression: Possible role of repetitive sequences. Science 204: 1052–1059.PubMedGoogle Scholar
  83. Davidson, R. G., Nitowsky, H. M., and Childs, B. 1963. Demonstration of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants. Proc. Natl. Acad. Sci. USA 50: 481–485.PubMedGoogle Scholar
  84. Davies, J., and Wimsatt, W. A. 1966. Observation on the fine structure of the sheep placenta. Acta. Anat. 65: 182–223.PubMedGoogle Scholar
  85. De Feo, V. J. 1967. Decidualization. In: Wynn, R. M., ed., Cellular Biology of the Uterus, New York, Appleton-Century-Crofts, pp. 191–290.Google Scholar
  86. Denny, P. C., and Tyler, A. 1964. Activation of protein biosynthesis in non-nucleate fragments of sea urchin eggs. Biochem. Biophys. Res. Commun. 11: 447–451.Google Scholar
  87. Derrick, G. E. 1937. An analysis of the early development of the chick by means of the mitotic index. J. Morphol. 61: 257–284.Google Scholar
  88. Dey, S. K., Villanueva, C., and Abdou, N. I. 1979a. Histamine receptors on rabbit blastocyst and endometrial cell membranes. Nature (London) 278: 648–649.Google Scholar
  89. Dey, S. K., Johnson, D. C., and Santos, J. G. 1979b. Is histamine production by the blastocyst required for implantation in the rabbit? Biol. Reprod. 21: 1169–1173.PubMedGoogle Scholar
  90. Dillon, L. S. 1978. The Genetic Mechanism and the Origin of Life, New York, Plenum Press.Google Scholar
  91. Dillon, L. S. 1981. Ultrastructure, Macromolecules, and Evolution, New York, Plenum Press.Google Scholar
  92. Dohmen, M. R., and Verdonk, N. H. 1979. The ultrastructure and role of the polar lobe in development of molluscs. Symp. Soc. Dev. Biol. 37: 3–27.Google Scholar
  93. Dolecki, G. J., Duncan, R. F., and Humphreys, T. 1977. Complete turnover of poly(A) on ma¬ternal mRNA of sea urchin embryos. Cell 11: 339–344.PubMedGoogle Scholar
  94. Dubroff, L. M. 1977. Oligouridylate stretches in heterogeneous nuclear RNA. Proc. Natl. Acad. Sci. USA 74: 2217–2221.PubMedGoogle Scholar
  95. Dubroff, L. M. 1980. Oligomeric sequences in the cytoplasmic RNA of sea urchin embryos. Biochim. Biophys. Acta 607: 115–121.PubMedGoogle Scholar
  96. Dubroff, L. M., and Nemer, M. 1975. Molecular classes of hnRNA in sea urchin embryos. J. Mol. Biol. 95: 455–476.PubMedGoogle Scholar
  97. Dubroff, L. M., and Nemer, M. 1976. Developmental shifts in the synthesis of hnRNA classes in the sea urchin embryo. Nature (London) 260: 120–124.Google Scholar
  98. Duncan, R., Dower, W., and Humphreys, T. 1975. Normal synthesis, transport and decay of mRNA in the absence of its translation. Nature (London) 253: 751–753.Google Scholar
  99. Dworkin, M. B., and Infante, A. A. 1976. Relationship between the mRNA of polysomes and free ribonucleoprotein particles in the early sea urchin embryo. Dev. Biol. 53: 73–90.PubMedGoogle Scholar
  100. Dworkin, M. B., Rudensey, L. M., and Infante, A. A. 1977. Cytoplasmic nonpolysomal RNP particles in sea urchin embryos and their relationship to protein synthesis. Proc. Natl. Acad. Sci. USA 74: 2231–2235.PubMedGoogle Scholar
  101. Easton, D., and Chalkley, R. 1972. High-resolution electrophoretic analysis of the histones form embryos and sperm of Arbacia punctulata. Exp. Cell Res. 72: 502–508.PubMedGoogle Scholar
  102. Ecker, R. E., and Smith, L. D. 1971. The nature and fate of Rana pipiens proteins synthesized during maturation and early cleavage. Dev. Biol. 24: 559–576.PubMedGoogle Scholar
  103. Edstrom, J. E., and Lonn, V. 1976. Cytoplasmic zone analysis: RNA flow studied by micromanipulation. J. Cell Biol. 70: 562–572.PubMedGoogle Scholar
  104. Ehrismann, R., Chiquet, M., and Turner, D. C. 1981. Mode of action offibronectin in promoting chicken myoblast attachment. J. Biol. Chem. 256: 4056–4062.PubMedGoogle Scholar
  105. Ellem, K. A. O., and Gwatkin, R. B. L. 1968. Patterns of nucleic acid synthesis in the early mouse embryo. Dev. Biol. 18: 311–330.PubMedGoogle Scholar
  106. Ellinger, M. S. 1978. The cell cycle and transplantation of blastula nuclei in Bombina orientalis. Dev. Biol. 65: 81–89.PubMedGoogle Scholar
  107. Emerson, C. P., and Humphreys, T. 1970. Regulation of DNA-like RNA and the apparent activation of rRNA synthesis in sea urchin embryos. Dev. Biol. 23: 86–112.PubMedGoogle Scholar
  108. Eyal-Giladi, H., and Kochav, S. 1976. From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick. Dev. Biol. 49: 321–337.PubMedGoogle Scholar
  109. Eyal-Giladi, H., Farbiasz, I., Ostrovsky, D., and Hochman, J. 1975. Protein synthesis in epiblast versus hypoblast during the critical stages of induction and growth of the primitive streak in the chick embryo. Dev. Biol. 45: 358–365.PubMedGoogle Scholar
  110. Eyal-Giladi, H., Raveh, D., Feinstein, N., and Friedlander, M. 1979. Glycogen metabolism in the prelaid chick embryo. J. Morphol. 161: 23–38.PubMedGoogle Scholar
  111. Felicetti, L., Amaldi, P. P., Moretti, S., Campioni, N., and Urbani, C. 1975. Intracellular distribution, sedimentation values and template activity of polyadenylic acid-containing RNA stored in Artemia salina cysts. Cell Differ. 4: 339–354.Google Scholar
  112. Flickinger, R. A. 1980. The effect of heparin upon differentiation of ventral halves of frog gastrulae. Wilhelm Roux Arch. Dev. Biol. 188: 9–11.Google Scholar
  113. Forino, L. M. C., Tagliasacchi, A. M., and Avanzi, S. 1979. Different structure of polytene chromosomes of Phaseolus coccineus suspensors during early embryogenesis. Proto-plasma 101: 231–246.Google Scholar
  114. Forman, D., and Slack, J. M. W. 1980. Determination and cellular commitment in the embryonic amphibian mesoderm. Nature (London) 286: 492–493.Google Scholar
  115. Freeman, G. 1979. The multiple roles which cell division can play in the localization of developmental potential. Symp. Soc. Dev. Biol. 37: 53–76.Google Scholar
  116. Frels, W. I., and Chapman, V. M. 1980. Expression of the maternally derived X chromosome in the mural trophoblast of the mouse. J. Embryol. Exp. Morphol. 56: 179–190.PubMedGoogle Scholar
  117. Friedman, P. A., Platzer, E. G., and Carroll, E. J. 1980. Tubulin characterization during embryogenesis of Ascaris suum. Dev. Biol. 76: 47–57.PubMedGoogle Scholar
  118. Fromson, D., and Verma, D. P. S. 1976. Translation of nonpolyadenylated mRNA of sea urchin embryos. Proc. Natl. Acad. Sci. USA 73: 148–151.PubMedGoogle Scholar
  119. Galau, G. A., Britten, R. J., and Davidson, E. H. 1974. A measurement of the sequence com¬plexity of polysomal mRNA in sea urchin embryos. Cell 2: 9–21.PubMedGoogle Scholar
  120. Galau, G. A., Lipson, E. D., Britten, R. J., and Davidson, E. H. 1977. Synthesis and turnover of polysomal mRNAs in sea urchin embryos. Cell 10: 415–432.PubMedGoogle Scholar
  121. Gardner, R. L., and Lyon, M. F. 1971. X chromosome inactivation studied by injection of a single cell into the mouse blastocyst. Nature (London) 231: 385–386.Google Scholar
  122. Gardner, R. L., and Papaioannou, V. E. 1975. Differentiation in the trophectoderm and inner cell mass. Symp. Br. Soc. Dev. Biol. 2: 107–132.Google Scholar
  123. Gebhardt, D. O. F., and Nieuwkoop, P. D. 1964. The influence of lithium on the competence of the ectoderm in Ambystoma mexicanum. J. Embryol. Exp. Morphol. 12: 317–331.PubMedGoogle Scholar
  124. Gibbins, J. R., Tilney, L. G., and Porter, K. H. 1969. Microtubules in the formation and devel¬opment of the primary mesenchyme in Arbacia. J. Cell Biol. 41: 201–226.PubMedGoogle Scholar
  125. Gipson, I. 1974. Electron microscopy of early cleavage furrows in the chick blastodisc. J. Ultrastruct. Res. 49: 331–347.PubMedGoogle Scholar
  126. Giudice, G. 1973. Developmental Biology of the Sea Urchin Embryo, New York, Academic Press.Google Scholar
  127. Glisin, V. R., and Glisin, M. V. 1964. RNA metabolism following fertilization in sea urchin eggs. Proc. Natl. Acad. Sci. USA 52: 1548–1553.PubMedGoogle Scholar
  128. Golbus, M. S., Calarco, P. G., and Epstein, C. F. 1973. The effects of inhibitors of RNA synthesis (a-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J. Exp. Zool. 186: 207–216.PubMedGoogle Scholar
  129. Goldstein, E. S., and Arthur, C. G. 1979. Isolation and characterization of cDNA complementary to transient maternal poly(A)+ RNA from Drosophila oocyte. Biochim. Biophys. Acta 565: 265–274.PubMedGoogle Scholar
  130. Green, L. H., Brandis, J. W., Turner, F. R., and Raff, R. A. 1975. Cytoplasmic microtubule proteins of the embryo of Drosophila melanogaster. Biochemistry 14: 4487–4491.PubMedGoogle Scholar
  131. Gross, K. W., Jacobs-Lorena, M., Baglioni, C., and Gross, P. R. 1973. Cell-free translation of maternal mRNA from sea urchin eggs. Proc. Natl. Acad. Sci. USA 70: 2614–2618.PubMedGoogle Scholar
  132. Gross, P. R., and Cousineau, G. H. 1963. Effect of actinomycin D on macromolecule synthesis and early development in sea urchin eggs. Biochem. Biophys. Res. Commun. 10: 321–326.PubMedGoogle Scholar
  133. Gross, P. R., Malkin, L. I., and Moyer, W. A. 1964. Templates for the first proteins of embryonic development. Proc. Natl. Acad. Sci. USA 51: 407–414.PubMedGoogle Scholar
  134. Gross, P. R., Kraemer, K., and Malkin, L. I. 1965. Base composition of RNA synthesized during cleavage of the sea urchin embryo. Biochem. Biophys. Res. Commun. 18: 569–575.PubMedGoogle Scholar
  135. Grunstein, M. 1978. Hatching in the sea urchin Lytechinus pictus is accompanied by a shift in histone H4 gene activity. Proc. Natl. Acad. Sci. USA 75: 4135–4139.PubMedGoogle Scholar
  136. Grunstein, M., and Grunstein, J. E. 1977. The histone H4 gene of S. purpuratus DNA and mRNA sequences at the 5’ end. Cold Spring Harbor Symp. Quant. Biol. 42: 1083–1092.Google Scholar
  137. Grunstein, M., Diamond, K. E., Knoppel, E., and Grunstein, J. E. 1981. Comparison of the early histone H4 gene sequence of Strongylocentrotus purpuratus with maternal, early, and late histone H4 mRNA sequences. Biochemistry 20: 1216–1223.PubMedGoogle Scholar
  138. Guerrier, P., and van den Biggelaar, J. A. M. 1979. Intracellular activation and cell interactions in so-called mosaic embryos. INSERM Symp. 10: 29–36.Google Scholar
  139. Guerrier, P., van den Biggelaar, J. A. M., van Dongen, C. A. M., and Verdonk, N. H. 1978. Significance of the polar lobe for the determination of dorsoventral polarity in Dentalium vulgare. Dev. Biol. 63: 233–242.PubMedGoogle Scholar
  140. Gussek, D. J., and Hedrick, J. L. 1972. The enzymatic characteristics and control of glycogen phosphorylase during early amphibian development. J. Biol. Chem. 247: 6603–6609.Google Scholar
  141. Gustafson, T., and Kinnander, H. 1956a. Gastrulation in the sea urchin larva studied by aid of time-lapse cinematography. Exp. Cell Res. 10: 733–734.Google Scholar
  142. Gustafson, T., and Kinnander, H. 1956b. Microaquaria for time-lapse cinematographic studies of morphogenesis in swimming larvae and observations on sea urchin gastrulation. Exp. Cell Res. 11: 36–51.PubMedGoogle Scholar
  143. Gustafson, T., and Wolpert, L. 1961a. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Exp. Cell Res. 24: 64–79.PubMedGoogle Scholar
  144. Gustafson, T., and Wolpert, L. 1961b. Cellular mechanisms in the morphogenesis of the sea urchin larva. Exp. Cell Res. 22: 509–520.PubMedGoogle Scholar
  145. Gustafson, T., and Wolpert, L. 1962. Cellular mechanisms in the morphogenesis of the sea urchin larva. Exp. Cell Res. 27: 260–279.PubMedGoogle Scholar
  146. Gustafson, T., and Wolpert, L. 1963. The cellular basis of morphogenesis and sea urchin development. Int. Rev. Cytol. 15: 139–214.PubMedGoogle Scholar
  147. Gustafson, T., and Wolpert, L. 1967. Cellular movement and contact in sea urchin morphogenesis. Biol. Rev. 42: 442–498.PubMedGoogle Scholar
  148. Gwatkin, R. B. L. 1966. Defined media and development of mammalian eggs in vitro. Ann. N.Y. Acad. Sci. 139: 79–90.PubMedGoogle Scholar
  149. Halperin, W., and Jensen, W. A. 1967. Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J. Ultrastruct. Res. 18: 428–443.PubMedGoogle Scholar
  150. Hamburger, V., and Hamilton, H. L. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88: 49–92.Google Scholar
  151. Hansmann, I., Gebauer, J., Bihl, L., and Grimm, T. 1978. Onset of nucleolus organizer activity in early mouse embryogenesis and evidence for its regulation. Exp. Cell Res. 114: 263–268.PubMedGoogle Scholar
  152. Hara, K. 1977. The cleavage pattern of the axolotl egg studied by cinematography and cell counting. Wilhelm Roux Arch. Dev. Biol. 181: 73–87.Google Scholar
  153. Hara, K., and Boterenbrood, E. C. 1977. Refinement of Harrison’s normal table for the morula and blastula of the axolotl. Wilhelm Roux Arch. Dev. Biol. 181: 89–93.Google Scholar
  154. Hille, M. B., Hall, D. C., Yablonka-Reuveni, Z., Danilchik, M. V., and Moon, R. T. 1981. Translational control in sea urchin eggs and embryos: Initiation is rate limiting in blastula stage embryos. Dev. Biol. 86: 241–249.PubMedGoogle Scholar
  155. Hirsh, D. 1979. Temperature sensitive maternal effect mutants of early development in Caeno- rhabditis elegans. Symp. Soc. Dev. Biol. 37: 149–165.Google Scholar
  156. Hoffman, L. H., and Olson, G. E. 1980. Crystalline inclusions in the rabbit blastocyst. Evidence for microtubular aggregates. Exp. Cell Res. 127: 1–14.PubMedGoogle Scholar
  157. Hogan, B., and Gross, P. R. 1971. The effect of protein synthesis inhibition on the entry of mRNA into the cytoplasm of sea urchin embryos. J. Cell Biol. 49: 692–701.PubMedGoogle Scholar
  158. Holmes, D. S., Cohn, R. H., Kedes, L. H., and Davidson, N. 1977. Positions of sea urchin (Strongylocentrotus purpuratus) histone genes relative to restriction endonuclease sites on the chimeric plasmids pSp2 and pSpl7. Biochemistry 16: 1504–1512.PubMedGoogle Scholar
  159. Horiuchi, R., Yaoi, Y., and Amano, N. 1972. RNA synthesis in cultured chick embryo cells in growing and confluent phases. Dev. Growth Differ. 14: 185–195.Google Scholar
  160. Horstadius, S. 1939. The mechanism of sea urchin development, studied by operative methods. Biol. Rev. 14: 132–179.Google Scholar
  161. Hsu, Y. C. 1973. Differentiation in vitro of mouse embryos to the stage of early somite. Dev. Biol. 33: 403–411.PubMedGoogle Scholar
  162. Hsu, Y. C. 1980. Embryo growth and differentiation factors in embryonic sera of mammals. Dev. Biol. 76: 465–474.PubMedGoogle Scholar
  163. Huber, G. C. 1915. The development of the albino rat, Mus norvegicus alhinus. J. Morphol. 26: 247–358.Google Scholar
  164. Huebner, E., Tobe, S. S., and Davey, K. G. 1975. Structural and functional dynamics of oogenesis in Glossina austeni: Vitellogenesis with special reference to the follicular epithelium. Tissue Cell 7: 535–558.PubMedGoogle Scholar
  165. Hunt, C. V., and Avery, G. B. 1971. Increased levels of DNA during trophoblast giant-cell formation in mice. J. Reprod. Fertil. 25: 85–91.PubMedGoogle Scholar
  166. Iwai, K., Hayashi, H., and Ishikawa, K. 1972. Calf thymus lysine- and serine-rich histone. III. Complete amino acid sequence and its implication for interactions of histones with DNA. J. Biochem. 72: 357–367.PubMedGoogle Scholar
  167. Jackie, H. 1979. Degradation of maternal poly(A)-containing RNA during early embryogenesis of an insect (Smittia sp., Chironomidae, Diptera). Wilhelm Roux Arch. Dev. Biol. 187: 179–193.Google Scholar
  168. Jackie, H., and Kalthoff, K. 1979. RNA and protein synthesis in developing embryos of Smittia spec. (Chironomidae, Diptera). Wilhelm Roux Arch. Dev. Biol. 187: 283–305.Google Scholar
  169. Jackson, V., Shires, A., Granner, D., and Chalkley, R. 1975. Studies on highly metabolically active acetylation and phosphorylation of histones. J. Biol. Chem. 250: 4856–4863.PubMedGoogle Scholar
  170. Jackson, V., Shires, A., Tanphaichitr, N., and Chalkley, R. 1976. Modifications to histones immediately after synthesis. J. Mol. Biol. 104: 471–483.PubMedGoogle Scholar
  171. Jaffe, L. F. 1966. Electrical currents through the developing Fucus egg. Proc. Natl. Acad. Sci. USA 56: 1102–1109.PubMedGoogle Scholar
  172. Jaffe, L. F. 1968. Localization in the developing Fucus egg and the general role of localizing currents. Adv. Morphog. 7: 295–328.PubMedGoogle Scholar
  173. Jelinek, W., Adesnik, M., Salditt, M., Sheiness, D., Wall, R., Molloy, G., Phillipson, L., and Darnell, J. E. 1973. Further evidence on the nuclear origin and transfer to the cytoplasm of poly(A) sequences in mammalian cell RNA. J. Mol. Biol. 75: 515–532.PubMedGoogle Scholar
  174. Jensen, W. A. 1963. Cell development during plant embryogenesis. Brookhaven Symp. Biol. 16: 179–202.Google Scholar
  175. Johnson, A. W., and Hnilica, L. S. 1971. Cytoplasmic and nuclear basic protein synthesis during early sea urchin development. Biochim. Biophys. Acta 246: 141–154.PubMedGoogle Scholar
  176. Johnson, L. F., Levis, R., Abelson, H. T., Green, H., and Penman, S. 1976. Changes in RNA in relation to growth of the fibroblast. J. Cell Biol. 71: 933–938.PubMedGoogle Scholar
  177. Jolly, J., and Ferester-Tadie, M. 1936. Recherches sur l’oeuf du rat et de la souris. Arch. Anat. Microsc. Morphol. Exp. 32: 323–390.Google Scholar
  178. Kalf, G. F., Maguire, R. F., Metrione, R. M., and Koszalka, T. R. 1980. DNA replication by isolated rat trophoblast nuclei. Dev. Biol. 77: 253–270.PubMedGoogle Scholar
  179. Kalthoff, K. 1979. Analysis of a morphogenetic determinant in an insect embryo (Smittia sp.). Symp. Soc. Dev. Biol. 37: 97–126.Google Scholar
  180. Karkas, J. D., Margulies, L., and Chargaff, E. 1975. A DNA polymerase from embryos of Dro- sophila melanogaster. J. Biol. Chem. 250: 8657–8663.PubMedGoogle Scholar
  181. Karp, G. C., and Solursh, M. 1974. Acid mucopolysaccharide metabolism, the cell surface, and primary mesenchyme cell activity in the sea urchin embryo. Dev. Biol. 41: 110–123.PubMedGoogle Scholar
  182. Kauffman, S. A. 1977. Chemical patterns, compartments and a binary epigenetic code in Drosophila. Am. Zool. 17: 631–648.Google Scholar
  183. Kedes, L. H., and Birnstiel, M. L. 1971. Reiteration and clustering of DNA sequences complementary to histone mRNA. Nature New Biol. 230: 165–169.PubMedGoogle Scholar
  184. Kedes, L. H., Cohn, R. H., Lowry, J. C., Chang, A. C. Y., and Cohen, S. N. 1975. The organization of sea urchin histone genes. Cell 6: 359–369.PubMedGoogle Scholar
  185. Keller, R. E. 1980. The cellular basis of epiboly: An SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis. J. Embryol. Exp. Morphol. 60: 201–234.PubMedGoogle Scholar
  186. Kinoshita, S., and Saiga, H. 1979. The role of proteoglycan in the development of sea urchins. Exp. Cell Res. 123: 229–236.PubMedGoogle Scholar
  187. Kirschner, M. W., and Gerhart, J. C. 1981. Spatial and temporal changes in the amphibian egg. Bioscience 31: 381–388.Google Scholar
  188. Klag, J. J., and Ubbels, G. A. 1975. Regional morphological and cytochemical differentiation in the fertilized egg of Discoglossus pictus. Differentiation 3: 15–20.Google Scholar
  189. Kochar, S., Ginsburg, M., and Eyal-Giladi, H. 1980. From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick. II. Microscopic anatomy and cell population dynamics. Dev. Biol. 79: 296–308.Google Scholar
  190. Kojima, S., and Wilt, F. H. 1969. Rate of nuclear RNA turnover in sea urchin embryos. J. Mol. Biol. 40: 235–246.Google Scholar
  191. Kozak, L. P., and Quinn, P. J. 1975. Evidence for dosage compensation of an X-linked gene in the 6-day embryo of the mouse. Dev. Biol. 45: 65–73.PubMedGoogle Scholar
  192. Kunkel, N. S., and Weinberg, E. S. 1978. Histone gene transcripts in the cleavage and mesenchyme blastula embryo of the sea urchin S. purpuratus. Cell 14: 313–326.PubMedGoogle Scholar
  193. Kunkel, N. S., Hemminki, K., and Weinberg, E. S. 1978. Size of histone gene transcripts in different embryonic stages of the sea urchin, Strongylocentrotus purpuratus. Biochemistry 17: 2591–2598.PubMedGoogle Scholar
  194. LaMarca, M. J., and Wassarman, P. M. 1979. Program of early development in the mammal: Changes in absolute rates of synthesis of ribosomal proteins during oogenesis and early em- bryogenesis in the mouse. Dev. Biol. 73: 103–119.PubMedGoogle Scholar
  195. Landstrom, U., and Lovtrup, S. 1979. Fate maps and cell differentiation in the amphibian embryo—An experimental study. J. Embryol. Exp. Morphol. 54: 113–130.PubMedGoogle Scholar
  196. Laufer, J. S., Bazzicalupo, P., and Wood, W. B. 1980. Segregation of developmental potential in early embryos of Caenorhabditis elegans. Cell 19: 569–577.PubMedGoogle Scholar
  197. Lawrence, P. A., and Morata, G. 1979. Pattern formation and compartments in the tarsus of Drosophila. Symp. Soc. Dev. Biol. 37: 317–323.Google Scholar
  198. LeBlanc, J., and Brick, I. 1981. Morphological aspects of adhesion and spreading behavior of amphibian blastula and gastrula cells. J. Embryol. Exp. Morphol. 61: 145–163.PubMedGoogle Scholar
  199. Lev, Z., Thomas, T. L., Lee, A. S., Angerer, R. C., Britten, R. J., and Davidson, E. H. 1980. Developmental expression of two cloned sequences coding for rare sea urchin embryo messages. Dev. Biol. 76: 322–340.PubMedGoogle Scholar
  200. Levey, I. L., Troike, D. E., and Brinster, R. L. 1977. Effects of a-amanitin on development of mouse ova in culture. J. Reprod. Fertil. 50: 147–150.PubMedGoogle Scholar
  201. Levey, I. L., Stull, G. B., and Brinster, R. L. 1978. Poly(A) and synthesis of polyadenylated RNA in the preimplantation mouse embryo. Dev. Biol. 64: 140–148.PubMedGoogle Scholar
  202. Lewin, B. 1975a. Units of transcription and translation: The relationship between hnRNA and mRNA. Cell 4: 11–20.PubMedGoogle Scholar
  203. Lewin, B. 1975b. Units of transcription and translation: Sequence components of hnRNA and mRNA. Cell 4: 77–93.PubMedGoogle Scholar
  204. Lifton, R. P., and Kedes, L. H. 1976. Size and sequence homology of masked maternal and embryonic histone mRNAs. Dev. Biol. 48: 47–55.PubMedGoogle Scholar
  205. Loeb, L. A. 1974. Eucaryotic DNA polymerases. Enzymes 10: 173–209.Google Scholar
  206. Loomis, L. W., Rossomando, E. F., and Chang, L. M. S. 1976. DNA polymerase of Dictyoste- lium discoideum. Biochim. Biophys. Acta 425: 469–477.PubMedGoogle Scholar
  207. Louie, A. J., and Dixon, G. H. 1972. Synthesis, acetylation and phosphorylation of histone IV on its binding to DNA during spermatogenesis in trout. Proc. Natl. Acad. Sci. USA 69: 1975–1979.PubMedGoogle Scholar
  208. Lovtrup, S., Landstrom, U., and Lovtrup-Rein, H. 1978. Polarities, cell differentiation and primary induction in the amphibian embryo. Biol. Rev. 53: 1–42.Google Scholar
  209. Lyon, M. F. 1972. X-chromosome inactivation and developmental patterns in mammals. Biol. Rev. 47: 1–35.PubMedGoogle Scholar
  210. McClintock, B. 1978. Development of the maize endosperm as revealed by clones. Symp. Soc. Dev. Biol. 36: 217–237.Google Scholar
  211. McColl, R. S., and Aronson, A. I. 1978. Changes in transcription patterns during early development of the sea urchin. Dev. Biol. 65: 126–138.PubMedGoogle Scholar
  212. McMahon, D. 1974. Chemical messengers in development: A hypothesis. Science 185: 1012–1021.PubMedGoogle Scholar
  213. Mahowald, A. P., Allis, C. D., Karrer, K. M., Underwood, E. M., and Waring, G. L. 1979. Germ plasm and pole cells of Drosophila. Symp. Soc. Dev. Biol. 37: 127–146.Google Scholar
  214. Malacinski, G. M., Chung, H. M., and Asashima, M. 1980. The association of primary embryonic organizer activity with the future dorsal side of amphibian eggs and early embryos. Dev. Biol. 77: 449–462.PubMedGoogle Scholar
  215. Manes, C. 1971. Nucleic acid synthesis in preimplantation rabbit embryos. II. Delayed synthesis of rRNA. J. Exp. Zool. 176: 87–96.PubMedGoogle Scholar
  216. Manner, H. W. 1964. Elements of Comparative Vertebrate Embryology, New York, Macmillan Co.Google Scholar
  217. Mar, H. 1980. Radial cortical fibers and pronuclear migration in fertilized and artificially activated eggs of Lytechinus pictus. Dev. Biol. 78: 1–13.PubMedGoogle Scholar
  218. Margulies, L., and Chargaff, E. 1973. Survey of DNA polymerase activity during the early development of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 70: 2946–2950.PubMedGoogle Scholar
  219. Marsland, D. 1956. Protoplasmic contractility in relation to gel structure: Temperature-pressure experiments on cytokinesis and amoeboid movement. Adv. Morphog. 7: 295–328.Google Scholar
  220. Marsland, D., and Landau, J. V. 1954. The mechanics of cytokinesis: Temperature-pressure studies on the cortical gel system in various marine eggs. J. Exp. Zool. 125: 507–539.Google Scholar
  221. Meier, S. 1979. Development of the chick embryo mesoblast: Formation of the embryonic axis and establishment of the metameric pattern. Dev. Biol. 73: 25–45.Google Scholar
  222. Meier, S. 1981. Development of the chick embryo mesoblast: Morphogenesis of the prechordal plate and cranial segments. Dev. Biol. 83: 49–61.PubMedGoogle Scholar
  223. Merlino, G. T., Water, R. D., Moore, G. P., and Kleinsmith, L. J. 1981. Change in expression of the actin gene family during early sea urchin development. Dev. Biol. 85: 505–508.PubMedGoogle Scholar
  224. Migeon, B. R. 1972. Stability of X chromosomal inactivation in human somatic cells. Nature (London) 239: 87–89.Google Scholar
  225. Migeon, B. R. 1978. Clonal analysis of development: X-inactivation and cell communication as determinants of female phenotype. Symp. Soc. Dev. Biol. 36: 205–215.Google Scholar
  226. Migeon, B. R., Norum, R. A., and Corsaro, C. M. 1974. Isolation and analysis of somatic hybrids derived from two human diploid cells. Proc. Natl. Acad. Sci. USA 71: 937–941.PubMedGoogle Scholar
  227. Milcarek, C., Price, R. P., and Penman, S. 1974. The metabolism of a poly(A)~ mRNA fraction in HeLa cells. Cell 3: 1–10.PubMedGoogle Scholar
  228. Miller, D. A., Dev, V. G., Tantravahi, R., and Miller, O. J. 1976. Suppression of human nucleolus organizer activity in mouse-human somatic hybrid cells. Exp. Cell Res. 101: 235–243.PubMedGoogle Scholar
  229. Miller, L. 1978. Relative amounts of newly synthesized poly(A)+ and poly(A)~ mRNA during development of Xenopus laevis. Dev. Biol. 64: 118–129.PubMedGoogle Scholar
  230. Miller, O. J., Miller, D. A., Dev, V. G., Tantravahi, R., and Croce, C. M. 1976. Expression of human and suppression of mouse nucleolus organizer activity in mouse-human somatic cell hybrids. Proc. Natl. Acad. Sci. USA 73: 4531–4535.PubMedGoogle Scholar
  231. Miritz, B. 1964. Synthetic processes and early development in the mammalian egg. J. Exp. Zool. 157: 85–100.Google Scholar
  232. Molloy, G. R., Thomas, W. L., and Darnell, J. E. 1972. Occurrence of uridylate-rich oligonucleotide regions in hnRNA of HeLa cells. Proc. Natl. Acad. Sci. USA 69: 3684–3688.PubMedGoogle Scholar
  233. Monné, L., and Hârde, S. 1951. On the formation of the blastocoel and similar embryonic cavities. Ark. Zool. (2) 1: 463–469.Google Scholar
  234. Moon, R. T., and Morrill, J. B. 1979. Further studies on the electrophoretically mobile acid phosphatases of the developing embryo of Lymnaea palustris. Acta Embryol. Exp. 1979: 3–15.Google Scholar
  235. Moore, A. R., and Burt, A. S. 1939. On the locus and nature of forces causing gastrulation in embryos of De ndras ter excentricus. J. Exp. Zool. 82: 159–171.Google Scholar
  236. Morgan, T. H. 1927. Experimental Embryology, New York, Columbia University Press.Google Scholar
  237. Morrill, J. B., Blair, C. A., and Larsen, W. J. 1973. Regulative development in the pulmonale gastropod, Lymnaea palustris, as determined by blastomere deletion experiments. J. Exp. Zool. 183: 47–56.Google Scholar
  238. Mulnard, J. 1955. Contribution à la connaissance des enzymes dans l’ontogenèse. Arch. Biol. 66: 527–685.Google Scholar
  239. Nagl, W. 1970. Temperature-dependent functional structures in the polytene chromosomes of Phaseolus, with special reference to the nucleolus organizers. J. Cell Sci. 6: 87–107.PubMedGoogle Scholar
  240. Nagl, W. 1972. Giant sex chromatin in endopolyploid trophoblast nuclei of the rat. Experientia 28: 217–218.PubMedGoogle Scholar
  241. Nagl, W., Peschke, C., and van Gyseghem, R. 1976. Heterochromatin underreplication in Tro- paeolum embryogenesis. Naturwissenschaften 4: 198.Google Scholar
  242. Nakazato, H., Kopp, D., and Edmonds, M. 1973. Localization of the poly(A) sequences in mRNA and in hnRNA of HeLa cells. J. Biol. Chem. 248: 1472–1476.PubMedGoogle Scholar
  243. Nalbandov, A. V. 1971. Endocrine control of implantation. In: Blandau, R. J., ed., The Biology of the Blastocyst, Chicago, University of Chicago Press, pp. 383–392.Google Scholar
  244. Nemer, M. 1962. Characteristics of the utilization of nucleosides by embryos of Paracentrotus lividus. J. Biol. Chem. 237: 143–149.PubMedGoogle Scholar
  245. Nemer, M., Graham, M., and Dubroff, L. M. 1974. Co-existence of nonhistone mRNA species lacking and containing polyadenylic acid in sea urchin embryos. J. Mol. Biol. 89: 435–454.PubMedGoogle Scholar
  246. Newrock, K. M., and Raff, R. A. 1975. Polar lobe specific regulation of translation in embryos of Ilyanassa obsoleta. Dev. Biol. 42: 242–261.PubMedGoogle Scholar
  247. Newrock, K. M., Alfageme, C. R., Nardi, R. V., and Cohen, L. H. 1977. Histone changes during chromatin remodeling in embryogenesis. Cold Spring Harbor Symp. Quant. Biol. 42: 421–431.Google Scholar
  248. Newrock, K. M., Cohen, L. H., Hendricks, M. B., Donnelly, R. J., and Weinberg, E. S. 1978. Stage specific mRNAs coding for subtypes of H2A and H2B histones in the sea urchin embryo. Cell 14: 327–336.PubMedGoogle Scholar
  249. Nieuwkoop, P. D. 1969. The formation of the mesoderm in urodelean amphibians. Wilhelm Roux Arch. Entwicklungsmech. Org. 163: 298–315.Google Scholar
  250. Nieuwkoop, P. D. 1977. Origin and establishment of embryonic polar axes in amphibian development. Curr. Top. Dev. Biol. 11: 115–132.PubMedGoogle Scholar
  251. Niisslein-Volhard, C. 1979. Maternal effect mutations that alter the spatial coordinates of the embryo of Drosophila melanogaster. Symp. Soc. Dev. Biol. 37: 185–211.Google Scholar
  252. Okazaki, K. 1956. Skeletal formation of sea urchin larvae. I. Effect of calcium concentration on the medium. Biol. Bull. 110: 320–333.Google Scholar
  253. Okazaki, K. 1962. Skeleton formation of sea urchin larvae. IV. Correlation in shape of spiculae and matrix. Embryologia 7: 21–38.Google Scholar
  254. Okazaki, K. 1965. Skeleton formation of sea urchin larvae. V. Continuous observation of the process of matrix formation. Exp. Cell Res. 11: 548–559.Google Scholar
  255. O’Melia, A. F. 1979a. Quantitative measurements of rates of 5S RNA and tRNA synthesis in sea urchin embryos. Differentiation 15: 97–105.PubMedGoogle Scholar
  256. O’Melia, A. F. 1979b. The synthesis of 5S RNA and its regulation during early sea urchin development. Dev. Growth Differ. 21: 99–103.Google Scholar
  257. O’Melia, A. F., and Villee, C. A. 1972. De novo synthesis of tRNA and 5S RNA in cleaving sea urchin embryos. Nature (London) 289: 51–52.Google Scholar
  258. Paradiso, P., and Schofield, P. 1976. Changes in tRNA nucleotidyltransferase activity during embryonic development inX. laevis. Exp. Cell Res. 100: 9–14.PubMedGoogle Scholar
  259. Parks, H. B. 1936. Cleavage patterns in Drosophila and mosaic formation. Ann. Entomol. Soc. Am. 29: 350–392.Google Scholar
  260. Pearson, M. 1974. Polyteny and the functional significance of the polytene cell cycle. J. Cell Sci. 15: 457–479.PubMedGoogle Scholar
  261. Peltz, R., and Giudice, G. 1967. The control of skeletal differentiation in sea urchin embryos: A molecular approach. Biol. Bull. 133: 479.Google Scholar
  262. Piko, L. 1970. Synthesis of macromolecules in early mouse embryos cultured in vitro: RNA, DNA, and a polysaccharide component. Dev. Biol. 21: 257–279.PubMedGoogle Scholar
  263. Raff, E. C. 1977. Microtubule proteins in axolotl eggs and developing embryos. Dev. Biol. 58: 56–75.PubMedGoogle Scholar
  264. Raff, E. C., and Raff, R. A., 1978. Tubulin and microtubules in the early development of the axolotl and other amphibia. Am. Zool. 18: 237–251.Google Scholar
  265. Raff, R. A. 1975. Regulation of microtubule synthesis and utilization during early embryonic development of the sea urchin. Am. Zool. 15: 661–678.Google Scholar
  266. Raff, R. A., and Kaumeyer, J. F. 1973. Soluble microtubule proteins of the sea urchin embryo: Partial characterization of the proteins and behavior of the pool in early development. Dev. Biol. 32: 309–320.PubMedGoogle Scholar
  267. Randolph, L. F. 1936. Developmental morphology of the caryopsis in maize. J. Agric. Res. 53: 881–916.Google Scholar
  268. Raveli, D., Friedlander, M., and Eyal-Giladi, H. 1976. Nucleolar ontogenesis in the uterine chick germ correlated with morphogenetic events. Exp. Cell Res. 100: 195–203.Google Scholar
  269. Regier, J. C., and Kafatos, F. C. 1977. Absolute rates of protein synthesis in sea urchins with specific activity measurements of radioactive leucine and leucyl-tRNA. Dev. Biol. 57: 270–283.PubMedGoogle Scholar
  270. Rickoll, W. L. 1976. Cytoplasmic continuity between embryonic cells and the primitive yolk sac during early gastrulation in D. melanogaster. Dev. Biol. 49: 304–310.PubMedGoogle Scholar
  271. Rizzino, A., and Sherman, M. I. 1979. Development and differentiation of mouse blastocyst in serum-free medium. Exp. Cell Res. 121: 221–233.PubMedGoogle Scholar
  272. Roeder, R. G. 1974. Multiple forms of DNA-dependent RNA polymerase in Xenopus laevis. J. Biol. Chem. 249: 249–256.PubMedGoogle Scholar
  273. Romeo, G., and Migeon, B. R. 1975. Stability of X chromosomal inactivation in human somatic cells transformed by SV-40. Humangenetik 29: 165–170.PubMedGoogle Scholar
  274. Rosenquist, G. C. 1966. A radioautographic study of labelled grafts in the chick blastoderm: Development from primitive streak stages to stage 12. Contrib. Embryol. Carnegie Inst. Washington 38: 71–110.Google Scholar
  275. Rossant, J., and Papaioannou, V. E. 1977. The biology of embryogenesis. In: Sherman, M. I., ed., Concepts in Mammalian Embryogenesis, Cambridge, Mass., MIT Press, pp. 1–36.Google Scholar
  276. Roth, J. S. 1964. Biological information in a single strand of DNA. Nature (London) 202: 182–183.Google Scholar
  277. Ruderman, J. V., and Gross, P. R. 1974. Histones and histone synthesis in sea urchin development. Dev. Biol. 36: 286–298.PubMedGoogle Scholar
  278. Ruderman, J. V., Baglioni, C., and Gross, P. R. 1974. Histone mRNA and histone synthesis during embryogenesis. Nature (London) 247: 36–38.Google Scholar
  279. Sagata, N., Shiokawa, K., and Yamana, K. 1980. A study of the steady-state population of poly(A)+ RNA during early development of Xe nop us laevis. Dev. Biol. 77: 431–448.PubMedGoogle Scholar
  280. Sawicki, J. A., and Maclntyre, R. J. 1978. Localization at the ultrastructural level of maternally derived enzyme and determination of the time of paternal gene expression for acid phosphatase in D. melanogaster. Dev. Biol. 63: 47–58.PubMedGoogle Scholar
  281. Saxen, C., and Toivonen, S. 1962. Primary Embryonic Induction, Englewood Cliffs, N.J., Prentice-Hall.Google Scholar
  282. Schmidt, B. A., Kelly, P. T., May, M. C., Davis, S. E., and Conrad, G. W. 1980. Characterization of actin from fertilized eggs of Ilyanassa obsoleta during polar lobe formation and cytokinesis. Dev. Biol. 76: 126–140.PubMedGoogle Scholar
  283. Schubiger, G., and Wood, W. J. 1977. Determination during early embryogenesis in Drosophila melanogaster. Am. Zool. 17: 565–576.Google Scholar
  284. Schultz, G. A., Manes, C., and Hahn, W. E. 1973. Synthesis of RNA containing polyadenylic acid sequences in preimplantation rabbit embryos. Dev. Biol. 30: 418–426.PubMedGoogle Scholar
  285. Schultz, R. M., Letourneau, G. E., and Wassarman, P. M. 1979. Program of early development in the mammal: Changes in patterns and absolute rates of tubulin and total protein synthesis during oocyte growth in the mouse. Dev. Biol. 73: 120–133.PubMedGoogle Scholar
  286. Seale, R. L., and Aronson, A. I. 1973. Chromatin-associated proteins of the developing sea urchin embryo. I. Kinetics of synthesis and characterization of nonhistone proteins. J. Mol. Biol. 75: 633–645.PubMedGoogle Scholar
  287. Selenka, E. 1884. Die Blätter umkehrung im Ei der Nagathiere, Weisbaden.Google Scholar
  288. Sellens, M. H., and Sherman, M. I. 1980. Effects of culture conditions on the developmental programme of mouse blastocyst. J. Embryol. Exp. Morphol. 56: 1–22.PubMedGoogle Scholar
  289. Senatori, O., Delpino, A., Scopelliti, R., and Manelli, H. 1979. Protein content of ribosome subunits during Bufo bufo development. Acta Embryol. Exp. 1979: 29–38.Google Scholar
  290. Shalgi, R., and Sherman, M. I. 1979. Scanning electron microscopy of the surface of normal and implantation-delayed mouse blastocysts during development in vitro. J. Exp. Zool. 210: 69–80.PubMedGoogle Scholar
  291. Shepherd, G. W., and Flickinger, R. 1979. Post-transcriptional control of mRNA diversity in frog embryos. Biochim. Biophys. Acta 563: 413–421.PubMedGoogle Scholar
  292. Sherman, M. I. 1975. The culture of cells derived from mouse blastocysts. Cell 5: 343–349.PubMedGoogle Scholar
  293. Sherman, M. I., and Wudl, L. R. 1976. The implanting mouse blastocyst. In: Poste, G., and Nicolson, G. L., eds., The Cell Surface in Animal Embryogenesis and Development, Amsterdam, North-Holland, pp. 81–125.Google Scholar
  294. Sherman, M. I., Shalgi, R., Rizzino, A., Sellens, M. H., Gay, S., and Gay, R. 1979. Changes in the surface of the mouse blastocyst at implantation. Ciba Found. Ser. 64: 33–52.Google Scholar
  295. Shih, R. J., Smith, L. D., and Keem, K. 1980. Rates of histone synthesis during early development of Rana pipiens. Dev. Biol. 75: 329–342.PubMedGoogle Scholar
  296. Shiokawa, K., and Pogo, A. O. 1974. The role of cytoplasmic membranes in controlling the transport of nuclear mRNA and initiation of protein synthesis. Proc. Natl. Acad. Sci. USA 71: 2658–2662.PubMedGoogle Scholar
  297. Shiokawa, K., Yasuda, Y., and Yamana, K. 1977. Transport of different RNA species from the nucleus to the cytoplasm in Xenopus laevis neurula cells. Dev. Biol. 59: 259–262.PubMedGoogle Scholar
  298. Shiokawa, K., Misumi, Y., Yasuda, Y., Nishio, Y., Kurata, S., Sameshima, M., and Yamana, K. 1979. Synthesis and transport of various RNA species in developing embryos of Xenopus laevis. Dev. Biol. 68: 503–514.PubMedGoogle Scholar
  299. Sierra, J. M., Meier, D., and Ochoa, J. 1974. Effect of development on the translation of messenger RNA in Artemia salina embryos. Proc. Natl. Acad. Sei. USA 71: 2693–2697.Google Scholar
  300. Singh, U. N. 1968. Rate of flow of rapidly labelled RNA from nucleus to cytoplasm during embryonic development of sea urchin. Exp. Cell Res. 53: 537–543.Google Scholar
  301. Skoultchi, A., and Gross, P. R. 1973. Maternal histone mRNA: Detection by molecular hybridization. Proc. Natl. Acad. Sci. USA 70: 2840–2844.PubMedGoogle Scholar
  302. Skreb, N., Svajger, A., and Levak-Svajger, B. 1976. Developmental potentialities of the germ layers in mammals. In: O’Connor, M., ed., Embryogenesis in Mammals, Ciba Found. Symp. 40: 27–45.Google Scholar
  303. Slater, D. W., Slater, I., and Gillespie, D. 1972. Postfertilization synthesis of polyadenylic acid in sea urchin embryos. Nature (London) 240: 333–337.Google Scholar
  304. Slater, D. W., Gillespie, D., and Slater, I. 1973. Cytoplasmic adenylation and processing of maternal RNA. Proc. Natl. Acad. Sci. USA 70: 406–411.PubMedGoogle Scholar
  305. Smith, L. D., and Ecker, R. E. 1970. Foundations for the expression of developmental potential. In: Hanley, E. W., ed., RNA in Development, Salt Lake City, University of Utah Press, pp. 355–379.Google Scholar
  306. Snow, M. H. L. 1977. Gastrulation in the mouse: Establishment of cell populations in the epiblast of twl8/tw18 embryos. J. Embryol. Exp. Morphol. 42: 293–303.Google Scholar
  307. Snow, M. H. L. 1978. Proliferation centres in embryonic development. In: Johnson, M. H., ed., Development in Mammals, Amsterdam, North-Holland, Vol. 3, pp. 337–362.Google Scholar
  308. Sonnenblick, B. P. 1950. The early embryology of Drosophila melanogaster. In: Demerec, M., ed., Biology of Drosophila, New York, Wiley, pp. 62–167.Google Scholar
  309. Spemann, H., and Mangold, H. 1924. Über Induktion von Embryonal anlagen durch Implantation artfremder Organisatoren. Wilhelm Roux Arch. Entwicklungsmech. Org. 100: 599–638.Google Scholar
  310. Spinn, A. S., and Nemer, M. 1965. Messenger RNA in early sea urchin embryos: Cytoplasmic particles. Science 150: 214–217.Google Scholar
  311. Spratt, N. T., and Haas, H. 1962. Integrative mechanisms in development of the early chick blastoderm. J. Exp. Zool. 149: 75–102.PubMedGoogle Scholar
  312. Stearns, L. W. 1974. Sea Urchin Development: Cellular and Molecular Aspects, Stroudsburg, Pa., Dowden, Hutchinson amp; Ross.Google Scholar
  313. Steffenson, D. M. 1968. A reconstruction of cell development in the shoot apex of maize. Am. J. Bot. 55: 354–369.Google Scholar
  314. Street, H. E. 1976. Experimental embryogenesis—The totipotency of cultured plant cells. In: Graham, C. F., and Wareing, P. F., eds., The Developmental Biology of Plants and Animals, Oxford, Blackwell, pp. 73–90.Google Scholar
  315. Sturgess, E. A., Ballantine, J. E. M., Woodland, H. R., Mohum, P. R., Lane, C. D., and Dimitriadis, G. J. 1980. Actin synthesis during the early development of Xenopus laevis. J. Embryol. Exp. Morphol. 58: 303–320.PubMedGoogle Scholar
  316. Sures, I. S., Maxam, A., Cohn, R. H., and Kedes, L. H. 1976. Identification and location of the histone H2A and H3 genes by sequence analysis of sea urchin S. purpuratus DNA cloned in E. coli. Cell 9: 495–502.Google Scholar
  317. Sures, I. S., Lowry, J. C., and Kedes, L. H. 1978. The DNA sequence of sea urchin S. purpuratus H2A, H2B, and H3 histone coding and spacer regions. Cell 15: 1033–1044.PubMedGoogle Scholar
  318. Surrey, S., and Nemer, M. 1976. Methylated blocked 5’ terminal sequences of sea urchin embryo mRNA classes containing and lacking poly(A). Cell 9: 589–595.PubMedGoogle Scholar
  319. Surrey, S., Ginzburg, I., and Nemer, M. 1979. Ribosomal RNA synthesis in pre- and post-gas- trula-stage sea urchin embryos. Dev. Biol. 71: 83–99.PubMedGoogle Scholar
  320. Sussman, P., and Betz, T. W. 1978. Embryonic stages: Morphology, timing, and variance in the toad Bombina orientalis. Can. J. Zool. 56: 1540–1545.PubMedGoogle Scholar
  321. Suzuki, N., and Mano, Y. 1974. Phosphorylation of deoxyribonucleosides and DNA synthesis in early cleaving embryos of the sea urchin. J. Biochem. 75: 1349–1362.PubMedGoogle Scholar
  322. Takagi, N. 1974. Differentiation of X chromosomes in the early female mouse embryos. Exp. Cell Res. 86: 127–135.PubMedGoogle Scholar
  323. Takagi, N., and Sasaki, M. 1975. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membrane of the mouse. Nature (London) 256: 640–642.Google Scholar
  324. Takagi, N., Wake, N., and Sasaki, M. 1978. Cytologic evidence for preferential inactivation of the paternally derived X chromosome in XX mouse blastocysts. Cytogenet. Cell Genet. 20: 240–248.Google Scholar
  325. Tanaka, Y. 1976. Effects of the surfactants on the cleavage and further development of the sea urchin embryos. Dev. Growth Differ. 18: 113–122.Google Scholar
  326. Thoma, F., Koller, T., and Klug, A. 1979. Involvement of histone HI in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83: 403–427.PubMedGoogle Scholar
  327. Thomas, C., Heilporn-Pohl, V., Hanocq, F., Pays, E., and Boloukhere, M. 1980. Changes in “template-bound” and “free” RNA polymerase activities in isolated nuclei from Xenopus laevis embryos. Exp. Cell Res. 127: 63–73.PubMedGoogle Scholar
  328. Trinkhaus, J. P. 1965. Mechanisms of morphogenetic movements. In: International Conference on Organogenesis, Baltimore, Holt, Reinhart amp; Winston, pp. 55–104.Google Scholar
  329. Turner, R. F., and Mahowald, A. P. 1976. Scanning EM of Drosophila embryogenesis. Dev. Biol. 50: 95–108.PubMedGoogle Scholar
  330. Ubbels, G. A., and Hengst, R. T. M. 1978. A cytochemical study of the distribution of glycogen and mucosubstances in the early embryo of Ambystoma mexicanum. Differentiation 10: 109–122.Google Scholar
  331. Underwood, E. M., Caulton, J. H., Allis, C. D., and Mahowald, A. P. 1980. Developmental fate of pole cells in D. melanogaster. Dev. Biol. 77: 303–314.PubMedGoogle Scholar
  332. Van Blerkom, J., and Manes, C. 1977. The molecular biology of the preimplantation embryo. In: Sherman, M. I., ed., Concepts in Mammalian Embryogenesis, Cambridge, Mass., MIT Press, pp. 37–94.Google Scholar
  333. van den Biggelaar, J. A. M., and Guerrier, P. 1979. Dorsoventral polarity and mesentoblast determination as concomitant results of cellular interactions in the mollusk Patella vulgata. Dev. Biol. 68: 462–471.PubMedGoogle Scholar
  334. van Helden, P. D., Strickland, W. N., Brandt, W. F., and von Holt, C. 1979. The complete amino acid sequence of histone H2B from the mollusk Patella granatina. Eur. J. Biochem. 93: 71–78.PubMedGoogle Scholar
  335. Verdonk, N. H. 1968. The relation of the two blastomeres to the polar lobe in Dentalium. J. Embryol. Exp. Morphol. 20: 101–105.PubMedGoogle Scholar
  336. Villee, C. A., Lowens, M., Gordon, M., Leonard, E., and Rich, A. 1949. The incorporation of P32 into the nucleoproteins and phosphoproteins of the developing sea urchin embiyo. J. Cell. Comp. Physiol. 33: 93–112.Google Scholar
  337. Vogt, W. 1929. Gestaltungsanlayse am Amphibienkeim mit orthlicker Vitalfarbung. Wilhelm Roux Arch. Entwicklungsmech. Org. 120: 384–706.Google Scholar
  338. Waddington, C. H. 1966. Mendel and the study of development [of an embryonic cell]. Proc. R. Soc. London Ser. B 164: 219–229.Google Scholar
  339. Wake, N., Takagi, M., and Sasaki, M. 1976. Non-random inactivation of X chromosome in the rat yolk sac. Nature (London) 262: 580–581.Google Scholar
  340. Wallace, H. 1960. The development of anucleate embryos of Xenopus laevis. J. Embryol. Exp. Morphol. 8: 405–413.PubMedGoogle Scholar
  341. Weinberg, E. S., Overton, G. C., Shutt, R. H., and Reeder, R. H. 1975. Histone gene arrangement in the sea urchin, Stronglyocentrotus purpuratus. Proc. Natl. Acad. Sci. USA 72: 4815–4819.PubMedGoogle Scholar
  342. West, M. H. P., and Bonner, W. M. 1980. Histone 2A, a heteromorphous family of eight protein species. Biochemistry 19: 3238–3245.PubMedGoogle Scholar
  343. Wiley, L. M., and Eglitis, M. A. 1980. Effects of colcemid on cavitation during mouse blastocoele formation. Exp. Cell Res. 127: 89–101.PubMedGoogle Scholar
  344. Wilson, E. B. 1892. The cell-lineage of Nereis. J. Morphol. 6: 361–480.Google Scholar
  345. Wilson, E. B. 1904a. Experimental studies on germinal localization. I. The germ-regions in the egg of Dentalium. J. Exp. Zool. 1: 1–72.Google Scholar
  346. Wilson, E. B. 1904b. Experimental studies on germinal localization. II. Experiments on the cleavage-mosaic in Patella and Dentalium. J. Exp. Zool. 1: 197–268.Google Scholar
  347. Wilson, E. B. 1929. The development of egg-fragments in annelids. Wilhelm Roux Arch. Entwick- lungsmech. Org. 117: 179–210.Google Scholar
  348. Wilt, F. H. 1973. Polyadenylation of maternal RNA of sea urchin eggs after fertilization. Proc. Natl. Acad. Sci. USA 70: 2345–2349.PubMedGoogle Scholar
  349. Wintersberger, U. 1974. Absence of a low-molecular-weight DNA polymerase from nuclei of the yeast, S. cerevisiae. Eur. J. Biochem. 50: 197–202.PubMedGoogle Scholar
  350. Wolpert, L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25: 1–47.PubMedGoogle Scholar
  351. Wolpert, L., and Gustafson, T. 1961. Studies on the cellular basis of morphogenesis of the sea urchin embryo: The formation of the blastula. Exp. Cell Res. 25: 374–382.PubMedGoogle Scholar
  352. Wolpert, L., and Mercer, E. H. 1963. An electron microscope study of the development of the sea urchin embryo and its radial polarity. Exp. Cell Res. 30: 280–300.PubMedGoogle Scholar
  353. Woodland, H. R. 1979. The modification of stored histones H3 and H4 during the oogenesis and early development of Xenopus laevis. Dev. Biol. 68: 360–370.PubMedGoogle Scholar
  354. Woodland, H. R., and Ballantine, J. E. M. 1981. Paternal gene expression in developing hybrid embryos of Xenopus laevis and Xenopus borealis. Personal communication.Google Scholar
  355. Woodland, H. R., and Graham, C. F. 1969. RNA synthesis during early development of the mouse. Nature (London) 221: 327–332.Google Scholar
  356. Wu, M., Holmes, D. S., Davidson, N., Cohn, R., and Kedes, L. H. 1976. The relative positions of sea urchin histone genes on the chimeric plasmids pSp2 and pSpl7 as studied by electron microscopy. Cell 9: 163–169.PubMedGoogle Scholar
  357. Wudl, L., and Chapman, V. 1976. The expression of /3-glucuronidase during preimplantation development of mouse embryos. Dev. Biol. 48: 104–109.PubMedGoogle Scholar
  358. Yasbin, R., Sawicki, J., and Maclntyre, R. J. 1978. A developmental study of acid phosphatase — 1 in Drosophila melanogaster. Dev. Biol. 63: 35–46.PubMedGoogle Scholar
  359. Yasumasu, I. 1960. Quantitative determination of hatching enzyme activity of the sea urchin blastulae. J. Fac. Sci. Univ. Tokyo Ser. 49: 39–47.Google Scholar
  360. Yasumasu, I. 1963. Inhibition of the hatching enzyme formation during embryogenesis of the sea urchin by chloramphenicol, 8-aza-guanine, and 5-bromo-uracil. Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 13: 211–246.Google Scholar
  361. Youn, B. W., and Malacinski, G. M. 1981. Axial structure development in ultraviolet-irradiated (notochord-defective) amphibian embryos. Dev. Biol. 83: 339–352.PubMedGoogle Scholar
  362. Young, E. M., and Raff, R. A. 1979. Messenger RNP particles in developing sea urchin embryos. Dev. Biol. 72: 24–40.PubMedGoogle Scholar
  363. Yurowitzky, Y. G., and Milman, L. S. 1972. Changes in enzyme metabolism during oocyte maturation in a teleost Misgurnus fossilis. Wilhelm Roux Arch. Dev. Biol. 171: 48–54.Google Scholar
  364. Zalokar, M., and Erk, I. 1976. Division and migration of nuclei during early embryogenesis of Drosophila melanogaster. J. Microsc. Biol. Cell 25: 97–106.Google Scholar
  365. Zeikus, J. G., Taylor, M. W., and Buck, C. A. 1969. Transfer RNA changes associated with early development and differentiation of the sea urchin, Strongylocentrotus purpuratus. Exp. Cell Res. 57: 74–78.PubMedGoogle Scholar
  366. Zybina, E. V. 1961. Endomitosis and polyteny of trophoblast giant cells. Dokl. Akad. Nauk SSSR 140: 1177–1180 (in Russian).Google Scholar
  367. Zybina, E. V. 1963. Cytophotometric determination of DNA content in nuclei of trophoblast giant cells. Dokl. Acad. Nauk SSSR 153: 1428–1431 (in Russian).Google Scholar
  368. Zybina, E. V. 1970. Anomalies of polyploidization of the cells of the trophoblast. Tsitologiya 12: 1081–1091 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations