Gene Action Changes during Fertilization

  • Lawrence S. Dillon


Once the two types of gametes have completed the necessary maturation steps, they are capable of uniting to form a zygote and initiating embryogenesis. As may be suspected from the complexity just observed in the steps of generating the eggs and sperm, neither the union of those gametes nor the formation of the embryo is a simple event, with little variation from taxon to taxon; rather, both are as complex and varied as the major groups of organisms themselves. Yet a number of features common to all are found to pervade most of the sexually reproducing biotic world. Because of their abundance, size, ease of culture, synchronous division, and other favorable attributes, echinoderm eggs have provided the basis for the great bulk of the investigations into these phases of development, but studies on vertebrates and metaphytans have served to enrich the literature to a considerable extent. In the present chapter, the penetration of the sperm into the ovum and related events are followed, while the development of the early embryonic stages and then their subsequent differentiation are the respective provinces of the following two chapters.


Pollen Tube Nuclear Envelope Sperm Head Sperm Nucleus Cortical Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adesnik, M., Salditt, M., Thomas, W., and Darnell, J. E. 1972. Evidence that all mRNA molecules (except histone mRNA) contain poly(A) sequences and that the poly(A) has a nuclear function. J. Mol. Biol. 71: 21–30.PubMedGoogle Scholar
  2. Afzelius, B. A. 1956. The ultrastructure of the cortical granules and their products in the sea urchin egg as studied with the electron microscope. Exp. Cell Res. 30: 93–97.Google Scholar
  3. Afzelius, B. A. 1972a. Reactions of the sea urchin oocyte to foreign spermatozoa. Exp. Cell Res. 72: 25–33.PubMedGoogle Scholar
  4. Afzelius, B. A. 1972b. Ultrastructure of species-foreign spermatozoa after penetrating the sea urchin oocyte. Acta Embryol. Exp. 1972: 123–133.Google Scholar
  5. Aketa, K., Bianchetti, R., Marri, É., and Monroy, A. 1964. Hexose monophosphate level as a limiting factor for respiration in unfertilized sea urchin eggs. Biochim. Biophys. Acta 86: 211–215.PubMedGoogle Scholar
  6. Allen, R. D. 1954. Fertilization and activation of sea urchin eggs in glass capillaries. Exp. Cell Res. 9: 157–167.Google Scholar
  7. Anderson, E. 1968. Oocyte differentiation in the sea urchin, Arbacia punctulata, with particular reference to the origin of the cortical granules and their participation in the cortical reaction. J. Cell Biol. 37: 514–539.PubMedGoogle Scholar
  8. Anderson, W. A. 1969. Nuclear and cytoplasmic DNA synthesis during early embryogenesis of Paracentrotus lividus. J. Ultrastruct. Res. 26: 95–110.PubMedGoogle Scholar
  9. Austin, C. R. 1961. The Mammalian Egg, Oxford, Blackwell.Google Scholar
  10. Austin, C. R. 1965. Fertilization, Englewood Cliffs, N.J., Prentice-Hall.Google Scholar
  11. Austin, C. R., and Walton, A. 1960. Fertilisation. In: Parkes, A. S., ed., Marshall’s Physiology of Reproduction, New York, Longmans, Green, Vol. 1, pp. 310–416.Google Scholar
  12. Baca, M., and Zamboni, L. 1967. The fine structure of human follicular oocytes. J. Ultrastruct. Res. 19: 354–381.PubMedGoogle Scholar
  13. Bagshaw, J. C., Acey, R., Helder, J. C., and Talley-Brown, S. J. 1980. RNA polymerases and transcriptional switches in developing Artemia. In: Persoone, G., Sorgeloos, P., Roels, O., and Jaspers, E., eds., The Brine Shrimp Artemia, Wetteren, Belgium, Universa Press,Vol. 2.Google Scholar
  14. Ballinger, D. G., and Hunt, T. 1981. Fertilization of sea urchin eggs is accompanied by 40 S ribosomal subunit phosphorylation. Dev. Biol. 87: 277–285.PubMedGoogle Scholar
  15. Bataillon, E., and Su, T. 1930. Études analytiques et expérimentales sur les rhythmes cinétiques dans l’oeuf. Arch. Biol. 40: 441–540.Google Scholar
  16. Bedford, J. M. 1968. Ultrastructural changes in the sperm head during fertilization in the rabbit. Am. J. Anat. 123: 329–358.PubMedGoogle Scholar
  17. Bedford, J. M. 1972. An EM study of sperm penetration into the rabbit egg after natural mating. Am. J. Anat. 133: 213–254.PubMedGoogle Scholar
  18. Bedford, J. M., and Cooper, G. W. 1978. Membrane fusion events in the fertilization of vertebrate eggs. In: Poste, G., and Nicolson, G. L., eds., Membrane Fusion, Amsterdam, Elsevier/North-Holland, pp. 65–125.Google Scholar
  19. Bedford, J. M., and Cross, N. L. 1978. Normal penetration of rabbit spermatozoa through a trypsin- and acrosin-resistant zona pellucida. J. Reprod. Fertil. 54: 385–392.PubMedGoogle Scholar
  20. Bendich, A., Borenfreund, E., and Sternberg, S. S. 1974. Penetration of somatic mammalian cells by sperm. Science 183: 857–859.PubMedGoogle Scholar
  21. Black, R. E., Baptist, E., and Piland, J. 1967. Puromycin and cycloheximide inhibition of thymidine incorporation into the DNA of sea urchin eggs. Exp. Cell Res. 48: 431–439.PubMedGoogle Scholar
  22. Blakeslee, A. F. 1904. Sexual reproduction in the Mucorineae. Proc. Am. Acad. Arts Sci. 40: 206–319.Google Scholar
  23. Blankstein, L. A., and Kiefer, B. I. 1977. The relation of DNA and protein synthesis to the meiotic-mitotic transition in the zygote of Urechis caupo. Dev. Biol. 61: 1–10.PubMedGoogle Scholar
  24. Bleil, J. D., and Wassarman, P. M. 1981. Mammalian sperm-egg interaction: Identification of aglycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm. Cell 20:873–882.Google Scholar
  25. Boveri, T. 1888. Über partielle Befruchtung. Ber. Naturforsch. Ges. Freiburg im Breisgau 4: 64–72.Google Scholar
  26. Boveri, T. 1903. Über den Einfluss der Samenzellen auf die Larvencharactere der Echiniden. Wilhelm Roux Arch. Entwicklungsmech. Org. 16: 340–362.Google Scholar
  27. Britckov, E. A. 1952. Über einige Besonderheiten der Pollenkeimung und das Wachstum der Pollenschläuche in den Fruchtblattgeweben. Dokl. Akad. Nauk SSSR Ser. Biol. 1: 121–134.Google Scholar
  28. Brummett, A. R., and Dumont, J. N. 1981. Cortical vesicle breakdown in the fertilized eggs of Fundulus heteroclitus. J. Exp. Zool. 216: 63–79.PubMedGoogle Scholar
  29. Burgess, D. R., and Schroeder, T. E. 1977. Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs. J. Cell Biol. 74: 1032–1037.PubMedGoogle Scholar
  30. Chambers, E. L. 1939. The movement of the egg nucleus in relation to the sperm aster in the echinoderm egg. J. Exp. Biol. 16: 409–424.Google Scholar
  31. Chambers, R. 1933. The manner of sperm entry in various marine ova. J. Exp. Biol. 10: 130–141.Google Scholar
  32. Clark, W. H., Lynn, J. W., Yudin, A. I., and Persyn, H. O. 1980. Morphology of the cortical reaction in the eggs of Penaeus aztecus. Biol. Bull. 158: 175–186.Google Scholar
  33. Colwin, A. L., and Colwin, L. H. 1955. Sperm entry and the acrosome filament (Holothuria atra and Asterias amurensis). J. Morphol. 97: 543–568.Google Scholar
  34. Colwin, A. L., and Colwin, L. H. 1961. Changes in the spermatozoan during fertilization in Hydroides hexagonus (Annelida). 2. Incorporation with the egg. J. Biophys. Biochem. Cytol. 10: 255–274.PubMedGoogle Scholar
  35. Colwin, A. L., and Colwin, L. H. 1963. Role of the gamete membranes in fertilization in Sacco- glossus kowalevskii (Enteropneusta). 1. The acrosomal region and its changes in early stages of fertilization. J. Cell Biol. 19: 477–500.PubMedGoogle Scholar
  36. Colwin, A. L., and Colwin, L. H. 1964. Role of the gamete membranes in fertilization. In: Lake, M., ed., Symposium on Cellular Membranes in Development, New York, Academic Press, pp. 233–279.Google Scholar
  37. Colwin, L. H., and Colwin, A. L. 1956. The acrosome filament and sperm entry in Thyone briareus (Holothuria) and Asterias. Biol. Bull. 110: 243–255.Google Scholar
  38. Colwin, L. H., and Colwin, A. L. 1961. Changes in the spermatozoan during fertilization in Hydroides hexagonus (Annelida). 1. Passage of the acrosomal region through the vitelline membrane. J. Biophys. Biochem. Cytol. 10: 231–254.PubMedGoogle Scholar
  39. Colwin, L. H., and Colwin, A. L. 1963. Role of the gamete membranes in fertilization of Sacco- glossus kowalevskii (Enteropneusta). II. Zygote formation by gamete membrane fusion. J. Cell Biol. 19: 501–518.PubMedGoogle Scholar
  40. Colwin, L. H., and Colwin, A. L. 1967. Membrane fusion in relation to sperm-egg association. In: Metz, C. B., and Monroy, A., eds., Fertilization, New York, Academic Press, Vol. 1, pp. 295–367.Google Scholar
  41. Cooper, D. C. 1940. Macrosporogenesis and embryology of the seed of Phryma leptostachya. Am. J. Bot. 28: 755–761.Google Scholar
  42. Cooperstein, S. J. 1963. Reversible inactivation of cytochrome oxidase by disulphide bond reagents. Anat. Anz. 19: 280–287.Google Scholar
  43. Dan, J. C., Ohori, Y., and Kushida, H. 1964. Studies on the acrosome. VII. Formation of the acrosomal process in sea urchin spermatozoa. J. Ultrastruct. Res. 11: 508–524.PubMedGoogle Scholar
  44. Darnell, J. E., Jelinek, W. R., and Molloy, G. R. 1973. Biogenesis of mRNA: Genetic regulation in mammalian cells. Science 181: 1215–1221.PubMedGoogle Scholar
  45. Das, N. K., and Barker, C. 1976. Mitotic chromosome condensation in the sperm nucleus during postfertilization maturation division in Urechis eggs. J. Cell Biol. 68: 155–159.PubMedGoogle Scholar
  46. Dewel, W. C., and Clark, W. H. 1974. A fine structural investigation of surface specializations and the cortical reaction of the cnidarian Bunodosoma cavernata. J. Cell Biol. 60: 78–91.PubMedGoogle Scholar
  47. Dillon, L. S. 1981. Ultrastructure, Macromolecules, and Evolution, New York, Plenum Press.Google Scholar
  48. Dworkin, M. B., and Infante, A. A. 1978. RNA synthesis in unfertilized sea urchin eggs. Dev. Biol. 62: 247–257.PubMedGoogle Scholar
  49. Eddy, E. M., and Shapiro, B. M. 1976. Changes in the topography of the sea urchin egg after fertilization. J. Cell. Biol. 71: 35–48.PubMedGoogle Scholar
  50. Egrie, J. C., and Wilt, F. H. 1979. Changes in poly(A) polymerase activity during sea urchin embryogenesis. Biochemistry 18: 269–274.PubMedGoogle Scholar
  51. Ellinger, M. S. 1978. The cell cycle and transplantation of blastula nuclei in Bombina orientalis. Dev. Biol. 65: 81–89.PubMedGoogle Scholar
  52. Ellinger, M. S., and Carlson, J. T. 1978. Nuclear transplantation in Bombina orientalis and utilization of the pale mutation as a nuclear marker. J. Exp. Zool. 205: 353–359.PubMedGoogle Scholar
  53. Endo, Y. 1961. Changes in the cortical layer of sea urchin eggs at fertilization as studied with the electron microscope. I. Clypeaster japonicus. Exp. Cell Res. 25: 383–397.PubMedGoogle Scholar
  54. Epel, D. 1967. Protein synthesis in sea urchin eggs: A “late” response to fertilization. Proc. Natl. Acad. Sci. USA 57: 889–906.Google Scholar
  55. Epel, D., Steinhardt, R. A., Humphreys, T., and Mazia, D. 1974. An analysis of the parietal metabolic derepression of sea urchin eggs by ammonia: The existence of independent pathways. Dev. Biol. 40: 245–255.PubMedGoogle Scholar
  56. Flemming, W. 1881. Beiträge zur Kenntnis der Zelle und ihrer Lebenserscheinung. 3. Arch. Mikrosk. Anat. Entwicklungsmech. 20: 1–86.Google Scholar
  57. Fol, H. 1879. Recherches sur la fécondation et le commencement de l’hénogenie chez diverts animaux. Mem. Soc. Phys. Hist. Nat. Genève 26: 89–250.Google Scholar
  58. Ford, C. C., and Woodland, H. R. 1975. DNA synthesis in oocytes and eggs of Xenopus laevis injected with DNA. Dev. Biol. 43: 189–199.PubMedGoogle Scholar
  59. Gabara, B., Gledhill, B. L., Croce, C. M., Cesarini, J. P., and Koprowski, H. 1973. Ultrastructure of rabbit spermatozoa after treatment with lysolecithin and in the presence of hamster somatic cells (37482). Proc. Soc. Exp. Biol. Med. 143: 1120–1124.PubMedGoogle Scholar
  60. Gerassimova-Navashina, H. 1960. A contribution to the cytology of fertilization in flowering plants. Nucleus (Calcutta) 3: 111–120.Google Scholar
  61. Gerassimova-Navashina, H. 1961. Fertilization and events leading up to fertilization, and their bearing on the origin of angiosperms. Phytomorphology 11: 139–146.Google Scholar
  62. Giard, A. 1900. A propos de la parthénogénèse artificielle des oeufs d’echinodérmes. C. R. Soc. Biol. 52: 761–764.Google Scholar
  63. Giudice, G. 1973. Developmental Biology of the Sea Urchin Embryo, New York, Academic Press.Google Scholar
  64. Giudice, G., Vitorelli, M. L., and Monroy, A. 1962. Investigations on the protein metabolism during the early development of the sea urchin. Acta Embryol. Morphol. Exp. 5: 113–122.Google Scholar
  65. Gledhill, B. L., Sawicki, W., Croce, C. M., and Koprowski, H. 1972. DNA synthesis in rabbit spermatozoa after treatment with lysolecithin and fusion with somatic cells. Exp. Cell Res. 73: 33–40.PubMedGoogle Scholar
  66. Graham, C. F. 1966. The regulation of DNA synthesis and mitosis in multinucleate frog eggs. J. Cell Sci. 1: 363–374.PubMedGoogle Scholar
  67. Grainger, J. L., Winkler, M. M., Shen, S. S., and Steinhardt, R. A. 1979. Intracellular pH controls protein synthesis rate in the sea urchin egg and early embryo. Dev. Biol. 68: 396–406.PubMedGoogle Scholar
  68. Grey, R. D., Wolf, D. P., and Hedrick, J. L. 1974. Formation and structure of the fertilization envelope in Xenopus laevis. Dev. Biol. 36: 44–61.PubMedGoogle Scholar
  69. Griffin, B. 1975. “Enigma variations” of mammalian mRNA. Nature (London) 255:9.Google Scholar
  70. Gulyas, B. J. 1974. Cortical granules in artificially activated (parthenogenetic) rabbit eggs. Am. J. Anat. 140: 577–582.PubMedGoogle Scholar
  71. Gulyas, B. J. 1976. Ultrastructural observations on rabbit, hamster and mouse eggs following electrical stimulation in vitro. Am. J. Anat. 147: 203–218.PubMedGoogle Scholar
  72. Gulyas, B. J. 1980. Cortical granules of mammalian eggs. Int. Rev. Cytol. 63: 357–392.PubMedGoogle Scholar
  73. Gurdon, J. B. 1961. The transplantation of nuclei between two subspecies of Xenopus laevis. Heredity 16: 305–315.Google Scholar
  74. Gurdon, J. B. 1968. Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J. Embryol. Exp. Morphol. 20: 401–414.PubMedGoogle Scholar
  75. Gurdon, J. B. 1974. The Control of Gene Expression in Animal Development, Cambridge, Mass., Harvard University Press.Google Scholar
  76. Gurdon, J. B. 1975. Nuclear transplantation and the cyclic reprogramming of gene expression. In: Reinert, J., and Holtzer, H., eds., Cell Cycle and Cell Differentiation, Berlin, Springer- Verlag, pp. 123 - 131.Google Scholar
  77. Gurdon, J. B. 1976. The pluripotentiality of cell nuclei. In: Graham, C. F., and Wareing, P. F., eds., The Developmental Biology of Plants and Animals, Oxford, Blackwell, pp. 55–63.Google Scholar
  78. Hadek, R. 1963. Submicroscopic changes in the penetrating spermatozoan of the rabbit. J. Ultrastruct. Res. 8: 161–169.PubMedGoogle Scholar
  79. Hara, K. 1971. Cinematographic observation of “surface contraction waves” during the early cleavage of axolotl eggs. Wilhelm Roux Arch. Dev. Biol. 167: 183–186.Google Scholar
  80. Hara, K., and Tydeman, P. 1979. Cinematographic observation of an “activation wave” (AW) on the locally inseminated eggs of Xenopus laevis. Wilhelm Roux Arch. Dev. Biol. 186: 91–94.Google Scholar
  81. Hara, K., Tydeman, P., and Hengst, R. T. M. 1977. Cinematographic observation of “post- fertilization” waves (PFW) on the zygote of Xenopus laevis. Wilhelm Roux Arch. Dev. Biol. 181: 189–192.Google Scholar
  82. Hara, K., Tydeman, P., and Kirschner, M. 1980. A cytoplasmic clock with the same period as the division cycle in Xenopus eggs. Proc. Natl. Acad. Sci. USA 77: 462–466.PubMedGoogle Scholar
  83. Harris, H. 1974. Nucleus and Cytoplasm, 3rd ed., London, Oxford University Press (Clarendon).Google Scholar
  84. Harris, P. 1979. A spiral cortical fiber system in fertilized sea urchin eggs. Dev. Biol. 68: 525–532.PubMedGoogle Scholar
  85. Harris, P., Osborn, M., and Weber, K. 1980a. Distribution of tubulin containing structures in the egg of the sea urchin Strongylocentrotus purpuratus from fertilization through first cleavage. J. Cell Biol. 84: 668–679.PubMedGoogle Scholar
  86. Harris, P., Osborn, M., and Weber, K. 1980b. A spiral array of microtubules in the fertilized sea urchin egg cortex examined by indirect immunofluorescence and electron microscopy. Exp. Cell Res. 126: 227–236.PubMedGoogle Scholar
  87. Hartmann, J. F., and Hutchison, C. F. 1981. Modulation of fertilization in vitro by peptides released during hamster sperm-zona pellucida interaction. Proc. Natl. Acad. Sci. USA 78: 1690–1694.PubMedGoogle Scholar
  88. Hartmann, M. 1934. Untersuchungen über die Sexualität von Ectocarpus siliculosus. Arch. Protistenkd. 83: 110–153.Google Scholar
  89. Hathaway, R. R. 1959. The effect of sperm on 35S-labelled Arbacia fertilizin. Biol. Bull. 117: 395.Google Scholar
  90. Hathaway, R. R. 1963. Activation of respiration in sea urchin spermatozoa by egg water. Biol. Bull. 125: 486–498.Google Scholar
  91. Hathaway, R. R., and Metz, C. B. 1961. Interaction between Arbacia sperm and S35-labelled fertilizin. Biol. Bull. 120: 360–369.Google Scholar
  92. Hertwig, P. 1936. Artbastarde bei Tieren. In: Baur, E., and Hartmann, M., eds., Handbuch der Vererbungswissenschaft, Berlin, Verlag Gebr. Borntraeger, Vol. IIB.Google Scholar
  93. Hickey, E. D., Weber, L. A., and Baglioni, C. 1976. Translation of RNA from unfertilized sea urchin eggs does not require methylation and is inhibited by 7-methyl-guanosine-5-monophosphate. Nature (London) 261: 71–73.Google Scholar
  94. Hiromoto, Y. 1962. Microinjection of the live spermatozoa into sea urchin eggs. Exp. Cell Res. 27: 416–426.Google Scholar
  95. Hoffner, N. J., and DiBerardino, M. A. 1980. Developmental potential of somatic nuclei transplanted into meiotic oocytes of Rana pipiens. Science 209: 517–519.PubMedGoogle Scholar
  96. Hudinaga, M. 1942. Reproduction, development, and rearing of Pennaeus japonicus Bate. Jpn. J. Zoo I. 10: 305–393.Google Scholar
  97. Hultin, T. 1952. Incorporation of 15N-labelled glycine and alanine into the proteins of developing sea urchin eggs. Exp. Cell Res. 3: 494–496.Google Scholar
  98. Hultin, T. 1953a. The amino acid metabolism of sea urchin embryos studied by means of N15- labelled ammonium chloride and alanine. Ark. Kemi 5: 543–552.Google Scholar
  99. Hultin, T. 1953b. Incorporation of N15-di-alanine into protein fractions of sea urchin embryos. Ark. Kemi 5: 559–564.Google Scholar
  100. Humphreys, T. 1971. Measurement of mRNA entering polysomes upon fertilization of sea urchin eggs. Dev. Biol. 26: 201–208.PubMedGoogle Scholar
  101. Hunter, R. H. F. 1967. Polyspermic fertilization in pigs during the luteal phase of the estrous cycle. J. Exp. Zool. 165: 451–460.PubMedGoogle Scholar
  102. Hutner, S. H., and Provasoli, L. 1951. The phytoflagellates. In: Lwoff, A., ed., Biochemistry and Physiology of Protozoa, New York, Academic Press, pp. 27–128.Google Scholar
  103. Illmensee, K. 1972. Developmental potencies of nuclei from cleavage, preblastoderm and syncytial blastoderm transplanted into unfertilized eggs of Drosophila melanogaster. Wilhelm Roux Arch. Dev. Biol. 170: 267–298.Google Scholar
  104. Immers, J. 1961. The occurrence of sulphated mucopolysaccharide in the perivitelline liquid of Echinus esculentus. Ark. Zool. 13: 299–306.Google Scholar
  105. Ito, S. 1962. Resting potential and activation potential of the Oryzias egg. Embryologia 7: 47–55.Google Scholar
  106. Iwamatsu, T., and Ohta, T. 1978. EM observation on sperm penetration and pronuclear formation in thefish egg. J. Exp. Zool. 205: 157–180.PubMedGoogle Scholar
  107. Jaffe, L. A., and Robinson, K. R. 1978. Membrane potential of the unfertilized sea urchin egg. Dev. Biol. 62: 215–228.PubMedGoogle Scholar
  108. Jensen, W. A. 1965. The ultrastructure and histochemistry of the synergids of cotton. Am. J. Bot. 52: 238–256.PubMedGoogle Scholar
  109. Johnson, J. D., Epel, D., and Paul, M. 1976. Intracellular pH and activation of sea urchin eggs after fertilization. Nature (London) 262: 661–664.Google Scholar
  110. Kane, R. E. 1970. Direct isolation of the hyaline layer protein released from cortical granules of the sea urchin egg at fertilization. J. Cell Biol. 45: 615–622.PubMedGoogle Scholar
  111. Kane, R. E., and Hersh, R. T. 1959. The isolation and preliminary characterization of a major soluble protein of the sea urchin egg. Exp. Cell Res. 16: 59–69.PubMedGoogle Scholar
  112. Kao, C. Y. 1955. Changing electrical constants of the Fundulus egg surface. Biol. Bull. 109: 361.Google Scholar
  113. Kapil, R. N., and Vasil, I. K. 1963. Ovule. In: Maheshwari, P., ed., Recent Advances in Embryology of Angiosperms, Delhi, International Society of Plant Morphologists, pp. 41–67.Google Scholar
  114. Katagiri, C. 1974. A high frequency of fertilization in premature and mature coelomic toad eggs after enzymic removal of vitelline membrane. J. Embryol. Exp. Morphol. 31: 573–587.PubMedGoogle Scholar
  115. Katagiri, C., and Moriya, M. 1976. Spermatozoan response to the toad egg matured after removal of the germinal vesicle. Dev. Biol. 50: 235–241.PubMedGoogle Scholar
  116. Kaumeyer, J. F., Jenkins, N. A., and Raff, R. A. 1978. Messenger RNP particles in unfertilized sea urchin eggs. Dev. Biol. 63: 266–278.PubMedGoogle Scholar
  117. Kòhler, E. 1930. Beobachtungen und Zoosporenaufschwemmungen von Synchytrium endobioticum (Schilb.) Pere. Zentralbl. Bakteriol. Parasitenkd. Infekfionskr. Hyg. (2) 82: 1–10.Google Scholar
  118. Kopecny, V., and Fléchon, J. E. 1981. Fate of acrosomal glycoproteins during the acrosomal reaction and fertilization: A light and electron microscope autoradiographic study. Biol. Reprod. 24: 201–216.PubMedGoogle Scholar
  119. Koyanagi, F., and Nishiyama, H. 1980. Phagocytosis of spermatozoa by the ovum of the domestic fowl, Gallus gallus, at the time of fertilization. Cell Tissue Res. 206: 55–63.PubMedGoogle Scholar
  120. Krane, S. M., and Crane, R. K. 1960. Changes in levels of triphosphopyridine nucleotide in marine eggs subsequent to fertilization. Biochim. Biophys. Acta 43: 369–373.PubMedGoogle Scholar
  121. Krishna, M., and Generoso, W. M. 1977. Timing of sperm penetration, pronuclear formation, pronuclear DNA synthesis, and first cleavage in naturally ovulated mouse eggs. J. Exp. Zool. 202: 245–252.PubMedGoogle Scholar
  122. Krystal, G. W., and Poccia, D. 1979. Control of chromosome condensation in the sea urchin egg. Exp. Cell Res. 123: 207–219.PubMedGoogle Scholar
  123. Kunkle, M., Longo, F. J., and Magun, B. E. 1978a. Nuclear protein changes in the maternally and paternally derived chromatin at fertilization. J. Exp. Zool. 203: 371–380.PubMedGoogle Scholar
  124. Kunkle, M., Magun, B. E., and Longo, F. J. 1978b. Analysis of isolated sea urchin nuclei incubated in egg cytosol. J. Exp. Zool. 203: 381–390.Google Scholar
  125. Kusano, S. 1931. The life-history and physiology of Synchytrium fulgens Schroet., with special reference to its sexuality. Jpn. J. Bot. 5: 35–132.Google Scholar
  126. Laser, H., and Rothschild, L. 1939. The metabolism of the eggs of Psammechinus miliaris during the fertilization reaction. Proc. R. Soc. London Ser. B 126: 539–557.Google Scholar
  127. Lewin, R. 1950. Gamete behaviour in Chlamydomoncis. Nature (London) 166: 76.Google Scholar
  128. Lillie, F. R. 1913. Studies of fertilization. 5. The behavior of the spermatozoa of Nereis and Arbacia with special reference to egg-extractives. J. Exp. Zool. 14: 515–574.Google Scholar
  129. Lillie, F. R. 1914. Studies on fertilization. 6. The mechanism of fertilization in Arbacia. J. Exp. Zool. 16: 523–590.Google Scholar
  130. Linskens, H. F. 1969. Fertilization mechanisms in higher plants. In: Metz, C. B., and Monroy, A., eds., Fertilization, New York, Academic Press, Vol. 2, pp. 189–253.Google Scholar
  131. Litchfield, J. B., and Whiteley, A. H. 1959. Studies on the mechanism of phosphate accumulation by sea urchin embryos. Biol. Bull. 117: 133–149.Google Scholar
  132. Longo, F. J. 1973a. Fertilization: A comparative ultrastructural review. Biol. Reprod. 9: 149–215.PubMedGoogle Scholar
  133. Longo, F. J. 1973b. An ultrastructural analysis of polyspermy in the surf clam, Spisula solidissima. J. Exp. Zool. 183: 153–180.PubMedGoogle Scholar
  134. Longo, F. J. 1976a. Derivation of the membrane comprising the male pronuclear envelope in inseminated sea urchin eggs. Dev. Biol. 49: 347–368.PubMedGoogle Scholar
  135. Longo, F. J. 1976b. An ultrastructural study of cross-fertilization [Arbacia Mytilus]. J. Cell Biol. 73: 14–26.Google Scholar
  136. Longo, F. J. 1978. Insemination of immature sea urchin (Arbacia punctulata) eggs. Dev. Biol. 62: 271–291.PubMedGoogle Scholar
  137. Longo, F. J. 1980. Organization of microfilaments in sea urchin (Arbacia punctulata) eggs at fertilization: Effects of cytochalasin B. Dev. Biol. 74: 422–433.PubMedGoogle Scholar
  138. Longo, F. J., and Kunkle, M. 1977. Synthesis of RNA by male pronuclei of fertilized sea urchin eggs. J. Exp. Zool. 201: 431.PubMedGoogle Scholar
  139. Longo, F. J., and Kunkle, M. 1978. Transformations of sperm nuclei upon insemination. Curr. Top. Dev. Biol. 12: 149–184.PubMedGoogle Scholar
  140. Longo, F. J., and Plunkett, W. 1973. The onset of DNA synthesis and its relation to morphoge- netic events of the pronuclei in activated eggs of the sea urchin, Arbacia punctulata. Dev. Biol. 30: 56–67.PubMedGoogle Scholar
  141. Lovett, J. A., and Goldstein, E. S. 1977. The cytoplasmic districution and characterization of poly (A)+ RNA in oocytes and embryos of Drosophila. Dev. Biol. 61: 70–78.PubMedGoogle Scholar
  142. McBlaine, P. J., and Carroll, E. J. 1980. Sea urchin egg hyaline layer: Evidence for the localiza¬tion of hyaline on the unfertilized egg surface. Dev. Biol. 75: 137–147.PubMedGoogle Scholar
  143. Machlis, L. 1958a. Evidence for a sexual hormone in Allomyces. Physiol. Plant. 11: 181–192.Google Scholar
  144. Machlis, L. 1958b. A procedure for the purification of sirenin. Nature (London) 181: 1790–1791.Google Scholar
  145. Machlis, L. 1963. In: Hisaw, F. L., ed., Physiology of Reproduction, Corvallis, Oregon State University Press, p. 79.Google Scholar
  146. Machlis, L., and Rawitscher-Kunkel, E. 1967. Mechanisms of gametic approach in plants. In: Metz, C. B., and Monroy, A., eds., Fertilization, New York, Academic Press, Vol. 1, pp. 117–161.Google Scholar
  147. Machlis, L., Nutting, W. H., Williams, M. W., and Rapoport, H. 1966. Production, isolation, and characterization of sirenin. Biochemistry 5: 2147–2152.PubMedGoogle Scholar
  148. Maeno, T., Monta, H., and Kuwabara, M. 1956. Potential measurements on the eggs of Japanese killifish, Oryzias latipes. Mem. Fac. Sci. Kyushu Univ. E2: 87–94.Google Scholar
  149. Maggio, R., and Monroy, A. 1959. An inhibitor of cytochrome oxidase activity in the sea urchin egg. Nature (London) 184: 68–69.Google Scholar
  150. Maheshwari, P. 1950. Introduction to the Embryology of the Angiosperms, New York, McGraw- Hill.Google Scholar
  151. Mainx, F. 1931. Gametencopulation und Zygoten keimung bei Hydrodictyon reticulatum. Arch. Protistenkd. 75: 502–516.Google Scholar
  152. Mar, H. 1980. Radial cortical fibers and pronuclear migration in fertilized and artificially activated eggs of Lytechinus pictus. Dev. Biol. 78: 1–13.PubMedGoogle Scholar
  153. Marchand, B., and Mattei, X. 1976. Présence de flagelles spermatiques dans les sphères ovariennes des Eoacanthocéphales. J. Ultrastruct. Res. 56: 331–338.PubMedGoogle Scholar
  154. Marchand, B., and Mattei, X. 1979. La fécondation chez les Acanthocéphales. I. Modifications ultrastructurales des sphères ovariennes et des spermatozoides après insémination des femelles de l’AcanthocéphaleNeoechinorhynchus agilis. J. Ultrastruct. Res. 66: 32–39.PubMedGoogle Scholar
  155. Marchand, B., and Mattei, X. 1980. Fertilization in Acanthocephala. II. Spermatozoon penetration of oocyte, transformation of gametes and elaboration of the fertilization membrane. J. Submicrosc. Cytol. 12: 95–105.Google Scholar
  156. Mascarenhas, J. P., and Machlis, L. 1962. Chemotropic response of Antirrhinum majus pollen to calcium. Nature (London) 196: 292–293.Google Scholar
  157. Mazia, D. 1937. The release of calcium in Arbacia eggs on fertilization. J. Cell. Comp. Physiol. 10: 291–304.Google Scholar
  158. Mazia, D., Schatten, G., and Steinhardt, R. 1975. Turning on of activities in unfertilized eggs: Correlation with changes of the surface. Proc. Natl. Acad. Sci. USA 72: 4469–4473.PubMedGoogle Scholar
  159. Metz, C. B. 1978. Sperm and egg receptors involved in fertilization. Curr. Top. Dev. Biol. 12: 107–147.PubMedGoogle Scholar
  160. Meyerhof, P. G., and Masui, Y. 1979. Chromosome condensation activity in Rana pipiens eggs matured in vivo and in blastomeres arrested by cytostatic factors (CSF). Exp. Cell Res. 123: 345–353.PubMedGoogle Scholar
  161. Miceli, D. C., del Pino, E. J., Barbieri, F. D., Mariano, M. I., and Raisman, J. S. 1977. The vitelline envelope-to-fertilization envelope transformation in the toad Bufo arenarum. Dev. Biol. 59: 101–110.PubMedGoogle Scholar
  162. Miller, R. L. 1966. Chemotaxis during fertilization in the hydroid Campanularia. J. Exp. Zool. 162: 23–44.PubMedGoogle Scholar
  163. Miller, R. L. 1974. Sperm behavior close to Hydractinia and Ciona eggs. Am. Zool. 14: 1250.Google Scholar
  164. Miller, R. L. 1977. In: Adiyodi, K. G., and Adiyodi, P. G., eds., Advances in Invertebrate Reproduction, Karivellur, India, Peralana-Kenoth, Vol. 1, pp. 99–119.Google Scholar
  165. Miller, R. L., and Nelson, L. 1962. Evidence of a chemotactic substance in the female gonangium of Campanularia. Biol. Bull. 123: 422.Google Scholar
  166. Miller, R. L., and Tseng, C. Y. 1974. Properties and partial purification of the sperm attractant of Tubularia. Am. Zool. 14: 467–486.Google Scholar
  167. Monroy, A. 1965. Chemistry and Physiology of Fertilization, New York, Holt, Rinehart amp; Winston.Google Scholar
  168. Monroy, A., and Tyler, A. 1963. Formation of active ribosomal aggregates (polysomes) upon fertilization and development of sea urchin eggs. Arch. Biochem. Biophys. 103: 431–435.PubMedGoogle Scholar
  169. Monroy, A., and Vittorelli, M. L. 1962. Utilization of 14C-glucose for amino acids and protein synthesis by the sea urchin embryo. J. Cell. Comp. Physiol. 60: 285–288.PubMedGoogle Scholar
  170. Monroy Oddo, A. 1946. Variations in Ca and Mg contents in Arbacia eggs as a result of fertilization. Experientia 2: 371–372.Google Scholar
  171. Muthukrishnan, S., Both, G. W., Furuichi, Y., and Shatkin, A. J. 1975. 5’-Terminal 7-methyl- guanosine in eukaryotic mRNA is required for translation. Nature (London) 255: 33–37.Google Scholar
  172. Nicosia, S. V., Wolf, D. P., and Inoue, M. 1977. Cortical granule distribution and cell surface characteristics in mouse eggs. Dev. Biol. 57: 56–74.PubMedGoogle Scholar
  173. Noack, R. 1960. Die chemotropische Reaktionsfähigkeit der Pollenschläuche auf die Narbenitoffe der Blüten. Z. Bot. 48: 463–487.Google Scholar
  174. Nöda, Y. D., and Yanagimachi, R. 1976. Electron microscopic observations of guinea pig spermatozoa penetrating eggs in vitro. Dev. Growth Differ. 18: 15–23.Google Scholar
  175. Nuccitelli, R. 1980a. The electrical changes accompanying fertilization and cortical vesicle secretion in the medaka egg. Dev. Biol. 76: 483–498.PubMedGoogle Scholar
  176. Nuccitelli, R. 1980b. The fertilization potential is not necessary for the block to polyspermy or the activation of development in the medaka egg. Dev. Biol. 76: 499–504.PubMedGoogle Scholar
  177. Ohnishi, T., and Sugiyama, M. 1963. Polarographic studies of oxygen uptake of sea urchin eggs. Embryologia 8: 79–88.Google Scholar
  178. Okamura, F., and Nishiyama, H. 1978a. The passage of spermatozoa through the vitelline membrane in the domestic fowl, Gallus gallus. Cell Tissue Res. 188: 497–508.PubMedGoogle Scholar
  179. Okamura, F., and Nishiyama, H. 1978b. Penetration of spermatozoon into the ovum and transformation of the sperm nucleus into the male pronucleus in the domestic fowl, Gallus gallus. Cell Tissue Res. 190: 89–98.PubMedGoogle Scholar
  180. Okazaki, K. 1956a. Skeletal formation of sea urchin larvae. I. Effect of calcium concentration on the medium. Biol. Bull. 110: 320–333.Google Scholar
  181. Okazaki, R. 1956b. On the possible role of high energy phosphate in the cortical change of sea urchin eggs. Exp. Cell Res. 10: 476–504.PubMedGoogle Scholar
  182. Örström, A., and Örström, M. 1942. Über die Bindung von Kalzium in Ei und Larve von Para- centrotus lividus. Protoplasma 36: 475–490.Google Scholar
  183. Paolillo, D. J. 1981. The swimming sperms of land plants. Bioscience 31: 367–373.Google Scholar
  184. Pascher, A. 1931. Über Gruppenbildung und “GeschlechtsWechsel” bei den Gameten einer Chla- mydomonadine. Jahrb. Wiss. Bot. 75: 551–580.Google Scholar
  185. Pasteeis, J. J. 1965. Aspects structuraux de la fécondation reus au microscope électronique. Arch. Biol. 76: 463–509.Google Scholar
  186. Pasteeis, J. J., and de Harven, E. 1962. Étude au microscope électronique du cortex de l’oeuf de Barnea Candida (Mollusque bivalve) et son évolution au moment de la fécondation, de la maturation et de la segmentation. Arch. Biol. (Liège) 73: 465–490.Google Scholar
  187. Pfeffer, W. 1884. Untersuch. Bot. Inst. Tubingen 1: 363–481.Google Scholar
  188. Phillips, S. G., Phillips, D. M., Dev, V. G., Miller, D. A., Van Diggelen, O. P., and Miller, O. J. 1976. Spontaneous cell hybridization of somatic cells present in sperm suspensions. Exp. Cell. Res. 98: 429–443.PubMedGoogle Scholar
  189. Pikö, L. 1969. Gamete structure and sperm entry in mammals. In: Metz, C. B., and Monroy, A., eds., Fertilization, New York, Academic Press, pp. 325–403.Google Scholar
  190. Plempel, M. 1960. Die zygotropische Reaktion bei Mucorineen. Planta 55: 254–258.Google Scholar
  191. Poccia, D., Salik, J., and Krystal, G. 1981. Transitions in histone variants of the male pronucleus following fertilization and evidence for a maternal store of cleavage-stage histones in the sea urchin egg. Dev. Biol. 82: 287–296.PubMedGoogle Scholar
  192. Racevskis, J., and Webb, T. E. 1974. Processing and release of rRNA from isolated nuclei: Analysis of the ATP-dependence and cytosol-dependence. Eur. J. Biochem. 49: 93–100.PubMedGoogle Scholar
  193. Raff, E. C., and Raff, R. A. 1978. Tubulin and microtubules in the early development of the axolotl and other amphibia. Am. Zool. 18: 237–251.Google Scholar
  194. Reiger, J. C., and Kafatos, F. C. 1977. Absolute rate of protein synthesis in sea urchins with specific activity measurements of radioactive leucine leucyl tRNA. Dev. Biol. 57: 270–283.Google Scholar
  195. Richter-Landmann, W. 1959. Der BefruchtungsVorgang bei Impatiens glanduligera unter Berück- eichtigung der plasmatischen Organelle von Spermazelle, Eizelle, und Zygote. Planta 53: 162–177.Google Scholar
  196. Rosen, W. G. 1961. Studies on pollen tube chemotropism. Am. J. Bot. 48: 889–895.Google Scholar
  197. Rosen, W. G. 1964. Chemotropism and fine structure of pollen tubes. In: Linskens, H. F., ed., Pollen Physiology and Fertilization, Amsterdam, North-Holland, pp. 159–169.Google Scholar
  198. Sawicki, W., and Koprowski, H. 1971. Fusion of rabbit spermatozoa with somatic cells cultivated in vitro. Exp. Cell Res. 66: 145–151.PubMedGoogle Scholar
  199. Schatten, G. 1981. The movements and fusion of the pronuclei at fertilization of the sea urchin Lytechinus variegatus: Time-lapse video microscopy. J. Morphol. 167: 231–247.Google Scholar
  200. Schreiber, E. 1931. Über die geschlechtliche Fortpflanzung der Sphacelariales. Ber. Dtsch. Bot. Ges. 49: 235–240.Google Scholar
  201. Schroeder, T. E. 1978. Microvilli on sea urchin eggs: A second burst of elongation. Dev. Biol. 64: 342–346.PubMedGoogle Scholar
  202. Schroeder, T. E. 1979. Surface area change at fertilization: Resorption of the mosaic membrane. Dev. Biol. 70: 306–326.PubMedGoogle Scholar
  203. Schultz, G. A., Clough, J. R., and Johnson, M. H. 1980. Presence of cap structures in the mRNA of mouse eggs. J. Embryol. Exp. Morphol. 56: 139–156.PubMedGoogle Scholar
  204. Schultz, R. M., Letourneau, G. E., and Wassarman, P. M. 1979. Program of early development in the mammal: Changes in patterns and absolute rates of tubulin and total protein synthesis during oogenesis and early embryogenesis in the mouse. Dev. Biol. 68: 341–359.PubMedGoogle Scholar
  205. Scopelliti, R., Senatori, O., Delpino, A., and Manelli, H. 1979. Ribosomi traslanti e non traslanti in alcuni stadi di sviluppo di Bufo bufo. Atti Accad. Naz. Lincei Ser. VIII, 6: 362–366.Google Scholar
  206. Shellenbarger, D. L., and Shapiro, B. M. 1980. Effect of the inhibitors of ion movements, verapamil and tetraethylammonium, on fertilization of mouse eggs in vitro. Gamete Res. 3: 1–7.Google Scholar
  207. Shen, S. S., and Steinhardt, R. A. 1980. Intracellular pH controls the development of new potassium conductance after fertilization of the sea urchin egg. Exp. Cell Res. 125: 55–61.PubMedGoogle Scholar
  208. Shimizu, T. 1981. Cyclic changes in shape of a non-nucleate egg fragment of Tubifex (Annelida, Oligochaeta). Dev. Growth Differ. 23: 101–109.Google Scholar
  209. Skoblina, M. N. 1974. Behavior of sperm nuclei injected into intact maturing and mature oocytes and into oocytes which matured after germinal vesicle removal. Ontogenez 5: 334–340.Google Scholar
  210. Skoblina, M. N. 1976. Role of karyoplasm in the emergence of capacity of egg cytoplasm to induce DNA synthesis in transplanted sperm nuclei. J. Embryol. Exp. Morphol. 36: 67–72.PubMedGoogle Scholar
  211. Slater, D. W., Slater, I., and Bollum, F. J. 1978. Cytoplasmic poly(A) polymerase from sea urchin eggs, merogons and embryos. Dev. Biol. 63: 94–110.PubMedGoogle Scholar
  212. Slater, I., and Slater, D. W. 1974. Polyadenylation and transcription following fertilization. Proc. Natl. Acad. Sci. USA 71: 1103–1107.PubMedGoogle Scholar
  213. Slater, I., Gillespie, D., and Slater, D. W. 1973. Cytoplasmic adenylation and processing of maternal RNA. Proc. Natl. Acad. Sci. USA 70: 406–411.PubMedGoogle Scholar
  214. Smith, C., Brill, D., Bownes, M., and Ford, C. 1980. Drosophila nuclei replicate in Xenopus eggs. J. Embryol. Exp. Morphol. 55: 183–194.PubMedGoogle Scholar
  215. Stambaugh, R., Brackett, B. G., and Mastroianni, L. 1969. Inhibition of in vitro fertilization of rabbit ova by trypsin inhibitors. Biol. Reprod. 1: 223–227.PubMedGoogle Scholar
  216. Steffen, K. 1951. Zur Kenntnis der Befruchtungs Vorganges bei Impatiens glanduligera Lundl. Planta 39: 175–244.Google Scholar
  217. Steffen, K. 1953. Zytologische Untersuchungen an Pollenkorn und -schlauch. Flora (Jena) 140: 140–174.Google Scholar
  218. Steinhardt, R. A., and Mazia, D. 1973. Development of K+ conductance and membrane potential in unfertilized sea urchin eggs after exposure to NH4OH. Nature (London) 241: 400–401.Google Scholar
  219. Steinhardt, R. A., Shen, S., and Mazia, D. 1972. Membrane potential, membrane resistance and an energy requirement for the development of potassium conductance in the fertilization reaction of echinoderm eggs. Exp. Cell Res. 72: 195–203.PubMedGoogle Scholar
  220. Steinhardt, R. A., Zucker, R., and Schatten, G. 1977. Intracellular calcium release at fertilization in the sea urchin egg. Dev. Biol. 58: 185–196.PubMedGoogle Scholar
  221. Sugiyama, M. 1951. Re-fertilization of the fertilized eggs of the sea urchin. Biol. Bull. 101: 335–344.Google Scholar
  222. Suzuki, N., Nomura, K., Ohtake, H., and Isaka, S. 1981. Purification and the primary structure of sperm-activating peptides from the jelly coat of sea urchin eggs. Biochem. Biophys. Res. Commun. 99: 1238–1244.PubMedGoogle Scholar
  223. Szòllòsi, D. G. 1962. Cortical granules: A general feature of mammalian eggs? J. Reprod. Fertil. 4: 223–224.Google Scholar
  224. Szòllòsi, D. G. 1967. Development of cortical granules and the cortical reaction in rat and hamster eggs. Anat. Ree. 159: 431–446.Google Scholar
  225. Szòllòsi, D. G., and Ris, H. 1961. Observation on sperm penetration in the rat. J. Biophys. Biochem. Cytol. 10: 275–283.PubMedGoogle Scholar
  226. Thibault, C., and Gerard, M. 1970. Facteur cytoplasmique nécessaire à la formation de pronucleus mâle dans l’ovocyte de lapine. C. R. Acad. Sci. 270: 2025–2026.Google Scholar
  227. Treigyte, G., and Gineitis, A. 1979. Specific changes in the biosynthesis and acetylation of nucleosomal histones in the early stages of embryogenesis of sea urchin. Exp. Cell Res. 121: 127–134.PubMedGoogle Scholar
  228. Tsubo, Y. 1961. Chemotaxis and sexual behavior in Chlamydomonas. J. Protozool. 8: 114–121.Google Scholar
  229. Tyler, A. 1948. On the chemistry of the fertilizin of the sea urchin Strongylocentrotus purpuratus. Anat. Ree. 101 (Suppl.): 8–9.Google Scholar
  230. Tyler, A. 1956. Physico-chemical properties of the fertilizin of the sea urchin Arbacia punctulata and the sand dollar Echinarachinus parna. Exp. Cell Res. 10: 377–386.PubMedGoogle Scholar
  231. Tyler, A. 1960. Introductory remarks on the theory of fertilization. In: Ranzi, S., ed., Symposium on Germ Cells and Development, Pallanza, pp. 155–174.Google Scholar
  232. Tyler, A. 1964. Studies on fertilization and early development. Eng. Sci. Mag 27: 17–20.Google Scholar
  233. Tyler, A., and Hathaway, R. R. 1958. Production of 35S-labelled fertilizin in eggs of Arbacia punctulata. Biol. Bull. 115: 369.Google Scholar
  234. Tyler, A., Monroy, A., Kao, C. Y., and Grundfest, H. 1956. Membrane potential and resistance of the starfish egg before and after fertilization. Biol. Bull 111: 153–177.Google Scholar
  235. Usui, N., and Yanagimachi, R. 1976. Behavior of hamster sperm nuclei incorporated into eggs at various stages of maturation, fertilization and early development. J. Ultrastruct. Res. 57: 276–288.PubMedGoogle Scholar
  236. van Went, J., and Linskens, H. F. 1967. Die Entwicklung des sogenannten “Fadenapparates” in Embryosack von Petunia hybrida. Genet. Breed. Res. 37: 51–55.Google Scholar
  237. Vasseur, E. 1947. The sulfuric acid content of the egg coat of the sea urchin Strongylocentrotus droebachiensis Miill. Ark. Kemi Mineral. Geol. 25B:Nr 6.Google Scholar
  238. Vasseur, E. 1949. The effect of sea urchin jelly coat solution and calcium ions on the oxygen uptake of sea urchin sperm. Ark. Kemi 1: 393–399.Google Scholar
  239. Vazart, B. 1958. Différenciation des cellules sexuelles et fécondation chez les Phanérogames. Protoplasmatologià 7: 1–158.Google Scholar
  240. Venezky, D. L., Angerer, L. M., and Angerer, R. C. 1981. Accumulation of histone repeat transcripts in the sea urchin egg pronucleus. Cell 24: 385–391.PubMedGoogle Scholar
  241. von Beroldingen, C. H. 1981. The developmental potential of synchronized amphibian cell nuclei. Dev. Biol. 81: 115–126.Google Scholar
  242. Warburg, O. 1910. LJber die Oxydationen in lebenden Zellen nach Versuchen am Seeigelei. Z. Physiol Chem. 66: 305–340.Google Scholar
  243. Warburg, O. 1911. Ùber die Oxydationen in lebenden Zellen nach Versuchen am Seeigelei, Heidelberg, Ròsaler amp; Herbert.Google Scholar
  244. Weinberg, R. A. 1973. Nuclear RNA metabolism. Annu. Rev. Biochem. 42: 329–354.PubMedGoogle Scholar
  245. Wilson, E. B. 1925. The Cell in Development and Heredity, 3rd ed., New York, Macmillan Co.Google Scholar
  246. Wilt, F. H. 1973. Polyadenylation of maternal RNA of sea urchin eggs after fertilization. Proc. Natl. Acad. Sci. USA 70: 2345–2349.PubMedGoogle Scholar
  247. Winkler, M. M., and Grainger, J. L. 1978. Mechanism of action of NH4C1 and other weak bases in the activation of sea urchin eggs. Nature (London) 273: 236–238.Google Scholar
  248. Wolf, D. E., Kinsey, W., Lennarz, W., and Edidin, M. 1981. Changes in the organization of theGoogle Scholar
  249. sea urchin plasma membrane upon fertilization: Indications from the lateral diffusion rates of lipid-soluble fluorescent dyes. Dev. Biol. 81: 133–138.Google Scholar
  250. Wolf, D. P. 1974a. The cortical granule reaction in living eggs of the toad, Xenopus laevis. Dev. Biol. 36: 62–71.PubMedGoogle Scholar
  251. Wolf, D. P. 1974b. On the contents of the cortical granules from Xenopus laevis eggs. Dev. Biol. 38: 14–29.PubMedGoogle Scholar
  252. Wolf, D. P., Nishihara, T., West, D. M., Wyrick, R. E., and Hendrick, J. L. 1976. Isolation, physicochemical properties, and macromolecular composition of the vitelline and fertilization envelopes from Xenopus laevis eggs. Biochemistry 15: 3671–3678.PubMedGoogle Scholar
  253. Yanagimachi, R. 1979. Sperm-egg association in mammals. Curr. Top. Dev. Biol. 12: 83–105.Google Scholar
  254. Yanagimachi, R., and Noda, Y. D. 1970a. Electron microscope studies of sperm incorporation into the golden hamster egg. Am. J. Anat. 128: 429–462.PubMedGoogle Scholar
  255. Yanagimachi, R., and Noda, Y. D. 1970b. Ultrastructural changes in the hamster sperm head during fertilization. J. Ultrastruct. Res. 31: 465–485.PubMedGoogle Scholar
  256. Yanagimachi, R., and Usui, N. 1972. The appearance and disappearance of factors involved in sperm chromatin decondensation in the hamster egg. J. Cell Biol. 55: 293a.Google Scholar
  257. Yanagimachi, R. Nicolson, G. L., Noda, Y. D., and Fujimoto, M. 1973. EM observations of the distribution of acidic anionic residues on hamster spermatozoa and eggs before and during fertilization. J. Ultrastruct. Res. 43: 344–353.PubMedGoogle Scholar
  258. Yasbin, R., Sawicki, J., and Maclntyre, R. J. 1978. A developmental study of acid phosphatase — 1 in Drosophila melanogaster. Dev. Biol. 63: 35–46.PubMedGoogle Scholar
  259. Yasumasu, I., and Nakano, E. 1963. Respiratory level of sea urchin eggs before and after fertilization. Biol. Bull. 125: 182–187.Google Scholar
  260. Yazaki, I. 1968. Immunological analysis of the calcium precipitable protein of sea urchin eggs. Embryologia 10: 131–141.Google Scholar
  261. Young, C. W., Hendler, F. J., and Karnofsky, D. A. 1969. Synthesis of proteins for DNA replication and cleavage events in the sand dollar embryo. Exp. Cell. Res. 58: 15–26.PubMedGoogle Scholar
  262. Yu, S.-F., and Wolf, D. P. 1981. Polyspermic mouse eggs can dispose of supernumerary sperm. Dev. Biol. 82: 203–210.PubMedGoogle Scholar
  263. Zamboni, L. 1971. Fine Morphology of Mammalian Fertilization, New York, Harper amp; Row.Google Scholar
  264. Zamboni, L. 1974. Fine morphology of the follicle wall and follicle cell-oocyte association. Biol. Reprod. 10: 125–149.PubMedGoogle Scholar
  265. Zamboni, L., and Mastroianni, L. 1966. EM studies on rabbit ova. II. The penetrated tubal ovum. J. Ultrastruct. Res. 14: 118–132.Google Scholar
  266. Zamboni, L., Stefanini, M., Oura, C., and Smith, D. 1970. The pattern of sperm penetration into the mouse egg. Proc. 7th Int. Congr. Electron Microsc. 3: 663–664.Google Scholar
  267. Zaneveld, L. J. D., Robertson, R. T., Kessler, M., and Williams, W. L. 1971. Inhibition of fertilization in vivo by pancreatic and seminal plasma trypsin inhibitors. J. Reprod. Fertil. 25: 387–392.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations