Skip to main content

Gene Action Changes during Fertilization

  • Chapter
Book cover The Inconstant Gene
  • 31 Accesses

Abstract

Once the two types of gametes have completed the necessary maturation steps, they are capable of uniting to form a zygote and initiating embryogenesis. As may be suspected from the complexity just observed in the steps of generating the eggs and sperm, neither the union of those gametes nor the formation of the embryo is a simple event, with little variation from taxon to taxon; rather, both are as complex and varied as the major groups of organisms themselves. Yet a number of features common to all are found to pervade most of the sexually reproducing biotic world. Because of their abundance, size, ease of culture, synchronous division, and other favorable attributes, echinoderm eggs have provided the basis for the great bulk of the investigations into these phases of development, but studies on vertebrates and metaphytans have served to enrich the literature to a considerable extent. In the present chapter, the penetration of the sperm into the ovum and related events are followed, while the development of the early embryonic stages and then their subsequent differentiation are the respective provinces of the following two chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adesnik, M., Salditt, M., Thomas, W., and Darnell, J. E. 1972. Evidence that all mRNA molecules (except histone mRNA) contain poly(A) sequences and that the poly(A) has a nuclear function. J. Mol. Biol. 71: 21–30.

    PubMed  CAS  Google Scholar 

  • Afzelius, B. A. 1956. The ultrastructure of the cortical granules and their products in the sea urchin egg as studied with the electron microscope. Exp. Cell Res. 30: 93–97.

    Google Scholar 

  • Afzelius, B. A. 1972a. Reactions of the sea urchin oocyte to foreign spermatozoa. Exp. Cell Res. 72: 25–33.

    PubMed  CAS  Google Scholar 

  • Afzelius, B. A. 1972b. Ultrastructure of species-foreign spermatozoa after penetrating the sea urchin oocyte. Acta Embryol. Exp. 1972: 123–133.

    Google Scholar 

  • Aketa, K., Bianchetti, R., Marri, É., and Monroy, A. 1964. Hexose monophosphate level as a limiting factor for respiration in unfertilized sea urchin eggs. Biochim. Biophys. Acta 86: 211–215.

    PubMed  CAS  Google Scholar 

  • Allen, R. D. 1954. Fertilization and activation of sea urchin eggs in glass capillaries. Exp. Cell Res. 9: 157–167.

    Google Scholar 

  • Anderson, E. 1968. Oocyte differentiation in the sea urchin, Arbacia punctulata, with particular reference to the origin of the cortical granules and their participation in the cortical reaction. J. Cell Biol. 37: 514–539.

    PubMed  CAS  Google Scholar 

  • Anderson, W. A. 1969. Nuclear and cytoplasmic DNA synthesis during early embryogenesis of Paracentrotus lividus. J. Ultrastruct. Res. 26: 95–110.

    PubMed  CAS  Google Scholar 

  • Austin, C. R. 1961. The Mammalian Egg, Oxford, Blackwell.

    Google Scholar 

  • Austin, C. R. 1965. Fertilization, Englewood Cliffs, N.J., Prentice-Hall.

    Google Scholar 

  • Austin, C. R., and Walton, A. 1960. Fertilisation. In: Parkes, A. S., ed., Marshall’s Physiology of Reproduction, New York, Longmans, Green, Vol. 1, pp. 310–416.

    Google Scholar 

  • Baca, M., and Zamboni, L. 1967. The fine structure of human follicular oocytes. J. Ultrastruct. Res. 19: 354–381.

    PubMed  CAS  Google Scholar 

  • Bagshaw, J. C., Acey, R., Helder, J. C., and Talley-Brown, S. J. 1980. RNA polymerases and transcriptional switches in developing Artemia. In: Persoone, G., Sorgeloos, P., Roels, O., and Jaspers, E., eds., The Brine Shrimp Artemia, Wetteren, Belgium, Universa Press,Vol. 2.

    Google Scholar 

  • Ballinger, D. G., and Hunt, T. 1981. Fertilization of sea urchin eggs is accompanied by 40 S ribosomal subunit phosphorylation. Dev. Biol. 87: 277–285.

    PubMed  CAS  Google Scholar 

  • Bataillon, E., and Su, T. 1930. Études analytiques et expérimentales sur les rhythmes cinétiques dans l’oeuf. Arch. Biol. 40: 441–540.

    Google Scholar 

  • Bedford, J. M. 1968. Ultrastructural changes in the sperm head during fertilization in the rabbit. Am. J. Anat. 123: 329–358.

    PubMed  CAS  Google Scholar 

  • Bedford, J. M. 1972. An EM study of sperm penetration into the rabbit egg after natural mating. Am. J. Anat. 133: 213–254.

    PubMed  CAS  Google Scholar 

  • Bedford, J. M., and Cooper, G. W. 1978. Membrane fusion events in the fertilization of vertebrate eggs. In: Poste, G., and Nicolson, G. L., eds., Membrane Fusion, Amsterdam, Elsevier/North-Holland, pp. 65–125.

    Google Scholar 

  • Bedford, J. M., and Cross, N. L. 1978. Normal penetration of rabbit spermatozoa through a trypsin- and acrosin-resistant zona pellucida. J. Reprod. Fertil. 54: 385–392.

    PubMed  CAS  Google Scholar 

  • Bendich, A., Borenfreund, E., and Sternberg, S. S. 1974. Penetration of somatic mammalian cells by sperm. Science 183: 857–859.

    PubMed  CAS  Google Scholar 

  • Black, R. E., Baptist, E., and Piland, J. 1967. Puromycin and cycloheximide inhibition of thymidine incorporation into the DNA of sea urchin eggs. Exp. Cell Res. 48: 431–439.

    PubMed  CAS  Google Scholar 

  • Blakeslee, A. F. 1904. Sexual reproduction in the Mucorineae. Proc. Am. Acad. Arts Sci. 40: 206–319.

    Google Scholar 

  • Blankstein, L. A., and Kiefer, B. I. 1977. The relation of DNA and protein synthesis to the meiotic-mitotic transition in the zygote of Urechis caupo. Dev. Biol. 61: 1–10.

    PubMed  CAS  Google Scholar 

  • Bleil, J. D., and Wassarman, P. M. 1981. Mammalian sperm-egg interaction: Identification of aglycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm. Cell 20:873–882.

    Google Scholar 

  • Boveri, T. 1888. Über partielle Befruchtung. Ber. Naturforsch. Ges. Freiburg im Breisgau 4: 64–72.

    Google Scholar 

  • Boveri, T. 1903. Über den Einfluss der Samenzellen auf die Larvencharactere der Echiniden. Wilhelm Roux Arch. Entwicklungsmech. Org. 16: 340–362.

    Google Scholar 

  • Britckov, E. A. 1952. Über einige Besonderheiten der Pollenkeimung und das Wachstum der Pollenschläuche in den Fruchtblattgeweben. Dokl. Akad. Nauk SSSR Ser. Biol. 1: 121–134.

    Google Scholar 

  • Brummett, A. R., and Dumont, J. N. 1981. Cortical vesicle breakdown in the fertilized eggs of Fundulus heteroclitus. J. Exp. Zool. 216: 63–79.

    PubMed  CAS  Google Scholar 

  • Burgess, D. R., and Schroeder, T. E. 1977. Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs. J. Cell Biol. 74: 1032–1037.

    PubMed  CAS  Google Scholar 

  • Chambers, E. L. 1939. The movement of the egg nucleus in relation to the sperm aster in the echinoderm egg. J. Exp. Biol. 16: 409–424.

    Google Scholar 

  • Chambers, R. 1933. The manner of sperm entry in various marine ova. J. Exp. Biol. 10: 130–141.

    Google Scholar 

  • Clark, W. H., Lynn, J. W., Yudin, A. I., and Persyn, H. O. 1980. Morphology of the cortical reaction in the eggs of Penaeus aztecus. Biol. Bull. 158: 175–186.

    Google Scholar 

  • Colwin, A. L., and Colwin, L. H. 1955. Sperm entry and the acrosome filament (Holothuria atra and Asterias amurensis). J. Morphol. 97: 543–568.

    Google Scholar 

  • Colwin, A. L., and Colwin, L. H. 1961. Changes in the spermatozoan during fertilization in Hydroides hexagonus (Annelida). 2. Incorporation with the egg. J. Biophys. Biochem. Cytol. 10: 255–274.

    PubMed  CAS  Google Scholar 

  • Colwin, A. L., and Colwin, L. H. 1963. Role of the gamete membranes in fertilization in Sacco- glossus kowalevskii (Enteropneusta). 1. The acrosomal region and its changes in early stages of fertilization. J. Cell Biol. 19: 477–500.

    PubMed  CAS  Google Scholar 

  • Colwin, A. L., and Colwin, L. H. 1964. Role of the gamete membranes in fertilization. In: Lake, M., ed., Symposium on Cellular Membranes in Development, New York, Academic Press, pp. 233–279.

    Google Scholar 

  • Colwin, L. H., and Colwin, A. L. 1956. The acrosome filament and sperm entry in Thyone briareus (Holothuria) and Asterias. Biol. Bull. 110: 243–255.

    Google Scholar 

  • Colwin, L. H., and Colwin, A. L. 1961. Changes in the spermatozoan during fertilization in Hydroides hexagonus (Annelida). 1. Passage of the acrosomal region through the vitelline membrane. J. Biophys. Biochem. Cytol. 10: 231–254.

    PubMed  CAS  Google Scholar 

  • Colwin, L. H., and Colwin, A. L. 1963. Role of the gamete membranes in fertilization of Sacco- glossus kowalevskii (Enteropneusta). II. Zygote formation by gamete membrane fusion. J. Cell Biol. 19: 501–518.

    PubMed  CAS  Google Scholar 

  • Colwin, L. H., and Colwin, A. L. 1967. Membrane fusion in relation to sperm-egg association. In: Metz, C. B., and Monroy, A., eds., Fertilization, New York, Academic Press, Vol. 1, pp. 295–367.

    Google Scholar 

  • Cooper, D. C. 1940. Macrosporogenesis and embryology of the seed of Phryma leptostachya. Am. J. Bot. 28: 755–761.

    Google Scholar 

  • Cooperstein, S. J. 1963. Reversible inactivation of cytochrome oxidase by disulphide bond reagents. Anat. Anz. 19: 280–287.

    Google Scholar 

  • Dan, J. C., Ohori, Y., and Kushida, H. 1964. Studies on the acrosome. VII. Formation of the acrosomal process in sea urchin spermatozoa. J. Ultrastruct. Res. 11: 508–524.

    PubMed  CAS  Google Scholar 

  • Darnell, J. E., Jelinek, W. R., and Molloy, G. R. 1973. Biogenesis of mRNA: Genetic regulation in mammalian cells. Science 181: 1215–1221.

    PubMed  CAS  Google Scholar 

  • Das, N. K., and Barker, C. 1976. Mitotic chromosome condensation in the sperm nucleus during postfertilization maturation division in Urechis eggs. J. Cell Biol. 68: 155–159.

    PubMed  CAS  Google Scholar 

  • Dewel, W. C., and Clark, W. H. 1974. A fine structural investigation of surface specializations and the cortical reaction of the cnidarian Bunodosoma cavernata. J. Cell Biol. 60: 78–91.

    PubMed  CAS  Google Scholar 

  • Dillon, L. S. 1981. Ultrastructure, Macromolecules, and Evolution, New York, Plenum Press.

    Google Scholar 

  • Dworkin, M. B., and Infante, A. A. 1978. RNA synthesis in unfertilized sea urchin eggs. Dev. Biol. 62: 247–257.

    PubMed  CAS  Google Scholar 

  • Eddy, E. M., and Shapiro, B. M. 1976. Changes in the topography of the sea urchin egg after fertilization. J. Cell. Biol. 71: 35–48.

    PubMed  CAS  Google Scholar 

  • Egrie, J. C., and Wilt, F. H. 1979. Changes in poly(A) polymerase activity during sea urchin embryogenesis. Biochemistry 18: 269–274.

    PubMed  CAS  Google Scholar 

  • Ellinger, M. S. 1978. The cell cycle and transplantation of blastula nuclei in Bombina orientalis. Dev. Biol. 65: 81–89.

    PubMed  CAS  Google Scholar 

  • Ellinger, M. S., and Carlson, J. T. 1978. Nuclear transplantation in Bombina orientalis and utilization of the pale mutation as a nuclear marker. J. Exp. Zool. 205: 353–359.

    PubMed  CAS  Google Scholar 

  • Endo, Y. 1961. Changes in the cortical layer of sea urchin eggs at fertilization as studied with the electron microscope. I. Clypeaster japonicus. Exp. Cell Res. 25: 383–397.

    PubMed  CAS  Google Scholar 

  • Epel, D. 1967. Protein synthesis in sea urchin eggs: A “late” response to fertilization. Proc. Natl. Acad. Sci. USA 57: 889–906.

    Google Scholar 

  • Epel, D., Steinhardt, R. A., Humphreys, T., and Mazia, D. 1974. An analysis of the parietal metabolic derepression of sea urchin eggs by ammonia: The existence of independent pathways. Dev. Biol. 40: 245–255.

    PubMed  CAS  Google Scholar 

  • Flemming, W. 1881. Beiträge zur Kenntnis der Zelle und ihrer Lebenserscheinung. 3. Arch. Mikrosk. Anat. Entwicklungsmech. 20: 1–86.

    Google Scholar 

  • Fol, H. 1879. Recherches sur la fécondation et le commencement de l’hénogenie chez diverts animaux. Mem. Soc. Phys. Hist. Nat. Genève 26: 89–250.

    Google Scholar 

  • Ford, C. C., and Woodland, H. R. 1975. DNA synthesis in oocytes and eggs of Xenopus laevis injected with DNA. Dev. Biol. 43: 189–199.

    PubMed  CAS  Google Scholar 

  • Gabara, B., Gledhill, B. L., Croce, C. M., Cesarini, J. P., and Koprowski, H. 1973. Ultrastructure of rabbit spermatozoa after treatment with lysolecithin and in the presence of hamster somatic cells (37482). Proc. Soc. Exp. Biol. Med. 143: 1120–1124.

    PubMed  CAS  Google Scholar 

  • Gerassimova-Navashina, H. 1960. A contribution to the cytology of fertilization in flowering plants. Nucleus (Calcutta) 3: 111–120.

    Google Scholar 

  • Gerassimova-Navashina, H. 1961. Fertilization and events leading up to fertilization, and their bearing on the origin of angiosperms. Phytomorphology 11: 139–146.

    Google Scholar 

  • Giard, A. 1900. A propos de la parthénogénèse artificielle des oeufs d’echinodérmes. C. R. Soc. Biol. 52: 761–764.

    Google Scholar 

  • Giudice, G. 1973. Developmental Biology of the Sea Urchin Embryo, New York, Academic Press.

    Google Scholar 

  • Giudice, G., Vitorelli, M. L., and Monroy, A. 1962. Investigations on the protein metabolism during the early development of the sea urchin. Acta Embryol. Morphol. Exp. 5: 113–122.

    Google Scholar 

  • Gledhill, B. L., Sawicki, W., Croce, C. M., and Koprowski, H. 1972. DNA synthesis in rabbit spermatozoa after treatment with lysolecithin and fusion with somatic cells. Exp. Cell Res. 73: 33–40.

    PubMed  CAS  Google Scholar 

  • Graham, C. F. 1966. The regulation of DNA synthesis and mitosis in multinucleate frog eggs. J. Cell Sci. 1: 363–374.

    PubMed  CAS  Google Scholar 

  • Grainger, J. L., Winkler, M. M., Shen, S. S., and Steinhardt, R. A. 1979. Intracellular pH controls protein synthesis rate in the sea urchin egg and early embryo. Dev. Biol. 68: 396–406.

    PubMed  CAS  Google Scholar 

  • Grey, R. D., Wolf, D. P., and Hedrick, J. L. 1974. Formation and structure of the fertilization envelope in Xenopus laevis. Dev. Biol. 36: 44–61.

    PubMed  CAS  Google Scholar 

  • Griffin, B. 1975. “Enigma variations” of mammalian mRNA. Nature (London) 255:9.

    Google Scholar 

  • Gulyas, B. J. 1974. Cortical granules in artificially activated (parthenogenetic) rabbit eggs. Am. J. Anat. 140: 577–582.

    PubMed  CAS  Google Scholar 

  • Gulyas, B. J. 1976. Ultrastructural observations on rabbit, hamster and mouse eggs following electrical stimulation in vitro. Am. J. Anat. 147: 203–218.

    PubMed  CAS  Google Scholar 

  • Gulyas, B. J. 1980. Cortical granules of mammalian eggs. Int. Rev. Cytol. 63: 357–392.

    PubMed  CAS  Google Scholar 

  • Gurdon, J. B. 1961. The transplantation of nuclei between two subspecies of Xenopus laevis. Heredity 16: 305–315.

    Google Scholar 

  • Gurdon, J. B. 1968. Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J. Embryol. Exp. Morphol. 20: 401–414.

    PubMed  CAS  Google Scholar 

  • Gurdon, J. B. 1974. The Control of Gene Expression in Animal Development, Cambridge, Mass., Harvard University Press.

    Google Scholar 

  • Gurdon, J. B. 1975. Nuclear transplantation and the cyclic reprogramming of gene expression. In: Reinert, J., and Holtzer, H., eds., Cell Cycle and Cell Differentiation, Berlin, Springer- Verlag, pp. 123 - 131.

    Google Scholar 

  • Gurdon, J. B. 1976. The pluripotentiality of cell nuclei. In: Graham, C. F., and Wareing, P. F., eds., The Developmental Biology of Plants and Animals, Oxford, Blackwell, pp. 55–63.

    Google Scholar 

  • Hadek, R. 1963. Submicroscopic changes in the penetrating spermatozoan of the rabbit. J. Ultrastruct. Res. 8: 161–169.

    PubMed  CAS  Google Scholar 

  • Hara, K. 1971. Cinematographic observation of “surface contraction waves” during the early cleavage of axolotl eggs. Wilhelm Roux Arch. Dev. Biol. 167: 183–186.

    Google Scholar 

  • Hara, K., and Tydeman, P. 1979. Cinematographic observation of an “activation wave” (AW) on the locally inseminated eggs of Xenopus laevis. Wilhelm Roux Arch. Dev. Biol. 186: 91–94.

    Google Scholar 

  • Hara, K., Tydeman, P., and Hengst, R. T. M. 1977. Cinematographic observation of “post- fertilization” waves (PFW) on the zygote of Xenopus laevis. Wilhelm Roux Arch. Dev. Biol. 181: 189–192.

    Google Scholar 

  • Hara, K., Tydeman, P., and Kirschner, M. 1980. A cytoplasmic clock with the same period as the division cycle in Xenopus eggs. Proc. Natl. Acad. Sci. USA 77: 462–466.

    PubMed  CAS  Google Scholar 

  • Harris, H. 1974. Nucleus and Cytoplasm, 3rd ed., London, Oxford University Press (Clarendon).

    Google Scholar 

  • Harris, P. 1979. A spiral cortical fiber system in fertilized sea urchin eggs. Dev. Biol. 68: 525–532.

    PubMed  CAS  Google Scholar 

  • Harris, P., Osborn, M., and Weber, K. 1980a. Distribution of tubulin containing structures in the egg of the sea urchin Strongylocentrotus purpuratus from fertilization through first cleavage. J. Cell Biol. 84: 668–679.

    PubMed  CAS  Google Scholar 

  • Harris, P., Osborn, M., and Weber, K. 1980b. A spiral array of microtubules in the fertilized sea urchin egg cortex examined by indirect immunofluorescence and electron microscopy. Exp. Cell Res. 126: 227–236.

    PubMed  CAS  Google Scholar 

  • Hartmann, J. F., and Hutchison, C. F. 1981. Modulation of fertilization in vitro by peptides released during hamster sperm-zona pellucida interaction. Proc. Natl. Acad. Sci. USA 78: 1690–1694.

    PubMed  CAS  Google Scholar 

  • Hartmann, M. 1934. Untersuchungen über die Sexualität von Ectocarpus siliculosus. Arch. Protistenkd. 83: 110–153.

    Google Scholar 

  • Hathaway, R. R. 1959. The effect of sperm on 35S-labelled Arbacia fertilizin. Biol. Bull. 117: 395.

    Google Scholar 

  • Hathaway, R. R. 1963. Activation of respiration in sea urchin spermatozoa by egg water. Biol. Bull. 125: 486–498.

    Google Scholar 

  • Hathaway, R. R., and Metz, C. B. 1961. Interaction between Arbacia sperm and S35-labelled fertilizin. Biol. Bull. 120: 360–369.

    Google Scholar 

  • Hertwig, P. 1936. Artbastarde bei Tieren. In: Baur, E., and Hartmann, M., eds., Handbuch der Vererbungswissenschaft, Berlin, Verlag Gebr. Borntraeger, Vol. IIB.

    Google Scholar 

  • Hickey, E. D., Weber, L. A., and Baglioni, C. 1976. Translation of RNA from unfertilized sea urchin eggs does not require methylation and is inhibited by 7-methyl-guanosine-5-monophosphate. Nature (London) 261: 71–73.

    CAS  Google Scholar 

  • Hiromoto, Y. 1962. Microinjection of the live spermatozoa into sea urchin eggs. Exp. Cell Res. 27: 416–426.

    Google Scholar 

  • Hoffner, N. J., and DiBerardino, M. A. 1980. Developmental potential of somatic nuclei transplanted into meiotic oocytes of Rana pipiens. Science 209: 517–519.

    PubMed  CAS  Google Scholar 

  • Hudinaga, M. 1942. Reproduction, development, and rearing of Pennaeus japonicus Bate. Jpn. J. Zoo I. 10: 305–393.

    Google Scholar 

  • Hultin, T. 1952. Incorporation of 15N-labelled glycine and alanine into the proteins of developing sea urchin eggs. Exp. Cell Res. 3: 494–496.

    CAS  Google Scholar 

  • Hultin, T. 1953a. The amino acid metabolism of sea urchin embryos studied by means of N15- labelled ammonium chloride and alanine. Ark. Kemi 5: 543–552.

    CAS  Google Scholar 

  • Hultin, T. 1953b. Incorporation of N15-di-alanine into protein fractions of sea urchin embryos. Ark. Kemi 5: 559–564.

    CAS  Google Scholar 

  • Humphreys, T. 1971. Measurement of mRNA entering polysomes upon fertilization of sea urchin eggs. Dev. Biol. 26: 201–208.

    PubMed  CAS  Google Scholar 

  • Hunter, R. H. F. 1967. Polyspermic fertilization in pigs during the luteal phase of the estrous cycle. J. Exp. Zool. 165: 451–460.

    PubMed  CAS  Google Scholar 

  • Hutner, S. H., and Provasoli, L. 1951. The phytoflagellates. In: Lwoff, A., ed., Biochemistry and Physiology of Protozoa, New York, Academic Press, pp. 27–128.

    Google Scholar 

  • Illmensee, K. 1972. Developmental potencies of nuclei from cleavage, preblastoderm and syncytial blastoderm transplanted into unfertilized eggs of Drosophila melanogaster. Wilhelm Roux Arch. Dev. Biol. 170: 267–298.

    Google Scholar 

  • Immers, J. 1961. The occurrence of sulphated mucopolysaccharide in the perivitelline liquid of Echinus esculentus. Ark. Zool. 13: 299–306.

    CAS  Google Scholar 

  • Ito, S. 1962. Resting potential and activation potential of the Oryzias egg. Embryologia 7: 47–55.

    Google Scholar 

  • Iwamatsu, T., and Ohta, T. 1978. EM observation on sperm penetration and pronuclear formation in thefish egg. J. Exp. Zool. 205: 157–180.

    PubMed  CAS  Google Scholar 

  • Jaffe, L. A., and Robinson, K. R. 1978. Membrane potential of the unfertilized sea urchin egg. Dev. Biol. 62: 215–228.

    PubMed  CAS  Google Scholar 

  • Jensen, W. A. 1965. The ultrastructure and histochemistry of the synergids of cotton. Am. J. Bot. 52: 238–256.

    PubMed  CAS  Google Scholar 

  • Johnson, J. D., Epel, D., and Paul, M. 1976. Intracellular pH and activation of sea urchin eggs after fertilization. Nature (London) 262: 661–664.

    CAS  Google Scholar 

  • Kane, R. E. 1970. Direct isolation of the hyaline layer protein released from cortical granules of the sea urchin egg at fertilization. J. Cell Biol. 45: 615–622.

    PubMed  CAS  Google Scholar 

  • Kane, R. E., and Hersh, R. T. 1959. The isolation and preliminary characterization of a major soluble protein of the sea urchin egg. Exp. Cell Res. 16: 59–69.

    PubMed  CAS  Google Scholar 

  • Kao, C. Y. 1955. Changing electrical constants of the Fundulus egg surface. Biol. Bull. 109: 361.

    Google Scholar 

  • Kapil, R. N., and Vasil, I. K. 1963. Ovule. In: Maheshwari, P., ed., Recent Advances in Embryology of Angiosperms, Delhi, International Society of Plant Morphologists, pp. 41–67.

    Google Scholar 

  • Katagiri, C. 1974. A high frequency of fertilization in premature and mature coelomic toad eggs after enzymic removal of vitelline membrane. J. Embryol. Exp. Morphol. 31: 573–587.

    PubMed  CAS  Google Scholar 

  • Katagiri, C., and Moriya, M. 1976. Spermatozoan response to the toad egg matured after removal of the germinal vesicle. Dev. Biol. 50: 235–241.

    PubMed  CAS  Google Scholar 

  • Kaumeyer, J. F., Jenkins, N. A., and Raff, R. A. 1978. Messenger RNP particles in unfertilized sea urchin eggs. Dev. Biol. 63: 266–278.

    PubMed  CAS  Google Scholar 

  • Kòhler, E. 1930. Beobachtungen und Zoosporenaufschwemmungen von Synchytrium endobioticum (Schilb.) Pere. Zentralbl. Bakteriol. Parasitenkd. Infekfionskr. Hyg. (2) 82: 1–10.

    Google Scholar 

  • Kopecny, V., and Fléchon, J. E. 1981. Fate of acrosomal glycoproteins during the acrosomal reaction and fertilization: A light and electron microscope autoradiographic study. Biol. Reprod. 24: 201–216.

    PubMed  CAS  Google Scholar 

  • Koyanagi, F., and Nishiyama, H. 1980. Phagocytosis of spermatozoa by the ovum of the domestic fowl, Gallus gallus, at the time of fertilization. Cell Tissue Res. 206: 55–63.

    PubMed  CAS  Google Scholar 

  • Krane, S. M., and Crane, R. K. 1960. Changes in levels of triphosphopyridine nucleotide in marine eggs subsequent to fertilization. Biochim. Biophys. Acta 43: 369–373.

    PubMed  CAS  Google Scholar 

  • Krishna, M., and Generoso, W. M. 1977. Timing of sperm penetration, pronuclear formation, pronuclear DNA synthesis, and first cleavage in naturally ovulated mouse eggs. J. Exp. Zool. 202: 245–252.

    PubMed  CAS  Google Scholar 

  • Krystal, G. W., and Poccia, D. 1979. Control of chromosome condensation in the sea urchin egg. Exp. Cell Res. 123: 207–219.

    PubMed  CAS  Google Scholar 

  • Kunkle, M., Longo, F. J., and Magun, B. E. 1978a. Nuclear protein changes in the maternally and paternally derived chromatin at fertilization. J. Exp. Zool. 203: 371–380.

    PubMed  CAS  Google Scholar 

  • Kunkle, M., Magun, B. E., and Longo, F. J. 1978b. Analysis of isolated sea urchin nuclei incubated in egg cytosol. J. Exp. Zool. 203: 381–390.

    CAS  Google Scholar 

  • Kusano, S. 1931. The life-history and physiology of Synchytrium fulgens Schroet., with special reference to its sexuality. Jpn. J. Bot. 5: 35–132.

    Google Scholar 

  • Laser, H., and Rothschild, L. 1939. The metabolism of the eggs of Psammechinus miliaris during the fertilization reaction. Proc. R. Soc. London Ser. B 126: 539–557.

    CAS  Google Scholar 

  • Lewin, R. 1950. Gamete behaviour in Chlamydomoncis. Nature (London) 166: 76.

    CAS  Google Scholar 

  • Lillie, F. R. 1913. Studies of fertilization. 5. The behavior of the spermatozoa of Nereis and Arbacia with special reference to egg-extractives. J. Exp. Zool. 14: 515–574.

    CAS  Google Scholar 

  • Lillie, F. R. 1914. Studies on fertilization. 6. The mechanism of fertilization in Arbacia. J. Exp. Zool. 16: 523–590.

    CAS  Google Scholar 

  • Linskens, H. F. 1969. Fertilization mechanisms in higher plants. In: Metz, C. B., and Monroy, A., eds., Fertilization, New York, Academic Press, Vol. 2, pp. 189–253.

    Google Scholar 

  • Litchfield, J. B., and Whiteley, A. H. 1959. Studies on the mechanism of phosphate accumulation by sea urchin embryos. Biol. Bull. 117: 133–149.

    CAS  Google Scholar 

  • Longo, F. J. 1973a. Fertilization: A comparative ultrastructural review. Biol. Reprod. 9: 149–215.

    PubMed  CAS  Google Scholar 

  • Longo, F. J. 1973b. An ultrastructural analysis of polyspermy in the surf clam, Spisula solidissima. J. Exp. Zool. 183: 153–180.

    PubMed  CAS  Google Scholar 

  • Longo, F. J. 1976a. Derivation of the membrane comprising the male pronuclear envelope in inseminated sea urchin eggs. Dev. Biol. 49: 347–368.

    PubMed  CAS  Google Scholar 

  • Longo, F. J. 1976b. An ultrastructural study of cross-fertilization [Arbacia Mytilus]. J. Cell Biol. 73: 14–26.

    Google Scholar 

  • Longo, F. J. 1978. Insemination of immature sea urchin (Arbacia punctulata) eggs. Dev. Biol. 62: 271–291.

    PubMed  CAS  Google Scholar 

  • Longo, F. J. 1980. Organization of microfilaments in sea urchin (Arbacia punctulata) eggs at fertilization: Effects of cytochalasin B. Dev. Biol. 74: 422–433.

    PubMed  CAS  Google Scholar 

  • Longo, F. J., and Kunkle, M. 1977. Synthesis of RNA by male pronuclei of fertilized sea urchin eggs. J. Exp. Zool. 201: 431.

    PubMed  CAS  Google Scholar 

  • Longo, F. J., and Kunkle, M. 1978. Transformations of sperm nuclei upon insemination. Curr. Top. Dev. Biol. 12: 149–184.

    PubMed  CAS  Google Scholar 

  • Longo, F. J., and Plunkett, W. 1973. The onset of DNA synthesis and its relation to morphoge- netic events of the pronuclei in activated eggs of the sea urchin, Arbacia punctulata. Dev. Biol. 30: 56–67.

    PubMed  CAS  Google Scholar 

  • Lovett, J. A., and Goldstein, E. S. 1977. The cytoplasmic districution and characterization of poly (A)+ RNA in oocytes and embryos of Drosophila. Dev. Biol. 61: 70–78.

    PubMed  CAS  Google Scholar 

  • McBlaine, P. J., and Carroll, E. J. 1980. Sea urchin egg hyaline layer: Evidence for the localiza¬tion of hyaline on the unfertilized egg surface. Dev. Biol. 75: 137–147.

    PubMed  CAS  Google Scholar 

  • Machlis, L. 1958a. Evidence for a sexual hormone in Allomyces. Physiol. Plant. 11: 181–192.

    CAS  Google Scholar 

  • Machlis, L. 1958b. A procedure for the purification of sirenin. Nature (London) 181: 1790–1791.

    CAS  Google Scholar 

  • Machlis, L. 1963. In: Hisaw, F. L., ed., Physiology of Reproduction, Corvallis, Oregon State University Press, p. 79.

    Google Scholar 

  • Machlis, L., and Rawitscher-Kunkel, E. 1967. Mechanisms of gametic approach in plants. In: Metz, C. B., and Monroy, A., eds., Fertilization, New York, Academic Press, Vol. 1, pp. 117–161.

    Google Scholar 

  • Machlis, L., Nutting, W. H., Williams, M. W., and Rapoport, H. 1966. Production, isolation, and characterization of sirenin. Biochemistry 5: 2147–2152.

    PubMed  CAS  Google Scholar 

  • Maeno, T., Monta, H., and Kuwabara, M. 1956. Potential measurements on the eggs of Japanese killifish, Oryzias latipes. Mem. Fac. Sci. Kyushu Univ. E2: 87–94.

    Google Scholar 

  • Maggio, R., and Monroy, A. 1959. An inhibitor of cytochrome oxidase activity in the sea urchin egg. Nature (London) 184: 68–69.

    CAS  Google Scholar 

  • Maheshwari, P. 1950. Introduction to the Embryology of the Angiosperms, New York, McGraw- Hill.

    Google Scholar 

  • Mainx, F. 1931. Gametencopulation und Zygoten keimung bei Hydrodictyon reticulatum. Arch. Protistenkd. 75: 502–516.

    Google Scholar 

  • Mar, H. 1980. Radial cortical fibers and pronuclear migration in fertilized and artificially activated eggs of Lytechinus pictus. Dev. Biol. 78: 1–13.

    PubMed  CAS  Google Scholar 

  • Marchand, B., and Mattei, X. 1976. Présence de flagelles spermatiques dans les sphères ovariennes des Eoacanthocéphales. J. Ultrastruct. Res. 56: 331–338.

    PubMed  CAS  Google Scholar 

  • Marchand, B., and Mattei, X. 1979. La fécondation chez les Acanthocéphales. I. Modifications ultrastructurales des sphères ovariennes et des spermatozoides après insémination des femelles de l’AcanthocéphaleNeoechinorhynchus agilis. J. Ultrastruct. Res. 66: 32–39.

    PubMed  CAS  Google Scholar 

  • Marchand, B., and Mattei, X. 1980. Fertilization in Acanthocephala. II. Spermatozoon penetration of oocyte, transformation of gametes and elaboration of the fertilization membrane. J. Submicrosc. Cytol. 12: 95–105.

    Google Scholar 

  • Mascarenhas, J. P., and Machlis, L. 1962. Chemotropic response of Antirrhinum majus pollen to calcium. Nature (London) 196: 292–293.

    CAS  Google Scholar 

  • Mazia, D. 1937. The release of calcium in Arbacia eggs on fertilization. J. Cell. Comp. Physiol. 10: 291–304.

    CAS  Google Scholar 

  • Mazia, D., Schatten, G., and Steinhardt, R. 1975. Turning on of activities in unfertilized eggs: Correlation with changes of the surface. Proc. Natl. Acad. Sci. USA 72: 4469–4473.

    PubMed  CAS  Google Scholar 

  • Metz, C. B. 1978. Sperm and egg receptors involved in fertilization. Curr. Top. Dev. Biol. 12: 107–147.

    PubMed  CAS  Google Scholar 

  • Meyerhof, P. G., and Masui, Y. 1979. Chromosome condensation activity in Rana pipiens eggs matured in vivo and in blastomeres arrested by cytostatic factors (CSF). Exp. Cell Res. 123: 345–353.

    PubMed  CAS  Google Scholar 

  • Miceli, D. C., del Pino, E. J., Barbieri, F. D., Mariano, M. I., and Raisman, J. S. 1977. The vitelline envelope-to-fertilization envelope transformation in the toad Bufo arenarum. Dev. Biol. 59: 101–110.

    PubMed  CAS  Google Scholar 

  • Miller, R. L. 1966. Chemotaxis during fertilization in the hydroid Campanularia. J. Exp. Zool. 162: 23–44.

    PubMed  CAS  Google Scholar 

  • Miller, R. L. 1974. Sperm behavior close to Hydractinia and Ciona eggs. Am. Zool. 14: 1250.

    Google Scholar 

  • Miller, R. L. 1977. In: Adiyodi, K. G., and Adiyodi, P. G., eds., Advances in Invertebrate Reproduction, Karivellur, India, Peralana-Kenoth, Vol. 1, pp. 99–119.

    Google Scholar 

  • Miller, R. L., and Nelson, L. 1962. Evidence of a chemotactic substance in the female gonangium of Campanularia. Biol. Bull. 123: 422.

    Google Scholar 

  • Miller, R. L., and Tseng, C. Y. 1974. Properties and partial purification of the sperm attractant of Tubularia. Am. Zool. 14: 467–486.

    CAS  Google Scholar 

  • Monroy, A. 1965. Chemistry and Physiology of Fertilization, New York, Holt, Rinehart amp; Winston.

    Google Scholar 

  • Monroy, A., and Tyler, A. 1963. Formation of active ribosomal aggregates (polysomes) upon fertilization and development of sea urchin eggs. Arch. Biochem. Biophys. 103: 431–435.

    PubMed  CAS  Google Scholar 

  • Monroy, A., and Vittorelli, M. L. 1962. Utilization of 14C-glucose for amino acids and protein synthesis by the sea urchin embryo. J. Cell. Comp. Physiol. 60: 285–288.

    PubMed  CAS  Google Scholar 

  • Monroy Oddo, A. 1946. Variations in Ca and Mg contents in Arbacia eggs as a result of fertilization. Experientia 2: 371–372.

    CAS  Google Scholar 

  • Muthukrishnan, S., Both, G. W., Furuichi, Y., and Shatkin, A. J. 1975. 5’-Terminal 7-methyl- guanosine in eukaryotic mRNA is required for translation. Nature (London) 255: 33–37.

    Google Scholar 

  • Nicosia, S. V., Wolf, D. P., and Inoue, M. 1977. Cortical granule distribution and cell surface characteristics in mouse eggs. Dev. Biol. 57: 56–74.

    PubMed  CAS  Google Scholar 

  • Noack, R. 1960. Die chemotropische Reaktionsfähigkeit der Pollenschläuche auf die Narbenitoffe der Blüten. Z. Bot. 48: 463–487.

    Google Scholar 

  • Nöda, Y. D., and Yanagimachi, R. 1976. Electron microscopic observations of guinea pig spermatozoa penetrating eggs in vitro. Dev. Growth Differ. 18: 15–23.

    Google Scholar 

  • Nuccitelli, R. 1980a. The electrical changes accompanying fertilization and cortical vesicle secretion in the medaka egg. Dev. Biol. 76: 483–498.

    PubMed  CAS  Google Scholar 

  • Nuccitelli, R. 1980b. The fertilization potential is not necessary for the block to polyspermy or the activation of development in the medaka egg. Dev. Biol. 76: 499–504.

    PubMed  CAS  Google Scholar 

  • Ohnishi, T., and Sugiyama, M. 1963. Polarographic studies of oxygen uptake of sea urchin eggs. Embryologia 8: 79–88.

    Google Scholar 

  • Okamura, F., and Nishiyama, H. 1978a. The passage of spermatozoa through the vitelline membrane in the domestic fowl, Gallus gallus. Cell Tissue Res. 188: 497–508.

    PubMed  CAS  Google Scholar 

  • Okamura, F., and Nishiyama, H. 1978b. Penetration of spermatozoon into the ovum and transformation of the sperm nucleus into the male pronucleus in the domestic fowl, Gallus gallus. Cell Tissue Res. 190: 89–98.

    PubMed  CAS  Google Scholar 

  • Okazaki, K. 1956a. Skeletal formation of sea urchin larvae. I. Effect of calcium concentration on the medium. Biol. Bull. 110: 320–333.

    CAS  Google Scholar 

  • Okazaki, R. 1956b. On the possible role of high energy phosphate in the cortical change of sea urchin eggs. Exp. Cell Res. 10: 476–504.

    PubMed  CAS  Google Scholar 

  • Örström, A., and Örström, M. 1942. Über die Bindung von Kalzium in Ei und Larve von Para- centrotus lividus. Protoplasma 36: 475–490.

    Google Scholar 

  • Paolillo, D. J. 1981. The swimming sperms of land plants. Bioscience 31: 367–373.

    Google Scholar 

  • Pascher, A. 1931. Über Gruppenbildung und “GeschlechtsWechsel” bei den Gameten einer Chla- mydomonadine. Jahrb. Wiss. Bot. 75: 551–580.

    Google Scholar 

  • Pasteeis, J. J. 1965. Aspects structuraux de la fécondation reus au microscope électronique. Arch. Biol. 76: 463–509.

    Google Scholar 

  • Pasteeis, J. J., and de Harven, E. 1962. Étude au microscope électronique du cortex de l’oeuf de Barnea Candida (Mollusque bivalve) et son évolution au moment de la fécondation, de la maturation et de la segmentation. Arch. Biol. (Liège) 73: 465–490.

    Google Scholar 

  • Pfeffer, W. 1884. Untersuch. Bot. Inst. Tubingen 1: 363–481.

    Google Scholar 

  • Phillips, S. G., Phillips, D. M., Dev, V. G., Miller, D. A., Van Diggelen, O. P., and Miller, O. J. 1976. Spontaneous cell hybridization of somatic cells present in sperm suspensions. Exp. Cell. Res. 98: 429–443.

    PubMed  CAS  Google Scholar 

  • Pikö, L. 1969. Gamete structure and sperm entry in mammals. In: Metz, C. B., and Monroy, A., eds., Fertilization, New York, Academic Press, pp. 325–403.

    Google Scholar 

  • Plempel, M. 1960. Die zygotropische Reaktion bei Mucorineen. Planta 55: 254–258.

    Google Scholar 

  • Poccia, D., Salik, J., and Krystal, G. 1981. Transitions in histone variants of the male pronucleus following fertilization and evidence for a maternal store of cleavage-stage histones in the sea urchin egg. Dev. Biol. 82: 287–296.

    PubMed  CAS  Google Scholar 

  • Racevskis, J., and Webb, T. E. 1974. Processing and release of rRNA from isolated nuclei: Analysis of the ATP-dependence and cytosol-dependence. Eur. J. Biochem. 49: 93–100.

    PubMed  CAS  Google Scholar 

  • Raff, E. C., and Raff, R. A. 1978. Tubulin and microtubules in the early development of the axolotl and other amphibia. Am. Zool. 18: 237–251.

    CAS  Google Scholar 

  • Reiger, J. C., and Kafatos, F. C. 1977. Absolute rate of protein synthesis in sea urchins with specific activity measurements of radioactive leucine leucyl tRNA. Dev. Biol. 57: 270–283.

    Google Scholar 

  • Richter-Landmann, W. 1959. Der BefruchtungsVorgang bei Impatiens glanduligera unter Berück- eichtigung der plasmatischen Organelle von Spermazelle, Eizelle, und Zygote. Planta 53: 162–177.

    Google Scholar 

  • Rosen, W. G. 1961. Studies on pollen tube chemotropism. Am. J. Bot. 48: 889–895.

    CAS  Google Scholar 

  • Rosen, W. G. 1964. Chemotropism and fine structure of pollen tubes. In: Linskens, H. F., ed., Pollen Physiology and Fertilization, Amsterdam, North-Holland, pp. 159–169.

    Google Scholar 

  • Sawicki, W., and Koprowski, H. 1971. Fusion of rabbit spermatozoa with somatic cells cultivated in vitro. Exp. Cell Res. 66: 145–151.

    PubMed  CAS  Google Scholar 

  • Schatten, G. 1981. The movements and fusion of the pronuclei at fertilization of the sea urchin Lytechinus variegatus: Time-lapse video microscopy. J. Morphol. 167: 231–247.

    Google Scholar 

  • Schreiber, E. 1931. Über die geschlechtliche Fortpflanzung der Sphacelariales. Ber. Dtsch. Bot. Ges. 49: 235–240.

    Google Scholar 

  • Schroeder, T. E. 1978. Microvilli on sea urchin eggs: A second burst of elongation. Dev. Biol. 64: 342–346.

    PubMed  CAS  Google Scholar 

  • Schroeder, T. E. 1979. Surface area change at fertilization: Resorption of the mosaic membrane. Dev. Biol. 70: 306–326.

    PubMed  CAS  Google Scholar 

  • Schultz, G. A., Clough, J. R., and Johnson, M. H. 1980. Presence of cap structures in the mRNA of mouse eggs. J. Embryol. Exp. Morphol. 56: 139–156.

    PubMed  CAS  Google Scholar 

  • Schultz, R. M., Letourneau, G. E., and Wassarman, P. M. 1979. Program of early development in the mammal: Changes in patterns and absolute rates of tubulin and total protein synthesis during oogenesis and early embryogenesis in the mouse. Dev. Biol. 68: 341–359.

    PubMed  CAS  Google Scholar 

  • Scopelliti, R., Senatori, O., Delpino, A., and Manelli, H. 1979. Ribosomi traslanti e non traslanti in alcuni stadi di sviluppo di Bufo bufo. Atti Accad. Naz. Lincei Ser. VIII, 6: 362–366.

    Google Scholar 

  • Shellenbarger, D. L., and Shapiro, B. M. 1980. Effect of the inhibitors of ion movements, verapamil and tetraethylammonium, on fertilization of mouse eggs in vitro. Gamete Res. 3: 1–7.

    CAS  Google Scholar 

  • Shen, S. S., and Steinhardt, R. A. 1980. Intracellular pH controls the development of new potassium conductance after fertilization of the sea urchin egg. Exp. Cell Res. 125: 55–61.

    PubMed  CAS  Google Scholar 

  • Shimizu, T. 1981. Cyclic changes in shape of a non-nucleate egg fragment of Tubifex (Annelida, Oligochaeta). Dev. Growth Differ. 23: 101–109.

    Google Scholar 

  • Skoblina, M. N. 1974. Behavior of sperm nuclei injected into intact maturing and mature oocytes and into oocytes which matured after germinal vesicle removal. Ontogenez 5: 334–340.

    Google Scholar 

  • Skoblina, M. N. 1976. Role of karyoplasm in the emergence of capacity of egg cytoplasm to induce DNA synthesis in transplanted sperm nuclei. J. Embryol. Exp. Morphol. 36: 67–72.

    PubMed  CAS  Google Scholar 

  • Slater, D. W., Slater, I., and Bollum, F. J. 1978. Cytoplasmic poly(A) polymerase from sea urchin eggs, merogons and embryos. Dev. Biol. 63: 94–110.

    PubMed  CAS  Google Scholar 

  • Slater, I., and Slater, D. W. 1974. Polyadenylation and transcription following fertilization. Proc. Natl. Acad. Sci. USA 71: 1103–1107.

    PubMed  CAS  Google Scholar 

  • Slater, I., Gillespie, D., and Slater, D. W. 1973. Cytoplasmic adenylation and processing of maternal RNA. Proc. Natl. Acad. Sci. USA 70: 406–411.

    PubMed  CAS  Google Scholar 

  • Smith, C., Brill, D., Bownes, M., and Ford, C. 1980. Drosophila nuclei replicate in Xenopus eggs. J. Embryol. Exp. Morphol. 55: 183–194.

    PubMed  CAS  Google Scholar 

  • Stambaugh, R., Brackett, B. G., and Mastroianni, L. 1969. Inhibition of in vitro fertilization of rabbit ova by trypsin inhibitors. Biol. Reprod. 1: 223–227.

    PubMed  CAS  Google Scholar 

  • Steffen, K. 1951. Zur Kenntnis der Befruchtungs Vorganges bei Impatiens glanduligera Lundl. Planta 39: 175–244.

    Google Scholar 

  • Steffen, K. 1953. Zytologische Untersuchungen an Pollenkorn und -schlauch. Flora (Jena) 140: 140–174.

    Google Scholar 

  • Steinhardt, R. A., and Mazia, D. 1973. Development of K+ conductance and membrane potential in unfertilized sea urchin eggs after exposure to NH4OH. Nature (London) 241: 400–401.

    CAS  Google Scholar 

  • Steinhardt, R. A., Shen, S., and Mazia, D. 1972. Membrane potential, membrane resistance and an energy requirement for the development of potassium conductance in the fertilization reaction of echinoderm eggs. Exp. Cell Res. 72: 195–203.

    PubMed  CAS  Google Scholar 

  • Steinhardt, R. A., Zucker, R., and Schatten, G. 1977. Intracellular calcium release at fertilization in the sea urchin egg. Dev. Biol. 58: 185–196.

    PubMed  CAS  Google Scholar 

  • Sugiyama, M. 1951. Re-fertilization of the fertilized eggs of the sea urchin. Biol. Bull. 101: 335–344.

    Google Scholar 

  • Suzuki, N., Nomura, K., Ohtake, H., and Isaka, S. 1981. Purification and the primary structure of sperm-activating peptides from the jelly coat of sea urchin eggs. Biochem. Biophys. Res. Commun. 99: 1238–1244.

    PubMed  CAS  Google Scholar 

  • Szòllòsi, D. G. 1962. Cortical granules: A general feature of mammalian eggs? J. Reprod. Fertil. 4: 223–224.

    Google Scholar 

  • Szòllòsi, D. G. 1967. Development of cortical granules and the cortical reaction in rat and hamster eggs. Anat. Ree. 159: 431–446.

    Google Scholar 

  • Szòllòsi, D. G., and Ris, H. 1961. Observation on sperm penetration in the rat. J. Biophys. Biochem. Cytol. 10: 275–283.

    PubMed  Google Scholar 

  • Thibault, C., and Gerard, M. 1970. Facteur cytoplasmique nécessaire à la formation de pronucleus mâle dans l’ovocyte de lapine. C. R. Acad. Sci. 270: 2025–2026.

    CAS  Google Scholar 

  • Treigyte, G., and Gineitis, A. 1979. Specific changes in the biosynthesis and acetylation of nucleosomal histones in the early stages of embryogenesis of sea urchin. Exp. Cell Res. 121: 127–134.

    PubMed  CAS  Google Scholar 

  • Tsubo, Y. 1961. Chemotaxis and sexual behavior in Chlamydomonas. J. Protozool. 8: 114–121.

    Google Scholar 

  • Tyler, A. 1948. On the chemistry of the fertilizin of the sea urchin Strongylocentrotus purpuratus. Anat. Ree. 101 (Suppl.): 8–9.

    Google Scholar 

  • Tyler, A. 1956. Physico-chemical properties of the fertilizin of the sea urchin Arbacia punctulata and the sand dollar Echinarachinus parna. Exp. Cell Res. 10: 377–386.

    PubMed  CAS  Google Scholar 

  • Tyler, A. 1960. Introductory remarks on the theory of fertilization. In: Ranzi, S., ed., Symposium on Germ Cells and Development, Pallanza, pp. 155–174.

    Google Scholar 

  • Tyler, A. 1964. Studies on fertilization and early development. Eng. Sci. Mag 27: 17–20.

    Google Scholar 

  • Tyler, A., and Hathaway, R. R. 1958. Production of 35S-labelled fertilizin in eggs of Arbacia punctulata. Biol. Bull. 115: 369.

    Google Scholar 

  • Tyler, A., Monroy, A., Kao, C. Y., and Grundfest, H. 1956. Membrane potential and resistance of the starfish egg before and after fertilization. Biol. Bull 111: 153–177.

    Google Scholar 

  • Usui, N., and Yanagimachi, R. 1976. Behavior of hamster sperm nuclei incorporated into eggs at various stages of maturation, fertilization and early development. J. Ultrastruct. Res. 57: 276–288.

    PubMed  CAS  Google Scholar 

  • van Went, J., and Linskens, H. F. 1967. Die Entwicklung des sogenannten “Fadenapparates” in Embryosack von Petunia hybrida. Genet. Breed. Res. 37: 51–55.

    Google Scholar 

  • Vasseur, E. 1947. The sulfuric acid content of the egg coat of the sea urchin Strongylocentrotus droebachiensis Miill. Ark. Kemi Mineral. Geol. 25B:Nr 6.

    Google Scholar 

  • Vasseur, E. 1949. The effect of sea urchin jelly coat solution and calcium ions on the oxygen uptake of sea urchin sperm. Ark. Kemi 1: 393–399.

    CAS  Google Scholar 

  • Vazart, B. 1958. Différenciation des cellules sexuelles et fécondation chez les Phanérogames. Protoplasmatologià 7: 1–158.

    Google Scholar 

  • Venezky, D. L., Angerer, L. M., and Angerer, R. C. 1981. Accumulation of histone repeat transcripts in the sea urchin egg pronucleus. Cell 24: 385–391.

    PubMed  CAS  Google Scholar 

  • von Beroldingen, C. H. 1981. The developmental potential of synchronized amphibian cell nuclei. Dev. Biol. 81: 115–126.

    Google Scholar 

  • Warburg, O. 1910. LJber die Oxydationen in lebenden Zellen nach Versuchen am Seeigelei. Z. Physiol Chem. 66: 305–340.

    Google Scholar 

  • Warburg, O. 1911. Ùber die Oxydationen in lebenden Zellen nach Versuchen am Seeigelei, Heidelberg, Ròsaler amp; Herbert.

    Google Scholar 

  • Weinberg, R. A. 1973. Nuclear RNA metabolism. Annu. Rev. Biochem. 42: 329–354.

    PubMed  CAS  Google Scholar 

  • Wilson, E. B. 1925. The Cell in Development and Heredity, 3rd ed., New York, Macmillan Co.

    Google Scholar 

  • Wilt, F. H. 1973. Polyadenylation of maternal RNA of sea urchin eggs after fertilization. Proc. Natl. Acad. Sci. USA 70: 2345–2349.

    PubMed  CAS  Google Scholar 

  • Winkler, M. M., and Grainger, J. L. 1978. Mechanism of action of NH4C1 and other weak bases in the activation of sea urchin eggs. Nature (London) 273: 236–238.

    Google Scholar 

  • Wolf, D. E., Kinsey, W., Lennarz, W., and Edidin, M. 1981. Changes in the organization of the

    Google Scholar 

  • sea urchin plasma membrane upon fertilization: Indications from the lateral diffusion rates of lipid-soluble fluorescent dyes. Dev. Biol. 81: 133–138.

    Google Scholar 

  • Wolf, D. P. 1974a. The cortical granule reaction in living eggs of the toad, Xenopus laevis. Dev. Biol. 36: 62–71.

    PubMed  CAS  Google Scholar 

  • Wolf, D. P. 1974b. On the contents of the cortical granules from Xenopus laevis eggs. Dev. Biol. 38: 14–29.

    PubMed  CAS  Google Scholar 

  • Wolf, D. P., Nishihara, T., West, D. M., Wyrick, R. E., and Hendrick, J. L. 1976. Isolation, physicochemical properties, and macromolecular composition of the vitelline and fertilization envelopes from Xenopus laevis eggs. Biochemistry 15: 3671–3678.

    PubMed  CAS  Google Scholar 

  • Yanagimachi, R. 1979. Sperm-egg association in mammals. Curr. Top. Dev. Biol. 12: 83–105.

    Google Scholar 

  • Yanagimachi, R., and Noda, Y. D. 1970a. Electron microscope studies of sperm incorporation into the golden hamster egg. Am. J. Anat. 128: 429–462.

    PubMed  CAS  Google Scholar 

  • Yanagimachi, R., and Noda, Y. D. 1970b. Ultrastructural changes in the hamster sperm head during fertilization. J. Ultrastruct. Res. 31: 465–485.

    PubMed  CAS  Google Scholar 

  • Yanagimachi, R., and Usui, N. 1972. The appearance and disappearance of factors involved in sperm chromatin decondensation in the hamster egg. J. Cell Biol. 55: 293a.

    Google Scholar 

  • Yanagimachi, R. Nicolson, G. L., Noda, Y. D., and Fujimoto, M. 1973. EM observations of the distribution of acidic anionic residues on hamster spermatozoa and eggs before and during fertilization. J. Ultrastruct. Res. 43: 344–353.

    PubMed  CAS  Google Scholar 

  • Yasbin, R., Sawicki, J., and Maclntyre, R. J. 1978. A developmental study of acid phosphatase — 1 in Drosophila melanogaster. Dev. Biol. 63: 35–46.

    PubMed  CAS  Google Scholar 

  • Yasumasu, I., and Nakano, E. 1963. Respiratory level of sea urchin eggs before and after fertilization. Biol. Bull. 125: 182–187.

    Google Scholar 

  • Yazaki, I. 1968. Immunological analysis of the calcium precipitable protein of sea urchin eggs. Embryologia 10: 131–141.

    Google Scholar 

  • Young, C. W., Hendler, F. J., and Karnofsky, D. A. 1969. Synthesis of proteins for DNA replication and cleavage events in the sand dollar embryo. Exp. Cell. Res. 58: 15–26.

    PubMed  CAS  Google Scholar 

  • Yu, S.-F., and Wolf, D. P. 1981. Polyspermic mouse eggs can dispose of supernumerary sperm. Dev. Biol. 82: 203–210.

    PubMed  CAS  Google Scholar 

  • Zamboni, L. 1971. Fine Morphology of Mammalian Fertilization, New York, Harper amp; Row.

    Google Scholar 

  • Zamboni, L. 1974. Fine morphology of the follicle wall and follicle cell-oocyte association. Biol. Reprod. 10: 125–149.

    PubMed  CAS  Google Scholar 

  • Zamboni, L., and Mastroianni, L. 1966. EM studies on rabbit ova. II. The penetrated tubal ovum. J. Ultrastruct. Res. 14: 118–132.

    Google Scholar 

  • Zamboni, L., Stefanini, M., Oura, C., and Smith, D. 1970. The pattern of sperm penetration into the mouse egg. Proc. 7th Int. Congr. Electron Microsc. 3: 663–664.

    Google Scholar 

  • Zaneveld, L. J. D., Robertson, R. T., Kessler, M., and Williams, W. L. 1971. Inhibition of fertilization in vivo by pancreatic and seminal plasma trypsin inhibitors. J. Reprod. Fertil. 25: 387–392.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dillon, L.S. (1983). Gene Action Changes during Fertilization. In: The Inconstant Gene. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4310-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4310-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4312-7

  • Online ISBN: 978-1-4684-4310-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics