Gene Action Changes in Gametogenesis

  • Lawrence S. Dillon


Probably nowhere else are gene action changes so rampant as they are during those earliest stages in the developmental histories of organisms represented by the preparation of the gametes. In the formation of the egg and sperm, generalized cells become converted to types highly specialized for their respective functions. While the specializations of the spermatozoon are obvious features, those of the ovum, although not evident on the surface, are no less marked internally, as becomes even more apparent in the next two chapters. For only during and following fertilization into early development does the remarkable internal organization that exists in the egg cell become revealed. Then, too, the best indicators of gene expression changes, alterations in protein profiles, are manifested. Here then in the present discussion, one must largely be content with changes in the fine structural characteristics and similar topics that merely imply, rather than clearly demonstrate, the activation of new genes and the abandonment of former ones.


Granulosa Cell Nuclear Envelope Zona Pellucida Synaptonemal Complex Meiotic Division 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., Tanabe, Y., Kaneko, T., Mogi, K., and Hosoda, T. 1958. Immunochemical studies with radioactive isotope, similarly between vitellin and lipovitellin. Proc. Soc. Exp. Biol. Med. 98: 703–707.PubMedGoogle Scholar
  2. Afzelius, B. A. 1955. The fine structure of the sea urchin spermatozoa as revealed by the electron microscope. Z. Zellforsch. Mikrosk. Anat. 42: 134–138.PubMedGoogle Scholar
  3. Afzelius, B. A. 1972. Sperm morphology and fertilization biology. In: Beatty, R. A., and Gluecksohn-Waelsch, S., eds., The Genetics of the Spermatozoon, Edinburgh, University of Edinburgh, pp. 131–143.Google Scholar
  4. Afzelius, B. A., ed. 1975. The Functional Anatomy of the Spermatozoon, Elmsford, N.Y., Pergamon Press.Google Scholar
  5. Afzelius, B. A. 1977. Spermatozoa and spermatids of the crinoid Antedon petasus, with a note on primitive spermatozoa from deuterostome animals. J. Ultrastruct. Res. 59: 272–281.PubMedGoogle Scholar
  6. Afzelius, B. A., and Mohri, H. 1966. Mitochondria respiring without exogenous substrate: A study of aged sea urchin spermatozoa. Exp. Cell Res. 42: 10–17.PubMedGoogle Scholar
  7. Allen, B. M. 1911. The origin of the sex cells of Amia and Lepidosteus. J. Morphol. 22: 1–35.Google Scholar
  8. Allen, M. J. 1961. A cytochemical study of the developing oocytes and attached nurse cells of the polychaetous annelid Diopatra cuprea. Acta Embryol. Morphol. Exp. 4: 219–238.Google Scholar
  9. Alves, P., and Jonasson, J. 1978. New staining method for the detection of sister-chromatid ex¬changes in BrdU-labelled chromosomes. J. Cell Sci. 32: 185–195.PubMedGoogle Scholar
  10. Amin, H., Richart, R. M., and Brinson, A. O. 1976. Preovulatory granulosa cells and steroidogenesis: An ultrastructural study in the rhesus monkey. Obstet. Gynecol. 47: 562–568.PubMedGoogle Scholar
  11. Anderson, E. 1969. Oogenesis in the cockroach Periplaneta americana, with special reference to the specialization of the oolemma and the fate of coated vesicles. J. Microsc. (Oxford) 8: 721–738.Google Scholar
  12. Anderson, E., and Huebner, E. 1968. Development of the oocyte and its accessory cells of the polychaete, Diopatra cuprea (Bosc). J. Morphol. 129: 89–125.Google Scholar
  13. Anderson, L. M., and Telfer, W. H. 1969. A follicle cell contribution to the yolk spheres of moth oocytes. Tissue Cell 1: 633–644.PubMedGoogle Scholar
  14. Anderson, W. A. 1968. Cytochemistry of sea urchin gametes. J. Ultrastruct. Res. 24: 398–411.PubMedGoogle Scholar
  15. Anderson, W. A., and Personne, P. 1976. The molluscan spermatozoon, dynamic aspects of its structure and function. Am. Zool. 16: 293–313.Google Scholar
  16. Ando, T., and Watanabe, S. 1969. A new method for fractionation of proteins and the amino acid sequences of salmine and three components of iridine. Int. J. Protein Res. 1: 221–224.PubMedGoogle Scholar
  17. Angelier, N., and Lacroix, J. C. 1975. Complexes de transcription d’origines nucleolaire et chromosomique d’ovocytes de Pleurodeles waltlii et P. poireti (Urodeles). Chromosoma 51: 323–335.PubMedGoogle Scholar
  18. Angelier, N., Hemon, D., and Bouteille, M. 1979. Mechanisms of transcription in nucleoli of amphibian oocytes as visualized by high-resolution autoradiography. J. Cell Biol. 80: 277–290.PubMedGoogle Scholar
  19. Applebaum, S. W., James, T. C., Wreschner, D. H., and Tata, J. R. 1981. The preparation and characterization of locust vitellogenin messenger RNA and the synthesis of its complementary DNA. Biochem. J. 193: 209–216.PubMedGoogle Scholar
  20. Arthur, C. G., Weide, C. M., Vincent, W. S., and Goldstein, E. S. 1979. mRNA sequence diversity during early embryogenesis in Drosophila melanogaster. Exp. Cell Res. 121: 87–94.Google Scholar
  21. Avramova, Z., Dessev, G., and Tsanev, R. 1980. DNA-associated proteins of ram sperm nuclei. FEBS Lett. 118: 58–62.PubMedGoogle Scholar
  22. Baca, M., and Zamboni, L. 1967. The fine structure of human follicular oocytes. J. Ultrastruct. Res. 19: 354–381.PubMedGoogle Scholar
  23. Baccetti, B., and Afzelius, B. A. 1976. The Biology of the Sperm Cell, Basel, Karger.Google Scholar
  24. Baccetti, B., and Dallai, R. 1977. The spermatozoon of onychophorans. 2. Peripatoides leuckarti. Tissue Cell 9: 563–566.PubMedGoogle Scholar
  25. Baccetti, B., Dallai, R., Burrini, A., and Selmi, G. 1976. Fine structure of the spermatozoon of the onychophoran, Peripatopsis. Tissue Cell 8: 659–672.PubMedGoogle Scholar
  26. Bachvarova, R. 1974. Incorporation of tritiated adenosine into mouse ovum RNA. Dev. Biol. 40: 52–58.PubMedGoogle Scholar
  27. Baker, B. S., Carpenter, A. T. C., and Ripoll, P. 1978. The utilization during mitotic cell division of loci controlling meiotic recombination and disjunction in D. melanogaster. Genetics 90: 531–578.PubMedGoogle Scholar
  28. Baker, T. G. 1970. Electron microscopy of the primary and secondary oocyte. Adv. Biosci. 6: 7–22..Google Scholar
  29. Baker, T. G., and Neal, P. 1973. Initiation and control of meiosis and follicular growth in ovaries of the mouse. Ann. Biol. Anim. Biochim. Biophys. 13: 137–144.Google Scholar
  30. Baker, T. G., and Neal, P. 1974. Oogenesis in human fetal ovaries maintained in organ culture. J. Anat. 117: 591–604.PubMedGoogle Scholar
  31. Baker, T. G., and O, W. S. 1976. Development of the ovary and oogenesis. Clin. Obstet. Gynecol. 3: 3–26.Google Scholar
  32. Barker, K. R., and Baker, C. L. 1970. Urodele spermateleosis: A comparative electron microscope study. In: Baccetti, B., ed., Comparative Spermatology, Rome, Accademia Nazionale dei Lincei, pp. 81–84.Google Scholar
  33. Bast, R. E., and Telfer, W. H. 1976. Follicle cell protein synthesis and its contribution to the yolk of the cecropia moth oocyte. Dev. Biol. 52: 83–97.PubMedGoogle Scholar
  34. Bawa, S. R. 1975. Comparative studies on the origin of the chromatoid body. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 275–278.Google Scholar
  35. Bedford, J. M. 1979. Evolution of the sperm maturation and sperm storage functions of the epididymis. In: Fawcett, D. W., and Bedford, J. M., eds., The Spermatozoon, Munich, Urban amp; Schwarzenberg, pp. 7–21.Google Scholar
  36. Bedford, J. M., and Rifkin, J. M. 1979. An evolutionary view of the male reproductive tract and sperm maturation in a monotreme mammal—the echidna, Tachyglossus aculeatus. Am. J. Anat. 156: 207–230.PubMedGoogle Scholar
  37. Bell, P. R. 1978. A microtubule-nuclear envelope complex in the spermatozoid of Pteridium. J. Cell Sci. 29: 189–195.PubMedGoogle Scholar
  38. Bell, W. J. 1969. Dual role of juvenile hormone in the control of yolk formation in Periplaneta americana. J. Insect Physiol. 15: 1279–1290.Google Scholar
  39. Bell, W. J., and Barth, R. H. 1971. Initiation of yolk deposition by juvenile hormone. Nature New Biol. 230: 220–221.PubMedGoogle Scholar
  40. Benavente, R., and Wettstein, R. 1980. Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and a long diffuse stage. Chromosoma 77: 69–81.PubMedGoogle Scholar
  41. Benoit, J. 1930. Contribution à l’étude de la lignée germinale chez le poulet: Destruction précoce des gonocytes primaires par les rayons ultra-violets. C. R. Soc. Biol. 104: 1329–1331.Google Scholar
  42. Benttinen, L. C., and Comb, D. G. 1971. Early and late histones during sea urchin development. J. Mol. Biol. 57: 355–358.PubMedGoogle Scholar
  43. Bergink, E. W., and Wallace, R. A. 1974. Precursor-product relationship between amphibian vitellogenin and the yolk proteins, lipovitellin and phosvitin. J. Biol. Chem. 249: 2897–2903.PubMedGoogle Scholar
  44. Bergink, E. W., Wallace, R. A., Van de Berg, J. A., Bos, E. S., Gruber, M., and Ab, G. 1974. Estrogen-induced synthesis of yolk proteins in roosters. Am. Zool. 14: 1177–1193.Google Scholar
  45. Berrill, N.J., and Karp, G. 1976. Development, New York, McGraw-Hill.Google Scholar
  46. Bird, M. M. 1980. The morphology of synaptic prdiles in expiants of foetal and neonatal mouse cerebral cortex maintained in a magnesium-enriched environment. Cell Tissue Res. 206: 115–122.PubMedGoogle Scholar
  47. Bishop, D. W. 1961. Biology of spermatozoa. In: Young, W. G., ed., Sex and Internal Secretions, 3rd ed., Baltimore, Williams amp; Wilkins, Vol. 2, pp. 707–796.Google Scholar
  48. Blackler, A. W. 1970. The integrity of the reproductive cell line in the Amphibia. Curr. Top. Dev. Biol. 5: 71–87.PubMedGoogle Scholar
  49. Bleil, J. D., and Wassarman, P. M. 1980. Structure and function of the zona pellucida: Identification and characterization of the proteins of the mouse oocyte’s zona pellucida. Dev. Biol. 76: 185–202.PubMedGoogle Scholar
  50. Boitani, C., Geremia, R., Rossi, R., and Monesi, V. 1980. Electrophoretic pattern of polypeptide synthesis in spermatocytes and spermatids of the mouse. Cell Differ. 9: 41–49.PubMedGoogle Scholar
  51. Bonnot, E. J. 1967. Le plan de l’organisation fondamentale de la spermatide de Bryum capillare. C. R. Acad. Sci. Ser. D 265: 958–961.Google Scholar
  52. Borkhardt, B., and Oison, L. W. 1979. Meiotic prophase in diploid and tetraploid strains of Allomyces macrogynus. Protoplasma 100: 323–343.Google Scholar
  53. Boss, J. M. N. 1954. Mitosis in cultures of newt tissue. II. Chromosome pairing in anaphase. Exp. Cell Res. 7: 225–231.Google Scholar
  54. Boss, J. M. N. 1955. The pairing of somatic chromosomes: A survey. Texas Rep. Biol. Med. 13: 212–221.Google Scholar
  55. Bournoure, L. 1939. L’Origine des Cellules Réproductrices et le Problème de la Lignée Germinale, Paris, Gauthier-Villars.Google Scholar
  56. Brien, P., and Reniers-Decoen, M. 1951. La gamétogènese et l’intersexualité chez Hydra attenuata. Ann. Soc. R. Zool. Belg. 82: 285–327.Google Scholar
  57. Brock, W. A., Trostle, P. K., and Meistrich, M. L. 1980. Meiotic synthesis of testis histones in the rat. Proc. Natl. Acad. Sci. USA 77: 371–375.PubMedGoogle Scholar
  58. Brookes, V. J. 1969. The induction of yolk protein synthesis in the fat body of an insect, Leucophaea maderae, by an analog of the juvenile hormone. Dev. Biol. 20: 459–471.PubMedGoogle Scholar
  59. Brooks, D. E. 1979. Biochemical environment of sperm maturation. In: Fawcett, D. W., and Bedford, J. M., eds., The Spermatozoon, Munich, Urban amp; Schwarzenberg, pp. 23–34.Google Scholar
  60. Brown, D. D., and Dawid, I. B. 1968. Specific gene amplification in oocytes. Science 160: 272–280.PubMedGoogle Scholar
  61. Brown, D. D., and Sugimoto, K. 1973. 5 S DNAs of Xenopus laevis and Xenopus mulleri: Evolution of a gene family. J. Mol. Biol. 78: 397–415.Google Scholar
  62. Brown, D. D., and Weber, C. S. 1968. Unique DNA sequences homologous to 4S, 5S, and rRNA. J. Mol. Biol. 34: 681–697.PubMedGoogle Scholar
  63. Brown, D. D., Wensink, P. C., and Jordan, E. 1971. Purification and some characteristics of 5 S DNA from Xenopus laevis. Proc. Natl. Acad. Sci. USA 68: 3175–3179.PubMedGoogle Scholar
  64. Brown, W. V., and Bertke, E. M. 1974. Textbook of Cytology, 2nd éd., St. Louis, Mosby.Google Scholar
  65. Brown, W. V., and Stack, S. M. 1968. Somatic pairing as a regular preliminary to meiosis. Bull. Torrey Bot. Club 95: 369–378.Google Scholar
  66. Bruel, M. T. 1973. Localisation des gonocytes primaires chez le jeune embryon de poulet hybride Rhode-Whyandotte: Études histologiques et expérimentales. Arch. Anat. Histol. Embryol. Norm. Exp. 56: 51–54.Google Scholar
  67. Brummett, A. R., and Dumont, J. N. 1977. Intracellular transport of vitellogenin in Xenopus oocytes. Dev. Biol. 60: 482–486.PubMedGoogle Scholar
  68. Bulnheim, H. P. 1962. Untersuchungen zum Spermatozoendimorphismus von Opalia crenimarginata (Prosobranchia). Z. Zellforsch. Mikrosk. Anat. 56: 300–343.PubMedGoogle Scholar
  69. Byers, B., and Goetsch, L. 1975. Electron microscopic observations on the meiotic karyotype of diploid and tetraploid S. cerevisiae. Proc. Natl. Acad. Sci. USA 72: 5056–5060.PubMedGoogle Scholar
  70. Callan, H. G. 1963. The nature of lampbrush chromosomes. Int. Rev. Cytol. 15: 1–34.PubMedGoogle Scholar
  71. Callan, H. G. 1967. The organization of genetic units in chromosomes. J. Cell Sci. 2: 1–7.PubMedGoogle Scholar
  72. Callan, H. G., and Old, R. W. 1980. In situ hybridization to lampbrush chromosomes: A potential source of error exposed. J. Cell Sci. 41: 115–123.PubMedGoogle Scholar
  73. Callen, J. C., Dennebouy, N., and Mounolou, J. C. 1980. Development of the mitochondrial mass and accumulation of mtDNA in previtellogenic stages of Xenopus laevis oocytes. J. Cell Sci. 41: 307–320.PubMedGoogle Scholar
  74. Camatini, M., Saita, A., and Cotelli, F. 1974. Spermiogenesis of Lithobius forficatus at ultrastructural level. Symp. Zool. Soc. London 32: 231–235.Google Scholar
  75. Camatini, M., Franchi, E., and Saita, A. 1977. Spermiogenesis in Scutigera coleoptrata (Chilopoda). J. Submicrosc. Cytol. 9: 373–387.Google Scholar
  76. Camatini, M., Franchi, E., and Saita, A. 1979. Ultrastructural investigation of spermiogenesis in Peripatopsis capensis (Onychophora). J. Morphol. 159: 29–48.Google Scholar
  77. Capco, D. G., and Jeffery, W. R. 1979. Origin and spatial distribution of maternal mRNA during oogenesis of an insect, Oncopeltus fasciatus. J. Cell Sci. 39: 63–76.PubMedGoogle Scholar
  78. Carothers, Z. B. 1975. Comparative studies on spermatogenesis in bryophytes. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 71–84.Google Scholar
  79. Carothers, Z. B., and Kreitner, G. L. 1967. Studies of spermatogenesis in the Hepaticae. I. Ultra-structure of the Vierergruppe in Marchantia. J. Cell Biol. 33: 43–51.PubMedGoogle Scholar
  80. Carpenter, A. T. C. 1975a. Electron microscopy of meiosis inD. melanogaster females. I. Structure, arrangement, and temporal change of the synaptonemal complex in wild-type. Chromosoma 51: 157–182.PubMedGoogle Scholar
  81. Carpenter, A. T. C. 1975b. Electron microscopy of meiosis in D. melanogaster females. II. The recombination nodule—a recombination-associated structure at pachytene? Proc. Natl. Acad. Sci. USA 72: 3186–3189.PubMedGoogle Scholar
  82. Carpenter, A. T. C. 1979a. Synaptonemal complex and recombination nodules in wild-type D. melanogaster females. Genetics 92: 511–541.PubMedGoogle Scholar
  83. Carpenter, A. T. C. 1979b. Recombination nodules and synaptonemal complex in recombination- defective females of Drosophila melanogaster. Chromosoma 75: 259–292.PubMedGoogle Scholar
  84. Challoner, S. 1975. Studies of oogenesis and follicular development in the golden hamster. 2. Initiation and control of meiosis in vitro. J. Anat. 119: 149–156.PubMedGoogle Scholar
  85. Channing, C. P. 1979. Follicular non-steroidal regulators. In: Channing, C. P., Marsh, J. M., and Sadler, W. A., eds., Ovarian Follicular and Corpus Luteum Function, New York, Plenum Press, pp. 327–343.Google Scholar
  86. Chapron, C., and Relexans, J. C. 1971. Connexions intercellulaires et évolution nucléaire au cours de la préméiose ovocytaire. C. R. Acad. Sci. 272: 3307–3310.Google Scholar
  87. Chen, T. T. 1980. Vitellogenin in locusts (Locusta migratoria): Translation of vitellogenin in RNA in Xenopus oocytes and analysis of the polypeptide products. Arch. Biochem. Biophys. 201: 266–276.PubMedGoogle Scholar
  88. Chen, T. T., Couble, P., DeLucca, F. L., and Wyatt, G. R. 1976. Juvenile hormone control of vitellogenin synthesis in Locusta migratoria. In: Gilbert, L. I., ed., The Juvenile Hormones, New York, Plenum Press, pp. 505–529.Google Scholar
  89. Chen, T. T., Strahlendorf, P. W., and Wyatt, G. R. 1978. Vitellin and vitellogenin from locusts (Locusta migratoria). J. Biol. Chem. 253: 5325–5331.PubMedGoogle Scholar
  90. Chen, T. T., Couble, P., Abu-Hakima, R., and Wyatt, G. R. 1979. Juvenile hormone-controlled vitellogenin synthesis in Locusta migratoria fat body. Dev. Biol. 69: 59–72.PubMedGoogle Scholar
  91. Chouinard, L. 1973. An electron-microscope study of the extranucleolar bodies during growth of the oocyte in the prepubertal mouse. J. Cell Sci. 12: 55–69.PubMedGoogle Scholar
  92. Christmann, J. L., Grayson, M. J., and Huang, R. C. C. 1977. Comparative study of hen yolk Phosvitin and plasma vitellogenin. Biochemistry 16: 3250–3256.PubMedGoogle Scholar
  93. Clarkson, S. G., Birnstiel, M. L., and Purdom, I. F. 1973. Clustering of tRNA genes of Xenopus laevis. J. Mol. Biol. 79: 411–429.PubMedGoogle Scholar
  94. Clermont, Y. 1966a. Renewal of spermatogonia in man. Am. J. Anat. 118: 509–524.PubMedGoogle Scholar
  95. Clermont, Y. 1966b. Spermatogenesis in man: A study of the spermatogonial population. Fertil. Steril. 17: 705–721.PubMedGoogle Scholar
  96. Clermont, Y. 1970. Dynamics of human spermatogenesis. In: Rosenberg, E., and Paulsen, C. A., eds., The Human Testes, New York, Plenum Press, pp. 47–59.Google Scholar
  97. Clermont, Y., and Rambourg, A. 1978. Evolution of the endoplasmic reticulum during rat spermiogenesis. Am. J. Anat. 151: 191–212.PubMedGoogle Scholar
  98. Cognetti, G., Spinelli, G., and Vivoli, A. 1974. Synthesis of histones during sea urchin oogenesis. Biochim. Biophys. Acta 349: 447–455.PubMedGoogle Scholar
  99. Cole, K., and Sheath, R. G. 1980. Ultrastructural changes in major organelles during spermatial differentiation in Bangia (Rhodophyta). Protoplasma 102: 253–279.Google Scholar
  100. Colman, A. 1975. Transcription of DNAs of known sequence after injection into the eggs and oocytes of Xenopus laevis. Eur. J. Biochem. 57: 85–96.PubMedGoogle Scholar
  101. Colman, A., Lane, C. D., Craig, R., Boulton, A., Mohun, T., and Morser, J. 1981. The influence of topology and glycosylation on the fate of heterologous secretory proteins made in Xenopus oocytes. Eur. J. Biochem. 113: 339–348.PubMedGoogle Scholar
  102. Comings, D. E., and Okada, T. A. 1975. Mechanisms of chromosome banding. VI. Whole mount electron microscopy of banded metaphase chromosomes and a comparison with pachytene chromosomes. Exp. Cell Res. 93: 267–274.PubMedGoogle Scholar
  103. Connell, C. J. 1978. A freeze-fracture and lanthanum tracer study of the complex junction between Sertoli cells of the canine testes. J. Cell Biol. 76: 57–75.PubMedGoogle Scholar
  104. Connell, C. J. 1980. Blood-testis barrier formation and the initiation of meiosis in the dog. In: Steinberger, A., and Steinberger, E., eds., Testicular Development, Structure, and Function, New York, Raven Press, pp. 71–78.Google Scholar
  105. Conner, M. K., Alarie, Y., and Dombroske, R. L. 1979. Sister chromatid exchange in murine alveolar macrophages, regenerating liver and bone marrow cells—a simultaneous multicellular in vivo assay. Chromosoma 74: 51–55.PubMedGoogle Scholar
  106. Cook, W. H. 1961. Proteins of hen’s egg yolk. Nature (London) 190: 1173–1175.Google Scholar
  107. Cook, W. H. 1968. Macromolecular components of egg yolk. In: Carter, T. C., ed., Egg Quality: A Study of the Hen’s Egg, Edinburgh, Oliver amp; Boyd, pp. 109–132.Google Scholar
  108. Couble, P., Chen, T. T., and Wyatt, G. R. 1979. Juvenile hormone-controlled vitellogenin synthesis in Locusta migratoria fat body: Cytological development. J. Insect Physiol. 25: 327–337.Google Scholar
  109. Czolowska, R. 1972. The fine structure of the “germinal cytoplasm” in the egg of Xenopus laevis. Wilhelm Roux Arch. Dev. Biol. 169: 335–344.Google Scholar
  110. Darnbrough, C. H., and Ford, P. J. 1979. Turnover and processing of poly(A) in full-grown oocytes and during progesterone-induced oocyte maturation in Xenopus laevis. Dev. Biol. 71: 323–340.PubMedGoogle Scholar
  111. Darnbrough, C. H., and Ford, P. J. 1981. Identification in Xenopus laevis of a class of oocyte — specific proteins bound to messenger RNA. Eur. J. Biochem. 113: 415–424.PubMedGoogle Scholar
  112. Davidson, E. H. 1976. Gene Activity in Early Development, 2nd ed., New York, Academic Press.Google Scholar
  113. Davies, P. L., Dixon, G. H., Ferrier, L. N., Gedamu, L., and Iatrou, K. 1976. The structure and function of protamine mRNA from developing trout testes. Prog. Nucleic Acid Res. Mol. Biol. 19: 135–155.PubMedGoogle Scholar
  114. Denis, H., and Wegnez, M. 1977. Biochemical research on oogenesis: Oocytes and liver cells of the teleostfish Tinea tinea contain different kinds of 5 S RNA. Dev. Biol. 59: 228–236.PubMedGoogle Scholar
  115. Denis, H., Picard, B., le Maire, M., and Clerot, J.-C. 1980. Biochemical research on oogenesis: The storage particles of the teleostfish Tinea tinea. Dev. Biol. 77: 218–223.PubMedGoogle Scholar
  116. Diberardino, M. A. 1980. Genetic stability and modulation of metazoan nuclei transplanted into eggs and oocytes. Differentiation 17: 17–30.PubMedGoogle Scholar
  117. Dickinson, H. G., and Heslop-Harrison, J. 1970. The ribosome cycle, nucleoli, and cytoplasmic nucleoids in the meiocytes of Lilium. Protoplasma 69: 187–200.Google Scholar
  118. Dillon, L. S. 1978. The Genetic Mechanism and the Origin of Life, New York, Plenum Press.Google Scholar
  119. Dillon, L. S. 1981. Ultrastructure, Macromolecules, and Evolution, New York, Plenum Press.Google Scholar
  120. Dixon, G. H., Davies, P. L., Ferrier, L. N., Gedamu, L., and Iatrou, K. 1977. The expression of protamine genes in developing trout sperm cells. In: Ts’o, P., ed., The Molecular Biology of the Mammalian Genetic Apparatus, Amsterdam, Elsevier/North-Holland, pp. 356–379.Google Scholar
  121. Doyle, W. L. 1933. Observations on spermiogenesis in Sciara coprophila. J. Morphol. 54: 477–485.Google Scholar
  122. Dresser, M. E., and Moses, M. J. 1980. Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster. IV. Light and electron microscopy of synapsis and nucleolar development by silver staining. Chromosoma 76: 1–22.PubMedGoogle Scholar
  123. Dring, D. M. 1975. The male gamete in ascomycetes. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 45–55.Google Scholar
  124. Drury, K. C., and Schorderet-Slatkine, S. 1975. Effects of cycloheximide on the “autocatalytic” nature of the maturation promoting factor (MPF) in oocytes of Xenopus laevis. C. R. Acad. Sci. 280: 1273–1275.Google Scholar
  125. Duckett, J. G. 1973. An ultrastructural study of the differentiation of the spermatozoid of Equisetum. J. Cell Sci. 12: 95–129.PubMedGoogle Scholar
  126. Duckett, J. G. 1975. Spermatogenesis in pteridophytes. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 97–127.Google Scholar
  127. Duckett, J. G., and Bell, P. R. 1977. An ultrastructural study of the mature spermatozoid of Equisetum. Philos. Trans. R. Soc. London Ser. B. 277: 131–158.Google Scholar
  128. Dumont, J. N. 1969. Oogenesis in the annelid Enchytraeus albidus, with special reference to the origin and cytochemistry of yolk. J. Morphol. 129: 317–344.Google Scholar
  129. Dumont, J. N. 1972. Oogenesis in Xenopus laevis (Daudin): Stages of oocyte development in laboratory maintained animals. J. Morphol. 136: 153–180.PubMedGoogle Scholar
  130. Dziadek, M., and Dixon, K. E. 1975. Mitosis in presumptive primordial germ cells in post-blastula embryos of Xenopus laevis. J. Exp. Zool. 192: 285–291.PubMedGoogle Scholar
  131. Ecker, R. E. 1972. The regulation of protein synthesis in anucleate frog oocytes. In: Bonotto, S., Kirchmann, R., Goutier, R., and Maisin, J. R., eds., Biology and Radiobiology of Anucleate Systems, New York, Academic Press, pp. 165–179.Google Scholar
  132. Etkin, L. D. 1978. Approaches to problems of gene regulation and cell type determination in amphibians. Am. Zool. 18: 215–224.Google Scholar
  133. Etkin, L. D., and Maxson, R. E. 1980. The synthesis of authentic sea urchin transcriptional andGoogle Scholar
  134. translational products by sea urchin histone genes injected into Xenopus laevis oocytes. Dev. Biol. 75:13–25.Google Scholar
  135. Fargeix, N. 1966. Localisation des cellules germinales de l’embryon de canard au stage des premières paires de somites. C. R. Acad. Sci. 262: 2259–2262.Google Scholar
  136. Fawcett, D. W., and Bedford, J. M., eds. 1979. The Spermatozoon, Munich, Urban amp; Schwarzenberg.Google Scholar
  137. Felber, B. K., Maurhofer, S., Jaggi, R. B., Wyler, T., Wahli, W., Ryffel, G. U., and Weber, R. 1980. Isolation and translation in vitro of four related vitellogenin mRNAs of estrogen-stimulated Xenopus laevis. Eur. J. Biochem. 105: 17–24.PubMedGoogle Scholar
  138. Finch, J. T., and Klug, A. 1976. Solenoidal model for superstructure in chromatin. Proc. Natl. Acad. Sci. USA 73: 1897–1901.PubMedGoogle Scholar
  139. Follett, B. K., and Redshaw, M. R. 1968. The effects of oestrogens and gonadotropins on lipid and protein metabolism in Xenopus laevis. J. Endocrinol. 40: 439–456.PubMedGoogle Scholar
  140. Follett, B. K., and Redshaw, M. R. 1974. The physiology of vitellogenesis. In: Lofts, B., ed., The Physiology of Amphibia, New York, Academic Press, Vol. II, pp. 219–308.Google Scholar
  141. Folliot, R. 1979. Ultrastructural study of spermiogenesis of the anuran amphibian Bombina variegata. In: Fawcett, D. W., and Bedford, J. M., eds., The Spermatozoon, Munich, Urban amp; Schwarzenberg, pp. 333–339.Google Scholar
  142. Ford, C. C., and Woodland, H. R. 1975. DNA synthesis in oocytes and eggs of Xenopus laevis injected with DNA. Dev. Biol 43: 189–199.PubMedGoogle Scholar
  143. Ford, P. J. 1972. RNA synthesis during oogenesis in Xenopus laevis. In: Biggers, J. D., and Schuetz, A. W., eds., Oogenesis, Baltimore, University Park Press, pp. 167–191.Google Scholar
  144. Franzen, A. 1956. On spermiogenesis, morphology of the spermatozoon and biology of fertilization among invertebrates. Zool. Bidr. Uppsala 31: 355–482.Google Scholar
  145. Franzen, A. 1970. Phylogenetic aspects of the morphology of the spermatozoa and spermiogenesis. In: Baccetti, B., ed., Comparative Spermatology, New York, Academic Press, pp. 29–46.Google Scholar
  146. Fretter, V. 1953. Some aspects of egg laying in intertidal prosobranchs. Br. J. Anim. Behav. 1: 83–84.Google Scholar
  147. Fritsch, F. E. 1952. The Structure and Reproduction of the Algae, London, Cambridge University Press, Vol. I I.Google Scholar
  148. Fuge, H. 1979. Synapsis, desynapsis, and formation of polycomplex-like aggregates in male meiosis of Pales ferruginea. Chromosoma 70: 353–373.Google Scholar
  149. Furieri, P. 1975. The peculiar morphology of spermatozoon of Bombina variegata L. Monit. Zool. Ital. 9: 185–201.Google Scholar
  150. Gall, J. G. 1955. On the sub-microscopic structure of chromosomes. Brookhaven Symp. Biol. 8: 17.Google Scholar
  151. Gall, J. G., and Callan, H. G. 1962. 3H-Uridine incorporation in lampbrush chromosomes. Proc. Natl. Acad. Sci. USA 48: 562–570.Google Scholar
  152. Garber, R. C., and Aist, J. R. 1979. The ultrastructure of meiosis in Plasmodiophora brassicae. Can. J. Bot. 57: 2509–2518.Google Scholar
  153. Genevès, L. 1968. Modalités de l’édification de l’appareil flagellaire des spermatozoides de Poly- trichum formosum. C. R. Acad. Sci. Ser. D. 267: 849–852.Google Scholar
  154. Geremia, R., Boitani, C., Conti, M., and Monesi, V. 1977. RNA synthesis in spermatocytes and spermatids and preservation of meiotic RNA during spermiogenesis in the mouse. Cell Differ. 5: 343–355.PubMedGoogle Scholar
  155. Gifford, E. M., and Larson, S. 1980. Developmental features of the spermatogenous cell in Ginkgo biloba. Am. J. Bot. 67: 119–124.Google Scholar
  156. Gilbert, A. B. 1971. The ovary. In: Bell, D. J., and Freeman, B. M., eds., Physiology and Biochemistry of the Domestic Fowl, New York, Academic Press, Vol. 3, pp. 1163–1208.Google Scholar
  157. Gillies, C. B. 1979. The relationship between synaptonemal complexes, recombination nodules and crossing over in Neurospora crassa bivalents and translocation quadrivalents. Genetics 91: 1–17.PubMedGoogle Scholar
  158. Goldberg, E. 1977. Isozymes in testes and spermatozoa. In: Ratazzi, M., Scandalios, J., and Whitt, G., eds., Isozymes: Current Topics in Biological and Medical Research, New York, Liss, Vol. 1, pp. 79–124.Google Scholar
  159. Goldstein, E. S. 1978. Translated and sequestered untranslated message sequences in Drosophila oocytes and embryos. Dev. Biol. 63: 59–96.PubMedGoogle Scholar
  160. Goldstein, E. S., and Arthur, C. G. 1979. Isolation and characterization of cDNA complementary to transient maternal poly(A)+ RNA from the Drosophila oocyte. Biochim. Biophys. Acta 565: 265–274.PubMedGoogle Scholar
  161. Gondos, B. 1970. Germ cell relationships in the developing rabbit ovary. J. Embryol. Exp. Morphol. 23: 419–426.PubMedGoogle Scholar
  162. Gondos, B. 1978. Oogonia and oocytes in mammals. In: Jones, R. E., ed., The Vertebrate Ovary, New York, Plenum Press, pp. 83–120.Google Scholar
  163. Gondos, B., and Zamboni, L. 1969. Ovarian development: The functional importance of germ cell interconnections. Fertil. Steril. 20: 176–189.PubMedGoogle Scholar
  164. Gould, K. G. 1980. Scanning electron microscopy of the primate sperm. Int. Rev. Cytol. 63: 323–355.PubMedGoogle Scholar
  165. Graham, C. F. 1966. The regulation of DNA synthesis and mitosis in multinucleate frog egg. J. Cell Sci. 1: 363–374.PubMedGoogle Scholar
  166. Graham, C. F., Arms, K., and Gurdon, J. B. 1966. The induction of DNA synthesis by frog egg cytoplasm. Dev. Biol. 14: 349–381.Google Scholar
  167. Grell, R. F., Oakberg, E. F., and Generoso, E. E. 1980. Synaptonemal complexes at premeiotic interphase in the mouse spermatocyte. Proc. Natl. Acad. Sci. USA 77: 6720–6723.PubMedGoogle Scholar
  168. Grün, G. 1972. Über den Eidimorphismus und die Oogenese von Dionophilus gyrociliatus (Ar- chiannelida). Z. Zellforsch. Mikrosk. Anat. 130: 70–92.PubMedGoogle Scholar
  169. Gulyas, B. J. 1971. The rabbit zygote: Formation of annulate lamellae. J. Ultrastruct. Res. 35: 112–126.PubMedGoogle Scholar
  170. Gulyas, B. J. 1980. Cortical granules of mammalian eggs. Int. Rev. Cytol. 63: 357–392.PubMedGoogle Scholar
  171. Gurdon, J. B. 1967. On the origin and persistence of a cytoplasmic state inducing nuclear DNA synthesis in frog’s eggs. Proc. Natl. Acad. Sci. USA 58: 545–552.PubMedGoogle Scholar
  172. Gurdon, J. B. 1968. Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J. Embryol. Exp. Morphol. 20: 401–414.PubMedGoogle Scholar
  173. Gurdon, J. B. 1974. The Control of Gene Expression in Animal Development, London, Oxford University Press.Google Scholar
  174. Gusse, M., and Chevaillier, P. 1980. Molecular structure of chromatin during sperm differentiation of the dogfish Scyliorhinus caniculus (L.). Chromosoma 77: 57–68.PubMedGoogle Scholar
  175. Hadek, R. 1966. Cytoplasmic whorls in the golden hamster oocyte. J. Cell Sci. 1: 281–282.PubMedGoogle Scholar
  176. Hagedorn, H. H., and Judson, C. L. 1972. Purification and site of synthesis of Aedes aegypti yolk protein. J. Exp. Zool. 182: 367–377.PubMedGoogle Scholar
  177. Hanisch, J. 1970. Die Blastostyle- und Spermienentwicklung von Eudendrium racemosum Cavolini. Zool. Jahrb. Anat. Ontog. Tiere 87: 1–62.Google Scholar
  178. Hanson, J., Randall, J. T., and Bayley, S. 1952. The microstructure of the spermatozoa of the snail, Viviparus. Exp. Cell Res. 3: 65–78.Google Scholar
  179. Hardisty, M. W. 1978. Primordial germ cells and the vertebrate germ line. In: Jones, R. E., ed., The Vertebrate Ovary, New York, Plenum Press, pp. 1–45.Google Scholar
  180. Harrison, R. A. P. 1975. Aspects of the enzymology of mammalian spermatozoa. In: Duckett,J. G.,and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 301–316.Google Scholar
  181. Heald, P. J., and McLachlan, P. M. 1963. Isolation of phosvitin from the plasma of the laying hen. Biochem. J. 87: 571–576.PubMedGoogle Scholar
  182. Heald, P. J., and McLachlan, P. M. 1965. The synthesis of phosvitin in vitro by slices of liver from the laying hen. Biochem. J. 94: 32–39.PubMedGoogle Scholar
  183. Heilbrunn, L. V., Daugherty, K., and Wilber, K. M. 1939. Initiation of maturation in the frog egg. Physiol. Zool. 12: 97–100.Google Scholar
  184. Heslop-Harrison, J. 1968. Wall development within the microspore tetrad of Lilium longiflorum. Can. J. Bot. 46: 1185–1192.Google Scholar
  185. Hill, R. S. 1979. A quantitative electron-microscope analysis of chromatin from Xenopus laevis lampbrush chromosomes. J. Cell Sci. 40: 145–169.PubMedGoogle Scholar
  186. Hill, R. S., and Macgregor, H. C. 1980. The development of lampbrush chromosome-type tran¬scription in the early diplotene oocytes of X. laevis. J. Cell Sci. 44: 87–101.PubMedGoogle Scholar
  187. Hinrichsen, M. J., and Blaquier, J. A. 1980. Evidence supporting the existence of sperm maturation in the human epididymis. J. Reprod. Fertil. 60: 291–294.PubMedGoogle Scholar
  188. Hofstein, R., Hershkowitz, M., Gozes, I., and Samuel, D. 1980. The characterization and phos¬phorylation of an actin-like protein in synaptonemal membranes. Biochim. Biophys. Acta 624: 153–162.PubMedGoogle Scholar
  189. Honda, B. M., Baillie, D. L., and Candido, E. P. M. 1975. Properties of chromatin subunits from developing trout testes. J. Biol. Chem. 250: 4643–4647.PubMedGoogle Scholar
  190. Horesh, O., Simchen, G., and Friedmann, A. 1979. Morphogenesis of the synapton during yeast meiosis. Chromosoma 75: 101–115.PubMedGoogle Scholar
  191. Hoskins, D. D., Stephens, D. T., and Hall, M. L. 1974. Cyclic adenosine 3’, 5’-monophosphate and protein kinase levels in developing bovine spermatozoa. J. Reprod. Fertil. 37: 131–133.PubMedGoogle Scholar
  192. Hough-Evans, B. R., Wold, B. J., Ernst, S. G., Britten, R. J., and Davidson, E. H. 1977. Appearance and persistence of maternal RNA sequences in sea urchin development. Dev. Biol. 60: 258–277.PubMedGoogle Scholar
  193. Hough-Evans, B. R., Ernst, S. G., Britten, R. J., and Davidson, E. H. 1979. RNA complexity in developing sea urchin oocytes. Dev. Biol. 69: 258–269.PubMedGoogle Scholar
  194. Howards, S., Lechene, C., and Vigersky, R. 1979. The fluid environment of the maturing spermatozoon. In: Fawcett, D. W., and Bedford, J. M., eds., The Spermatozoon, Munich, Urban amp; Schwarzenberg, pp. 35–41.Google Scholar
  195. Huebner, E., and Anderson, E. 1976. Comparative spiralian oogenesis—structural aspects: An overview. Am. Zool. 16: 315–343.Google Scholar
  196. Huffman, D. M. 1968. Meiotic behavior in the mushroom Collybia maculata var. scorzonerea. Mycologia 60: 451–456.PubMedGoogle Scholar
  197. Iatrou, K., and Dixon, G. H. 1977. The distribution of poly (A)+ and poly (A)~ protamine mRNA sequences in the developing trout testes. Cell 10: 433–441.PubMedGoogle Scholar
  198. Iatrou, K., and Dixon, G. H. 1978. Protamine mRNA: Its life history during spermatogenesis in rainbow trout. Fed. Proc. 37: 2526–2533.PubMedGoogle Scholar
  199. Iatrou, K., Spira, A. W., and Dixon, G. H. 1978. Protamine mRNA: Evidence for early synthesis in rainbow trout. Dev. Biol. 64: 82–98.PubMedGoogle Scholar
  200. Iatrou, K., Gedamu, L., and Dixon, G. H. 1979. Protamine mRNA: Partial purification and char-acterization of a heterogeneous family of polyadenylated messenger components. Can. J. Biochem. 57: 945–956.PubMedGoogle Scholar
  201. Ijiri, K., and Egami, N. 1975. Mitotic activity of germ cells during normal development of Xenopus laevis tadpoles. J. Embryol. Exp. Morphol. 34: 687–694.PubMedGoogle Scholar
  202. Ikenishi, K., Kotani, M., and Tanabe, K. 1974. Ultrastructural changes associated with UV irradiation in the “germinal plasm” of Xenopus laevis. Dev. Biol. 36: 155–168.PubMedGoogle Scholar
  203. Jacob, E. 1980. Characterization of cloned cDNA sequences derived from Xenopus laevis polyA(+) oocyte RNA. Nucleic Acids Res. 8: 1319–1337.PubMedGoogle Scholar
  204. Jaggi, R. B., Felber, B. K., Maurhofer, S., Weber, R., and Ryffel, G. U. 1980. Four different vitellogenin proteins of Xenopus identified by translation in vitro. Eur. J. Biochem. 109:343– 347.Google Scholar
  205. Jamieson, B. G. M. 1978. A comparison of spermiogenesis and spermatozoal ultrastructure in megascolecid and lumbricid earthworms. Aust. J. Zool. 26: 225–240.Google Scholar
  206. Jamieson, B. G. M., and Daddow, L. 1979. An ultrasturctural study of microtubules and the acrosome in spermiogenesis of Tubificidae (Oligochaeta). J. Ultrastruct. Res. 67: 209–224.PubMedGoogle Scholar
  207. Johnson, A. W., and Hnilica, L. S. 1971. Cytoplasmic and nuclear basic protein synthesis during early sea urchin development. Biochim. Biophys. Acta 246: 141–154.Google Scholar
  208. Jonasson, J., Santesson, B., and Strom, A. 1980. Analysis of sister-chromatid exchanges and tumorigenicity in cell hybrids. J. Cell Sci. 42: 117–126.PubMedGoogle Scholar
  209. Jones, R., and Glover, T. D. 1975. Interrelationships between spermatozoa, the epididymis and epididymal plasma. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 367–384.Google Scholar
  210. Jones, R. C. 1971. Studies of the structure of the head of boar spermatozoa from the epididymis. J. Reprod. Fertil. 13 (Suppl.): 51–64.Google Scholar
  211. Jones, R. C. 1975. Fertility and infertility in mammals in relation to sperm structure. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 343–365.Google Scholar
  212. Jordon, H. E. 1917. Embryonic history of the germ cells of the loggerhead turtle (Caretta caretta). Publ. Carnegie Inst. 251: 313–344.Google Scholar
  213. Jukes, T. H., and Kay, H. D. 1932. The immunological behavior of the second protein (livetin) of hen’s egg yolk. J. Exp. Med. 56: 469–482.PubMedGoogle Scholar
  214. Kalt, M. R. 1973. Ultrastructural observations on the germ line of Xenopus laevis. Z. Zellforsch. Mikrosk. Anat. 138: 41–62.PubMedGoogle Scholar
  215. Kalt, M. R. 1976. Morphology and kinetics of spermatogenesis in Xenopus laevis. J. Exp. Zool. 195: 393–408.PubMedGoogle Scholar
  216. Kalt, M. R. 1977. Cytoplasmic inclusions in Xenopus spermatogenic cells: Ultrastructural and cytochemical analysis of the action of antimitotic agents on subcellular elements. J. Cell Sci. 28: 15–28.PubMedGoogle Scholar
  217. Kalt, M. R., and Gall, J. G. 1974. Observations on early germ cell development and premeiotic rDNA amplification inX. laevis. J. Cell Biol. 62: 460–472.PubMedGoogle Scholar
  218. Kalt, M. R., Pinney, H. E., and Graves, K. 1975. Inhibitor induced alterations of chromatid bodies in male germ line cells of Xenopus laevis. Cell Tissue Res. 161: 193–210.PubMedGoogle Scholar
  219. Kanda, N., and Kato, H. 1979. In vivo sister chromatid exchange in cells of various organs of the mouse. Chromosoma 74: 299–305.PubMedGoogle Scholar
  220. Kang, Y. H. 1974. Development of the zona pellucida in the rat oocyte. Am. J. Anat. 139: 535–566.PubMedGoogle Scholar
  221. Kato, H. 1979. Preferential occurrence of sister chromatid exchanges at heterochromatin-euchromatin junctions in the wallaby and hamster chromosomes. Chromosoma 74: 307–316.PubMedGoogle Scholar
  222. Kaye, J. S., and McMaster-Kaye, R. 1975. The fine structure and protein composition of developing spermatid nuclei. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 227–237.Google Scholar
  223. Keichline, L. D., and Wassarman, P. M. 1977. Developmental study of the structure of sea urchin embryo and sperm chromatin using micrococcal nuclease. Biochim. Biophys. Acta 475: 139–151.PubMedGoogle Scholar
  224. Keichline, L. D., and Wassarman, P. M. 1979. Structure of chromatin in sea urchin embryos, sperm, and adult somatic cells. Biochemistry 18: 214–219.PubMedGoogle Scholar
  225. Kemp, R. F. O. 1975. Oidia, plasmogamy and speciation in Basidiomycetes. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 57–69.Google Scholar
  226. Kerr, J. B., and Dixon, D. E. 1974. An ultrastructural study of germ plasm in spermatogenesis of Xenopus laevis. J. Embryol. Exp. Morphol. 32: 573–592.PubMedGoogle Scholar
  227. Kessel, R. G., and Ganion, L. R. 1980a. Cytodifferentiation in the Rana pipiens oocyte. VI. The origin and morphogenesis of primary yolk precursor complexes. J. Submicrosc. Cytol. 12: 647–654.Google Scholar
  228. Kessel, R. G., and Ganion, L. R. 1980b. Electron microscopic and autoradiographic studies on vitellogenesis in Necturus maculosus. J. Morphol. 164: 215–233.PubMedGoogle Scholar
  229. Kierszenbaum, A. L., and Tres, L. L. 1974. Nucleolar and perichromosomal RNA synthesis dur¬ing meiotic prophase in the mouse testis. J. Cell Biol. 60: 39–53.PubMedGoogle Scholar
  230. King, R. C. 1970. The meiotic behavior of the Drosophila oocyte. Int. Rev. Cytol. 28: 125–168.PubMedGoogle Scholar
  231. Klemperer, F. 1893. Über natürliche Immunität und ihre Verwertung für die Immunisierungstheräpie. Arch. Exp. Pathol. Pharmakol. 31: 356–382.Google Scholar
  232. Kleve, M. G., and Clark, W. H. 1980. Association of actin with sperm centrioles: Isolation of centriolar complexes and immunofluorescent localization of actin. J. Cell Biol. 86: 87–95.PubMedGoogle Scholar
  233. Kloetzel, P.-M., and Sommerville, J. 1981. Analysis and reconstruction of an RNP particle which stores 5 S RNA and tRNA in amphibian oocytes. Nucleic Acids Res. 9: 605–621.PubMedGoogle Scholar
  234. Knox, R. B. 1976. Cell recognition and pattern formation in plants. In: Graham, C. F., and Wareing, P. F., eds., The Developmental Biology of Plants and Animals, Oxford, Blackwell, pp. 141–168.Google Scholar
  235. Koeppe, J., and Ofengand, J. 1976. Juvenile hormone-induced biosynthesis of vitellogenin in Leucophaea maderae. Arch. Biochem. Biophys. 173: 100–113.PubMedGoogle Scholar
  236. Korn, L. J., and Brown, D. D. 1978. Nucleotide sequences of Xenopus borealis oocyte 5S DNA: Comparisons of sequences that flank several related eucaryotic genes. Cell 15: 1145–1156.PubMedGoogle Scholar
  237. Kostellow, A. B., and Morrill, G. A. 1977. Role of calcium and cyclic nucleotides in progesterone-induced meiotic maturation in R. pipiens. Fed. Proc. 36: 634.Google Scholar
  238. Kowalski, D. T. 1965. Development and cytology of Preussia typharum. Bot. Gaz. 126: 123–130.Google Scholar
  239. Kowalski, D. T. 1966. The morphology and cytology of Preussia funiculata. Am. J. Bot. 53: 1036–1041.Google Scholar
  240. Krause, W. J., and Cutts, J. H. 1979. Pairing of spermatozoa in the epididymis of the opossum Didelphis virginiana: A scanning electron microscope study. Arch. Histol. Jpn. 42: 181–190.PubMedGoogle Scholar
  241. Kressmann, A., Clarkson, S. G., Telford, J. L., and Birnstiel, M. L. 1978. Transcription of Xenopus tDNAMet and sea urchin histone DNA injected into the Xenopus oocyte nucleus. Cold Spring Harbor Symp. Quant. Biol. 42: 1077–1082.Google Scholar
  242. Kugrens, P. 1980. EM observations on the differentiation and release of spermatia in the marine red alga Polysiphonia hendryi. Am. J. Bot. 67: 519–528.Google Scholar
  243. LaClaire, J. W., and West, J. A. 1978. Light- and electron-microscopic studies of growth and reproduction in Cutleria. Protoplasma 97: 93–110.Google Scholar
  244. LaClaire, J. W., and West, J. A. 1979. Light- and electron-microscopic studies of growth and reproduction in Cutleria (Phaeophyta). II. Gametogenesis in the male plant of C. hancocki. Protoplasma 101: 247–267.Google Scholar
  245. Lai, M., and Bell, P. R. 1975. Spermatogenesis in mosses. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 85–95.Google Scholar
  246. LaMarca, M. J., and Wassarman, P. M. 1979. Program of early development in the mammal: Changes in absolute rates of synthesis of ribosomal proteins during oogenesis and early embryogenesis in the mouse. Dev. Biol. 73: 103–119.PubMedGoogle Scholar
  247. Lane, C. D. 1981. The fate of foreign proteins introduced into Xenopus oocytes. Cell 24: 281–282.PubMedGoogle Scholar
  248. Lane, C. D., Champion, J., Haiml, L., and Kreil, G. 1981. The sequestration, processing and retention of honey-bee promellitin made in amphibian oocytes. Eur. J. Biochem. 113: 273–281.PubMedGoogle Scholar
  249. Lange, L., and Olson, L. W. 1977. The zoospore of Phlyctochytrium aestuarii. Protoplasma 93: 27–43.Google Scholar
  250. Lange, L., and Olson, L. W. 1978. The zoospore of Synchytrium endobioticum. Can. J. Bot. 56: 1229–1239.Google Scholar
  251. Laskey, R. A., and Gurdon, J. B. 1973. Induction of polyoma DNA synthesis by injection into frog-egg cytoplasm. Eur. J. Biochem. 37: 467–471.PubMedGoogle Scholar
  252. Laskowski, M., and Sealock, R. W. 1971. Protein proteinase inhibitors—Molecular aspects. In: Boyer, P. D., ed., The Enzymes, 3rd ed., New York, Academic Press, Vol. 3, pp. 376–473.Google Scholar
  253. Lavallard, R. 1976. Données ultrastructurales sur la spermatogenèse chez Peripatus accacioi. C. R. Acad. Sci. Ser. D. 282: 461–464.Google Scholar
  254. Lessie, P. E., and Lovett, J. S. 1968. Ultrastructural changes during sporangium formation and zoospore differentiation in Blastocladiella emersonii. Am. J. Bot. 55: 220–236.PubMedGoogle Scholar
  255. Levine, N., and Marsh, D. J. 1971. Micropuncture studies of the electrochemical aspects of fluid and electrolyte transport in individual seminiferous tubules, the epididymis and the vas deferens in rats. J. Physiol. (London) 213: 557–570.Google Scholar
  256. Lin, M. S. 1980. Sister chromatid exchanges in human cells and Chinese hamster cells. Exp. Cell Res. 127: 179–183.PubMedGoogle Scholar
  257. Ling, V., and Dixon, G. H. 1970. The biosynthesis of protamine in trout testis. II. Polysome patterns and protein synthetic activities during testis maturation. J. Biol. Chem. 245: 3035–3042.PubMedGoogle Scholar
  258. Ling, V., Trevithick, J. R., and Dixon, G. H. 1969. The biosynthesis of protamine in trout testis. I. Intercellular site of synthesis. Can. J. Biochem. 47: 51–60.PubMedGoogle Scholar
  259. Linskens, H. F., and Kroh, M. 1967. In Kompatibiletat der Phanerogamen. Encycl. Plant Physiol. 18: 506–530.Google Scholar
  260. Loones, M. T. 1979. In vivo effects of y-irradiation on the functional architecture of the lampbrush chromosomes in Pleurodeles (Amphibia, Urodela). Chromosoma 73: 357–368.PubMedGoogle Scholar
  261. Lovett, J. A., and Goldstein, E. S. 1977. The cytoplasmic distribution and characterization of poly(A)+ RNA in oocytes and embryos of Drosophila. Dev. Biol. 61: 70–78.PubMedGoogle Scholar
  262. Lovett, J. S., Barstow, W. E., and Lassie, P. E. 1975. Growth and differentiation of the water mold Blastocladiella emersonii. Bacteriol. Rev. 39: 345–404.PubMedGoogle Scholar
  263. Lu, B. C. 1967. Meiosis in Coprinus lagopus: A comparative study with light and electron microscopy. J. Cell Sci. 2: 529–536.PubMedGoogle Scholar
  264. Lu, B. C., and Raju, N. B. 1970. Meiosis in Coprinus. II. Chromosome pairing and the lampbrush diplotene stage of meiotic prophase. Chromosoma 29: 305–316.PubMedGoogle Scholar
  265. Luciani, J. M., and Stahl, A. 1971. Rapports des nucléoles avec les chromosomes méiotiques de l’ovocyte foetal humain. C. R. Acad. Sci. Ser. D. 273: 521–524.Google Scholar
  266. McCully, K. A., Maw, W. A., and Common, R. H. 1959. Zone electrophoresis of the proteins of the fowl’s serum and egg yolk. Can. J. Biochem. Physiol. 37: 1457–1468.Google Scholar
  267. Macgregor, H. C., and Andrews, C. 1977. The arrangement and transcription of “middle repetitive” DNA sequences on lampbrush chromosomes of Triturus. Chromosoma 63: 109–126.Google Scholar
  268. Macgregor, H. C., Mizuno, S., and Vlad, M. 1976. Chromosomes and DNA sequences in salamanders. Chromosomes Today 5: 331–339.Google Scholar
  269. McMaster-Kaye, R., and Kaye, J. S. 1980a. Organization of chromatin during spermiogenesis: Beaded fibers, partly beaded fibers, and loss of nucleosome structure. Chromosoma 77: 41–46.PubMedGoogle Scholar
  270. McMaster-Kaye, R., and Kaye, J. S. 1980b. Acrosomal bands: Specialized structures on the nuclear surface for holding the acrosomal granule. J. Ultrastruct. Res. 71: 233–248.PubMedGoogle Scholar
  271. Magnusson, C. 1980. Role of cumulus cells for rat oocyte maturation and metabolism. Gamete Res. 3: 133–140.Google Scholar
  272. Maguire, M. P. 1979. An indirect test for a role of the synaptonemal complex in the establishment of sister chromatid cohesiveness. Chromosoma 70: 313–321.Google Scholar
  273. Malcolm, D. B., and Sommerville, J. 1974. The structure of chromosome-derived RNP in oocytes of Triturus cristatus carnifex. Chromosoma 48: 137–158.PubMedGoogle Scholar
  274. Mailer, J. L., Wu, M., and Gerhart, J. C. 1977. Changes in protein phosphorylation accompanying maturation of X. laevis oocytes. Dev. Biol. 58: 295–312.Google Scholar
  275. Marcaillou, C., and Szôllôsi, A. 1980. The “blood-testis” barrier in a nematode and a fish: A generalizable concept. J. Ultrastruct. Res. 70: 128–136.PubMedGoogle Scholar
  276. Marushige, K., and Dixon, G. H. 1969. Developmental changes in chromosomal composition and template activity during spermatogenesis in trout testis. Dev. Biol. 19: 397–414.PubMedGoogle Scholar
  277. Masui, Y. 1967. Relative roles of the pituitary, follicle cells, and progesterone in the induction of oocyte maturation in Rana pipiens. J. Exp. Zool. 166: 365–376.PubMedGoogle Scholar
  278. Mauléon, P. 1975. Importance des différentes périodes ovogénétiques dans la gonade femelle d’embryon de brebis: Contrôle du changement de comportement mitotique en méiotique. Ann. Biol. Anim. Biochim. Biophys. 15: 725–737.Google Scholar
  279. Mauléon, P., Devictor-Vuillet, M., and Luciani, J. M. 1976. The preloeptotene chromosome condensation and decondensation in the ovary of the sheep embryo. Ann. Biol. Anim. Biochim. Biophys. 16: 293–296.Google Scholar
  280. May, F. E. B., and Knowland, J. 1980. The role of thyroxin in the transition of vitellogenin synthesis from noninducibility to inducibility during metamorphosis in Xenopus laevis. Dev. Biol. 77: 419–430.PubMedGoogle Scholar
  281. Mermod, J. J., Schatz, G., and Crippa, M. 1980. Specific control of messenger translation in Drosophila oocyte and embryos. Dev. Biol. 75: 177–186.PubMedGoogle Scholar
  282. Mertz, J., and Gurdon, J. B. 1977. Purified DNAs are transcribed after microinjection mio Xenopus oocytes. Nature (London) 260: 116–120.Google Scholar
  283. Metz, C. W. 1927. Chromosome behavior and genetic behavior in Sciara. II. Genetic evidence of selective segregation in S. coprophila. Z. Indukt. Abstamm. Vererbungsl. 45: 184–201.Google Scholar
  284. Metz, C. W. 1938. Chromosome behavior, inheritance, and sex determination in Sciara. An. Nat. 72: 485–520.Google Scholar
  285. Metz, C. W., and Schmuck, M. L. 1931. Studies on sex determination and the sex chromosome mechanism in Sciara. Genetics 16: 225–253.PubMedGoogle Scholar
  286. Metz, C. W., Moses, M. S., and Hoppe, E. N. 1926. Chromosome behavior and genetic behavior in Sciara. I. Chromosome behavior in the spermatocyte divisions. Z. Indukt. Abstamm. Vererbungsl. 42: 237–267.Google Scholar
  287. Meves, F. 1903. Über oligopyrene und apyrene Spermien und über ihre Entstehung nach Beobachtungen an Paludina und Pygaera. Arch. Mikrosk. Anat. Entwicklungsmech. 61: 1–84.Google Scholar
  288. Millette, C. F. 1979. Appearance and partitioning of plasma membrane antigens during mouse spermatogenesis. In Fawcett, D. W., and Bedford, J. M., eds., The Spermatozoon, Munich, Urban amp; Schwarzenberg, pp. 177–186.Google Scholar
  289. Mizukami, I., and Gall, J. G. 1966. Centriole replication. II. Sperm formation in the fern, Mar- silea, and the Cycad, Zamia. J. Cell Biol. 29: 97–111.PubMedGoogle Scholar
  290. Moens, P. B. 1968. The structure and function of the synaptonemal complex in Lilium longiflorum sporocytes. Chromosoma 23: 418–451.Google Scholar
  291. Moens, P. B., and Church, K. 1979. The distribution of synaptonemal complex material in metaphase I bivalents of Locusta and Choealtis (Orthoptera: Acrididae). Chromosoma 73: 247–254.Google Scholar
  292. Moens, P. B., and Go, V. L. W. 1972. Intercellular bridges and division patterns of rat spermatogonia. Z. Zellforsch. Mikrosk. Anat. 127: 201–208.PubMedGoogle Scholar
  293. Moestrup, O. 1975. Some aspects of sexual reproduction in eucaryotic algae. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 23–35.Google Scholar
  294. Mohun, T. J., Lane, C. D., Colman, A., and Wylie, C. C. 1981. The secretion of proteins in vitro from Xenopus oocytes and their accessory cells: A biochemical and morphological study. J. Embryol. Exp. Morphol. 61: 367–383.PubMedGoogle Scholar
  295. Mok, C. C., Martin, W. G., and Common, R. H. 1961. A comparison of phosvitins prepared from hen’s serum and hen’s egg yolk. Can. J. Biochem. Physiol. 39: 109–117.PubMedGoogle Scholar
  296. Monesi, V. 1964. Ribonucleic acid synthesis during mitosis and meiosis in the mouse testis. J. Cell Biol. 22: 521–532.PubMedGoogle Scholar
  297. Monesi, V. 1965. Synthetic activities during spermatogenesis in the mouse: RNA and protein. Exp. Cell Res. 39: 197–224.PubMedGoogle Scholar
  298. Monesi, V., Geremia, R., D’Agostino, A., and Boitani, C. 1978. Biochemistry of male germ cellGoogle Scholar
  299. differentiation in mammals: RNA synthesis in meiotic and post meiotic cells. Curr. Top. Dev. Biol. 12: 11–36.Google Scholar
  300. Moor, R. M., Smith, M. W., and Dawson, R. M. C. 1980a. Measurement of intercellular coupling between oocytes and cumulus cells using intracellular markers. Exp. Cell Res. 126: 15–29.PubMedGoogle Scholar
  301. Moor, R. M., Polge, C., and Willadsen, S. M. 1980b. Effect of follicular steroids on the maturation and fertilization of mammalian oocytes. J. Embryol. Exp. Morphol. 56: 319–335.PubMedGoogle Scholar
  302. Moore, G. P. M., and Lintern-Moore, S. 1974. A correlation between growth and RNA synthesis in the mouse oocyte. J. Cell Biol. 60: 416–422.PubMedGoogle Scholar
  303. Morgan, G. T. 1979. The time course of male meiosis in the red-backed salamander, Plethodon cinereus. J. Cell Sci. 38: 345–356.PubMedGoogle Scholar
  304. Morrill, G. A., and Murphy, J. B. 1972. Role for protein phosphorylation in meiosis and in the early cleavage phase of amphibian embryonic development. Nature (London) 238: 282–284.Google Scholar
  305. Moses, M. J., Karatsis, P. A., and Hamilton, A. E. 1979. Synaptonemal complex analysis of heteromorphic trivalents in Lemur hybrids. Chromosoma 70: 141–160.Google Scholar
  306. Muckenthaler, F. A. 1964. Autoradiographic study of nucleic acid synthesis during spermatosgenesis in the grasshopper, Melanoplus differentialis. Exp. Cell Res. 35: 531–547.PubMedGoogle Scholar
  307. Muramatsu, M., Utakoji, T., and Sugano, H. 1968. Rapidly-labeled nuclear RNA in Chinese hamster testis. Exp. Cell Res. 53: 278–283.PubMedGoogle Scholar
  308. Myles, D. G., and Bell, P. R. 1975. An ultrastructural study of the spermatozoid of the fern, Marsilea vestiti. J. Cell Sci. 17: 633–645.PubMedGoogle Scholar
  309. Myles, D. G., and Hepler, P. K. 1977. Spermiogenesis in the fern Marsilea: Microtubules, nuclear shaping, and cytomorphogenesis. J. Cell Sci. 23: 57–83.PubMedGoogle Scholar
  310. Nicolson, G. L., and Yanagimachi, R. 1979. Cell surface changes associated with the epididymal maturation of mammalian spermatozoa. In: Fawcett, D. W., and Bedford, J. M., eds., The Spermatozoon, Munich, Urban amp; Schwarzenberg, pp. 187–194.Google Scholar
  311. Nicolson, G. L., Usui, N., Yanagimachi, R., Yanagimachi, H., and Smith, J. R. 1977. Lectin binding sites on the plasma membranes of rabbit spermatozoa. J. Cell Biol. 74: 950–962.PubMedGoogle Scholar
  312. Norstog, K. 1975. The motility of cycad spermatozoids in relation to structure and function. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 135–142.Google Scholar
  313. Oakberg, E. F. 1968. Relationship between stage of follicular development and RNA synthesis in the mouse oocyte. Mutat. Res. 6: 155–165.PubMedGoogle Scholar
  314. O’Brien, D. A., and Bellve, A. R. 1980a. Protein constituents of the mouse spermatozoon. I. An electrophoretic characterization. Dev. Biol. 75: 386–404.PubMedGoogle Scholar
  315. O’Brien, D. A., and Bellve, A. R. 1980b. Protein constituents of the mouse spermatozoon. II. Temporal synthesis during spermatogenesis. Dev. Biol. 75: 405–418.PubMedGoogle Scholar
  316. O’Connor, C. M., and Smith, L. D. 1976. Inhibition of oocyte maturation by theophylline: Possible mechanism of action. Dev. Biol. 52: 318–322.PubMedGoogle Scholar
  317. Olins, A. L. 1977. v bodies are close-packed in chromatin fibres. Cold Spring Harbor Symp. Quant. Biol. 42: 325–329.Google Scholar
  318. Olson, L. W., Lange, L., and Reichle, R. 1978. The zoospore and meiospore of the aquatic phycomycete Catenaria anquillulae. Protoplasma 94: 53–71.Google Scholar
  319. Opresko, L., Wiley, H. S., and Wallace, R. A. 1980. Differential postendocytotic compartmen- tation in Xenopus oocytes is mediated by a specifically bound ligand. Cell 22: 47–57.PubMedGoogle Scholar
  320. O’Rand, M. G. 1979. Changes in sperm surface properties correlated with capacitation. In: Fawcett, D. W., and Bedford, J. M., eds., The Spermatozoon, Munich, Urban amp; Schwarzenberg, pp. 195–204.Google Scholar
  321. O’Rand, M. G., and Romrell, L. J. 1980. Appearance of regional surface autoantigens during spermatogenesis: Comparison of anti-testis and anti-sperm autoantisera. Dev. Biol. 75: 431–441.PubMedGoogle Scholar
  322. Ozaki, H. 1971. Developmental studies of sea urchin chromatin: Chromatin isolated from spermatozoa of Strongylocentrotus purpuratus. Dev. Biol. 26: 209–219.PubMedGoogle Scholar
  323. Ozdzenski, W. 1967. Observations on the origin of primordial germ cells in the mouse. Zool. Pol. 17: 367–379.Google Scholar
  324. Paddock, S. W., and Woolley, D. M. 1980. Helical conformation of dense fibers from mammalian spermatozoa. Exp. Cell. Res. 126: 199–206.PubMedGoogle Scholar
  325. Pala, M. 1970. The embryonic history of the primordial germ cells in Gambusia holbrookii (Grd). Boll. Zool. 37: 49–62.Google Scholar
  326. Pan, M. L. 1971. The synthesis of vitellogenin in the cecropia silkworm. J. Insect Physiol. 17: 677–689.Google Scholar
  327. Pan, M. L., Bell, W. J., and Telfer, W. H. 1969. Vitellogenic blood protein synthesis by insect fat body. Science 165: 393–394.PubMedGoogle Scholar
  328. Paolillo, D. J., Kreitner, G. L., and Reighard, J. A. 1968a. Spermatogenesis in Polytrichum juniperinum. I. The origin of the apical body and the elongation of the nucleus. Planta 78: 226–247.Google Scholar
  329. Paolillo, D. J., Kreitner, G. L., and Reighard, J. A. 1968b. Spermatogenesis in Polytrichum juniperinum. II. The mature sperm. Planta 78: 248–261.Google Scholar
  330. Parchman, L. G., and Lin, K. C. 1972. Nucleolar RNA synthesis during meiosis of lily microsporocytes. Nature New Biol. 239: 235–237.PubMedGoogle Scholar
  331. Pathak, S., Lau, Y.-F., and Drwinga, H. L. 1979. Observations on the synaptonemal complex in Armenian hamster spermatocytes by light microscopy. Chromosoma 73: 53–60.PubMedGoogle Scholar
  332. Peel, M. C., and Duckett, J. G. 1975. Studies of spermatogenesis in the Rhodophyta. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, pp. 1–13.Google Scholar
  333. Perlman, S. M., and Rosbash, M. M. 1978. Analysis of Xenopus laevis ovary and somatic cell polyadenylated RNA by molecular hybridization. Dev. Biol. 63: 197–212.PubMedGoogle Scholar
  334. Perlman, S. M., Ford, P. J., and Rosbash, M. M. 1977. Presence of tadpole and adult globin RNA sequences in oocytes of Xenopus laevis. Proc. Natl. Acad. Sci. USA 74: 3835–3839.PubMedGoogle Scholar
  335. Perry, M. M., and Gilbert, A. B. 1979. Yolk transport in the ovarian follicle of the hen (Gallus domesticus): Lipoprotein-like particles at the periphery of the oocyte in the rapid growth phase. J. Cell Sci. 39: 257–272.PubMedGoogle Scholar
  336. Perry, R. P., and Kelley, D. E. 1973. Messenger RNA turnover in mouse L cells. J. Mol. Biol. 79: 681–696.PubMedGoogle Scholar
  337. Peters, H., Levy, E., and Crone, M. 1962. DNA synthesis in oocytes of mouse embryos. Nature (London) 195: 915–916.Google Scholar
  338. Peters, H., Levy, E., and Crone, M. 1965. Oogenesis in rabbits. J. Exp. Zool. 158: 169–180.PubMedGoogle Scholar
  339. Phillips, D. M. 1966. Observations on spermiogenesis in the fungus gnat Sciara coprophila. J. Cell Biol. 30: 477–497.PubMedGoogle Scholar
  340. Phillips, D. M. 1977. Mitochondrial disposition in mammalian spermatozoa. J. Ultrastruct. Res. 58: 144–154.Google Scholar
  341. Phillips, D. M. 1980. Observations on mammalian spermiogenesis using surface replicas. J. Ultrastruct. Res. 72: 103–111.PubMedGoogle Scholar
  342. Picard, B., and Wegnez, M. 1979. Isolation of a 7 S particle from Xenopus laevis oocytes: A 5 S RNA-protein complex. Proc. Natl. Acad. Sci. USA 76: 241–245.PubMedGoogle Scholar
  343. Picard, B., le Maire, M., Wegnez, M., and Denis, H. 1980. Biochemical research on oogenesis: Composition of the 42-S storage particles of X. laevis oocytes. Eur. J. Biochem. 109: 359–368.PubMedGoogle Scholar
  344. Pickett-Heaps, J. D. 1968. Ultrastructure and differentiation in Chara. IV. Spermatogenesis. Aust. J. Biol. Sci. 21: 655–690.Google Scholar
  345. Pollister, A. W., and Pollister, P. F. 1943. The relation between centriole and centromere in atypical spermatogenesis of viviparid snails. Ann. N.Y. Acad. Sci. 45: 1–48.Google Scholar
  346. Potter, H., and Dressier, D. 1980. DNA synaptase: An enzyme that fuses DNA molecules at a region of homology. Proc. Natl. Acad. Sci. USA 77: 2390–2394.PubMedGoogle Scholar
  347. Preston, S. F., Deanin, G. G., Hanson, R. K., and Gordon, M. W. 1981. Tubulin: Tyrosine ligase in oocytes and embryos of Xenopus laevis. Dev. Biol. 81: 36–42.PubMedGoogle Scholar
  348. Pukkila, P. J. 1975. Identification of the lampbrush chromosome loops which transcribe 5S rRNA in Notophthalmus (Triturus) viridescens. Chromosoma 53: 71–89.PubMedGoogle Scholar
  349. Racey, P. A. 1972. Viability of bat spermatozoa after prolonged storage in the epididymis. J. Reprod. Fertil. 28: 303–307.Google Scholar
  350. Racey, P. A. 1975. The prolonged survival of spermatozoa in bats. In: Duckett, J. G., and Racey, P. A., eds., The Biology of the Male Gamete, New York, Academic Press, p. 385–416.Google Scholar
  351. Raghavan, V. 1976. Role of the generative cell in androgenesis in henbane. Science 191: 388–389.PubMedGoogle Scholar
  352. Raghavan, V. 1978. Origin and development of pollen embryoids and pollen calluses in cultured anther segments of Hyoscyamus niger (henbane). Am. J. Bot. 65: 984–1002.Google Scholar
  353. Raghavan, V. 1979. Embryogenic determination and RNA synthesis in pollen grains of Hyoscyamus niger (henbane). Am. J. Bot. 66: 36–39.Google Scholar
  354. Ramirez, S. A., and Guajardo, M. 1980. A cytological and histochemical analysis of the ovarian follicle cells of the South Texas squid (.Loligo pealei). Tex. J. Sci. 32: 43–54.Google Scholar
  355. Redshaw, M. R., Follett, B. K., and Nicholls, T. J. 1969. Comparative effects of the oestrogens and other steroid hormones on serum lipids and proteins in Xenopus laevis. J. Endocrinol. 43: 47–53.PubMedGoogle Scholar
  356. Reeves, R. 1978. Nucleosome structure of Xenopus oocyte amplified ribosomal genes. Biochemistry 17: 4908–4916.PubMedGoogle Scholar
  357. Richards, A., and Thompson, J. T. 1921. The migration of the primary sex-cells of Fundulus heteroclitus. Biol. Bull. 40: 325–428.Google Scholar
  358. Robbins, R. R., and Carothers, Z. B. 1978. Spermatogenesis in Lycopodium: The mature sper- matozoid. Am. J. Bot. 65: 433–440.Google Scholar
  359. Rodman, T. C., and Bachvarova, R. 1976. RNA synthesis in preovulatory mouse oocytes. J. Cell Biol. 70: 251–257.PubMedGoogle Scholar
  360. Rodman, T. C., and Barth, A. H. 1979. Chromosomes of mouse oocytes in maturation: Differential trypsin sensitivity and amino acid incorporation. Dev. Biol. 68: 82–95.PubMedGoogle Scholar
  361. Romrell, L. J., and O’Rand, M. G. 1978. Capping and ultrastructural localization of sperm surface isoantigens during spermatogenesis. Dev. Biol. 63: 76–93.PubMedGoogle Scholar
  362. Roosen-Runge, E. C. 1977. The Process of Spermatogenesis in Animals, London, Cambridge University Press.Google Scholar
  363. Rosbach, M., Ford, P. J., and Bishop, J. O. 1974. Analysis of the C-value paradox by molecular hybridization. Proc. Natl. Acad. Sci. USA 71: 3746–3750.Google Scholar
  364. Rossen, J. M., and Westergaard, M. 1966. Meiosis and the time of meiotic chromosome replication in the ascomycete Neottiella rutilans. C. R. Trav. Lab. Carlsberg 35: 233–260.PubMedGoogle Scholar
  365. Rubenstein, E. C. 1979. The role of an epithelial occlusion zone in the termination of vitello- genesis in Hyalophora cecropia ovarian follicles. Dev. Biol. 71: 115–127.PubMedGoogle Scholar
  366. Ruhberg, H., and Storch, V. 1976. Zur Ultrastruktur von mannlichen Genital-trakt: Spermiocyto- genesis und Spermien von Peripatopsis moseleyi. Zoomorphologie 85: 1–15.Google Scholar
  367. Russell, L. D. 1980. Sertoligerm cell interrelations: A review. Gamete Res. 3: 179–202.Google Scholar
  368. Ryffel, G. U., Wyler, T., Muellener, D. B., and Weber, R. 1980. Identification, organization and processing intermediates of the putative precursors of Xenopus vitellogenin mRNA. Cell 19: 53–61.PubMedGoogle Scholar
  369. Sagata, N., Shiokawa, K., and Yamana, K. 1980. A study on the steady-state population of poly(A)+ RNA during early development of Xenopus laevis. Dev. Biol. 77: 431–448.PubMedGoogle Scholar
  370. Sams, G. R., Bell, W. J., and Weaver, R. F. 1980. Vitellogenin: Its structure, synthesis and processing in the cockroach Periplaneta americana. Biochim. Biophys. Acta 609: 121–135.PubMedGoogle Scholar
  371. Santos, A., Abreu, I., and Salema, R. 1979. Elaborate system of RER and degenerescence of tapetum during pollen development in some dicotyledons. J. Submicrosc. Cytol. 11: 99–107.Google Scholar
  372. Schatz, F., and Ziegler, D. 1979. The role of follicle cells in Rana pipiens oocyte maturation induced by A5-pregnenolone. Dev. Biol. 73: 59–67.PubMedGoogle Scholar
  373. Scheer, U. 1981. Identification of a novel class of tandemly repeated genes transcribed on lamp- brush chromosomes of Pleurodeles waltlii. J. Cell Biol. 88: 599–603.PubMedGoogle Scholar
  374. Scheer, U., Franke, W. W., Trendelenburg, M. F., and Spring, H. 1976. Classification of loops of lampbrush chromosomes according to the arrangement of transcriptional complexes. J. Cell Sci. 22: 503–519.PubMedGoogle Scholar
  375. Scheer, U., Sommerville, J., and Bustin, M. 1979a. Injected histone antibodies interfere with transcription of lampbrush chromosome loops in oocytes of Pleurodeles. J. Cell Sci. 40: 1–20.PubMedGoogle Scholar
  376. Scheer, U., Spring, H., and Trendelenburg, M. F. 1979b. Organization of transcriptionally active chromatin in lampbrush chromosome loops. In: Busch, H., ed., The Cell Nucleus, New York, Academic Press, Vol. 7, pp. 3–47.Google Scholar
  377. Schin, K. S. 1965. Core-strukturen in den meiotischen und post-meiotischen Kernen der Sperma- togenese von Gryllus domesticus. Chromosoma 16: 436–452.PubMedGoogle Scholar
  378. Schultz, R. M., Letourneau, G. E., and Wassarman, P. M. 1978a. Meiotic maturation of mouse oocytes in vitro: Protein synthesis in nucleate and anucleate oocyte fragments. J. Cell Sci. 30: 251–264.PubMedGoogle Scholar
  379. Schultz, R. M., LaMarca, M. J., and Wassarman, P. M. 1978b. Absolute rates of protein synthesis during meiotic maturation of mammalian oocytes in vitro. Proc. Natl. Acad. Sci. USA 75: 4160–4164.PubMedGoogle Scholar
  380. Schultz, R. M., Letourneau, G. E., and Wassarman, P. M. 1979a. Program of early development in the mammal: Changes in patterns and absolute rates of tubulin and total protein synthesis during oogenesis and early embryogenesis in the mouse. Dev. Biol. 68: 341–359.PubMedGoogle Scholar
  381. Schultz, R. M., Letourneau, G. E., and Wassarman, P. M. 1979b. Program of early development in the mammal: Changes in patterns and absolute rates of tubulin and total protein synthesis during oocyte growth in the mouse. Dev. Biol. 73: 120–133.PubMedGoogle Scholar
  382. Sconzo, G., Bono, D., Albanese, I., and Giudice, G. 1972. Studies on sea urchin oocytes. II. Synthesis of RNA during oogenesis. Exp. Cell Res. 72: 95–100.PubMedGoogle Scholar
  383. Scott, S. E. M., and Sommerville, J. 1974. Location of nuclear proteins on the chromosomes of newt oocytes. Nature (London) 250: 680–682.Google Scholar
  384. Selman, K., and Anderson, E. 1975. The formation and cytochemical characterization of cortical granules in ovarian oocytes of the golden hamster (Mesocricetus auratus). J. Morphol. 147:251–21 A.Google Scholar
  385. Selman, K., and Arnold, J. M. 1978. An ultrastructural and cytochemical analysis of oogenesis in the squid, Loligo pealei. J. Morphol. 152: 381–400.Google Scholar
  386. Shih, R. 1975. Analyses of the amino acid pools, rates of protein synthesis and nuclear proteins of Rana pipiens oocytes and embryos. Ph.D. thesis, Purdue University.Google Scholar
  387. Simon, D. 1960. Contribution à l’étude de la circulation et du transfert des gonocytes primaires dans les blastodermes d’oiseau cultivé in vitro. Arch. Anat. Microsc. Morphol. Exp. 49: 93–176.Google Scholar
  388. Simpson, R. T., and Bergman, L. W. 1980. Structure of sea urchin sperm chromatin core particle. J. Biol. Chem. 255: 10702–10709.PubMedGoogle Scholar
  389. Singleton, J. R. 1953. Chromosome morphology and the chromosome cycle in the ascus of Neurospora crassa. Am. J. Bot. 40: 124–144.Google Scholar
  390. Slater, I., and Slater, D. W. 1979. Cell-free cytoplasmic polyadenylation of oogenic RNA. Differentiation 13: 109–115.PubMedGoogle Scholar
  391. Smith, L. D., and Ecker, R. E. 1969. Cytoplasmic regulation in early events of amphibian development. Proc. Can. Cancer Res. Conf. 8: 103–129.Google Scholar
  392. Smith, S. G. 1942. Polarization and progression and pairing. Can. J. Res. Sect. D 20: 221–229.Google Scholar
  393. Sôderstrôm, K. O. 1981. The relationship between the nuage and the chromatoid body during spermatogenesis in the rat. Cell Tissue Res. 215: 425–430.PubMedGoogle Scholar
  394. Sôderstrôm, K. O., and Parvinen, M. 1976. RNA synthesis in different stages of rat seminiferous epithelial cycle. Mol. Cell. Endocrinol. 5: 181–199.PubMedGoogle Scholar
  395. Sommerville, J. 1979. Gene expression in lampbrush chromosomes. FEBS Proc. Meet. 51: 265–276.Google Scholar
  396. Sommerville, J., and Malcolm, D. B. 1976. Transcription of genetic information in amphibian oocytes. Chromosoma 55: 183–208.Google Scholar
  397. Sotelo, J. R., and Wettstein, R. 1966. Fine structure of meiotic chromosomes: Comparative study of nine species of insects. Chromosoma 20: 234–250.PubMedGoogle Scholar
  398. Spiegelman, M., and Bennett, D. 1973. A light- and electron-microscopic study of primordial germ cells in the early mouse embryo. J. Embryol. Exp. Morphol. 30: 97–118.PubMedGoogle Scholar
  399. Stack, S. M. 1973. The synaptonemal complex and the achiasmatic condition. J. Cell Sci. 13: 83–95.PubMedGoogle Scholar
  400. Stack, S. M., and Brown, W. V. 1969. Somatic and premeiotic pairing of homologues in Plantago ovalis. Bull. Torrey Boi. Club 96: 143–149.Google Scholar
  401. Stagni, A., and Lucchi, M. L. 1970. Ultrastructural observations on the spermatogenesis in Hydra attenuata. In: Baccetti, B., ed., Comparative Spermatology, New York, Academic Press, pp. 357–362.Google Scholar
  402. Stahl, A., Luciani, J. M., Devictor, M., Capodano, A. M., and Gagné, R. 1975. Constitutive heterochromatin and micronucleoli in the human oocyte at the diplotene state. Humangenetik 26: 315–327.PubMedGoogle Scholar
  403. Stay, B. 1965. Protein uptake in the oocytes of the cecropia moth. J. Cell Biol. 26: 49–62.PubMedGoogle Scholar
  404. Stefanini, M., DeMartino, C., D’Agostino, A., Agrestini, A., and Monesi, V. 1974. Nucleolar activity of rat primary spermatocytes. Exp. Cell Res. 86: 166–170.PubMedGoogle Scholar
  405. Storms, R., and Hastings, P. J. 1977. A fine structure analysis of meiotic pairing in Chlamydomonas reinhardi. Exp. Cell Res. 104: 39–46.PubMedGoogle Scholar
  406. Strauch, A. R., Luna, E. J., and La Fountain, J. R. 1980. Biochemical analysis of actin in crane- fly gonial cells: Evidence for actin in spermatocytes and spermatids—but not sperm. J. Cell Biol. 86: 315–325.PubMedGoogle Scholar
  407. Suominen, J., and Setchell, B. P. 1972. Enzymes and trypsin inhibitor in the rete testis fluid of rams and boars. J. Reprod. Fertil. 30: 235–245.PubMedGoogle Scholar
  408. Swan, M. A., Linck, R. W., Ito, S., and Fawcett, D. W. 1980. Structure and function of the undulating membrane in spermatozoan propulsion in the toad Bufo marinus. J. Cell Biol. 85: 866–880.PubMedGoogle Scholar
  409. Sykes, E. E., and Porter, D. 1981. Meiosis in the aquatic fungus Catenaria allomycis. Protoplasma 105: 307–320.Google Scholar
  410. Szabo, P. L. 1967. Ultrastructure of the developing dog oocyte. Anat. Rec. 157: 330.Google Scholar
  411. Szôllôsi, D. 1967. Development of cortical granules and the cortical reactions in rat and hamster eggs. Anat. Rec. 159: 431–446.PubMedGoogle Scholar
  412. Szôllôsi, D. 1970. Changes of some cell organelles during oogenesis in mammals. In: Biggers,J. D., and Schuetz, A. W., eds., Oogenesis, Baltimore, University Park Press, pp. 47–64.Google Scholar
  413. Tarlow, D. M., Watkins, P. A., Reed, R. E., Miller, R. S., Zwergel, E. E., and Lane, M. D. 1977. Lipogenesis and the synthesis and secretion of very low density lipoprotein by avian liver cells in nonproliferating monolayer culture: Hormonal effects. J. Cell Biol. 73: 332–353.PubMedGoogle Scholar
  414. Tata, J. R. 1976. The expression of the vitellogenin gene. Cell 9: 1–14.PubMedGoogle Scholar
  415. Tata, J. R., Baker, B. S., and Deeley, J. V. 1980. Vitellogenin as a multigene family. J. Biol. Chem. 255: 6721–6726.PubMedGoogle Scholar
  416. Telfer, W. H. 1954. Immunological studies of insect metamorphosis. J. Gen. Physiol. 37: 539–558.PubMedGoogle Scholar
  417. Telfer, W. H. 1960. The selective accumulation of blood proteins by the oocytes of saturnid moths. Biol. Bull. 118: 338–351.Google Scholar
  418. Telfer, W. H. 1961. The route of entry and localization of blood proteins in the oocytes of saturnid moths. J. Biophys. Biochem. Cytol. 9: 743–759.Google Scholar
  419. Telfer, W. H. 1965. The mechanism and control of yolk formation. Annu. Rev. Entomol. 10: 161–184.Google Scholar
  420. Tenner, A. J., and Wallace, R. A. 1972. A cyclic AMP-stimulated protein kinase from amphibian ovary and oocytes. Biochim. Biophys. Acta 276: 416–424.PubMedGoogle Scholar
  421. Threadgold, L. T. 1976. The Ultrastructure of the Animal Cell, Elmsford, N.Y., Pergamon Press.Google Scholar
  422. Tongkao, D., and Chulavatnatol, M. 1979. Phosphorylation of microtubules of rat spermatozoa during epididymal maturation. In: Fawcett, D. W., and Bedford, J. M., eds., The Spermatozoon, Munich, Urban amp; Schwarzenberg, pp. 129–134.Google Scholar
  423. Toth, R. 1974. Sporangial structure and zoosporogenesis in Chorda tomentosa. J. Phycol. 10: 170–185.Google Scholar
  424. Toth, R., and Markey, D. 1973. Synaptonemal complexes in brown algae. Nature (London) 243: 236–237.Google Scholar
  425. Tres, L. L. 1975. Nucleolar RNA synthesis of meiotic prophase spermatocytes in the human testes. Chromosoma 53: 141–151.PubMedGoogle Scholar
  426. Tsafriri, A. 1978. Oocyte maturation in mammals. In: Jones, R. E., ed., The Vertebrate Ovary, New York, Plenum Press, pp. 409–442.Google Scholar
  427. Tsafriri, A., and Channing, C. P. 1975a. An inhibitory influence of granulosa cells and follicular fluid upon porcine oocyte meiosis in vitro. Endocrinology 96: 922–927.PubMedGoogle Scholar
  428. Tsafriri, A., and Channing, C. P. 1975b. Influence of follicular maturation and culture conditions on the meiosis of pig oocytes in vitro. J. Reprod. Fertil. 43: 149–152.PubMedGoogle Scholar
  429. Turner, F. R. 1968. An ultrastructural study of plant spermatogenesis: Spermatogenesis in Nitella. J. Cell Biol. 37: 370–393.PubMedGoogle Scholar
  430. Utakoji, T. 1966. Chronology of nucleic acid synthesis in meiosis of the male Chinese hamster. Exp. Cell Res. 42: 585–587.PubMedGoogle Scholar
  431. Vanneman, A. S. 1917. The early history of the germ cells in the armadillo, Tatusia novemcincta. Am. J. Anat. 2: 341–363.Google Scholar
  432. Varley, J. M., Macgregor, H. C., and Erba, H. P. 1980. Satellite DNA is transcribed on lamp- brush chromosomes. Nature (London) 283: 686–688.Google Scholar
  433. Vaudois, B., and Tourte, Y. 1979. Spermatogenesis in a pteridophyte. 1. First stages of the motile apparatus. Cytobios 24: 143–156.PubMedGoogle Scholar
  434. Waddington, C. H. 1962. New Patterns in Genetics and Development, New York, Columbia University Press.Google Scholar
  435. Wahli, W., Dawid, I. B., Wyler, T., Weber, R., and Ryffel, G. U. 1980. Comparative analysis of the structural organization of two closely related vitellogenin genes in X. laevis. Cell 20: 107–117.PubMedGoogle Scholar
  436. Wallace, R. A. 1978. Oocyte growth in nonmammalian vertebrates. In: Jones, R. E., ed., The Vertebrate Ovary, New York, Plenum Press, pp. 469–502.Google Scholar
  437. Wallace, R. A., and Jared, D. W. 1968. Estrogen induces lipophosphoprotein in serum of male Xenopus laevis. Science 160: 91–92.PubMedGoogle Scholar
  438. Wallace, R. A., and Jared, D. W. 1969. Studies on amphibian yolk. Dev. Biol. 19: 498–526.PubMedGoogle Scholar
  439. Wang, S. Y., and Williams, D. L. 1980. Identification, purification, and characterization of two distinct avian vitellogenins. Biochemistry 19: 1557–1563.PubMedGoogle Scholar
  440. Ward, R. T. 1978. The origin of protein and fatty yolk in Rana pipiens. III. Intermitochondrial and primary vesicular yolk formation in frog oocytes. Tissue Cell 10: 515–524.PubMedGoogle Scholar
  441. Wareing, P. F., and Graham, C. F. 1976. Nucleus and cytoplasm. In: Graham, C. F., and Wareing, P. F., eds., The Developmental Biology of Plants and Animals, Oxford, Blackwell, pp. 5–13.Google Scholar
  442. Warren, T. G., and Mahowald, A. P. 1979. Isolation and partial chemical characterization of the three major yolk polypeptides from D. melanogaster. Dev. Biol. 68: 130–139.PubMedGoogle Scholar
  443. Wartenberg, H. 1962. Elektronmikroskopische und Histochemische Studien über die Organogenese der Amphibieneizelle. Z. Zellforsch. Mikrosk. Anat. 58: 427–486.PubMedGoogle Scholar
  444. Wassarman, P. M., and Letourneau, G. E. 1976. RNA synthesis in fully-grown mouse oocytes. Nature (.London) 261: 73–74.Google Scholar
  445. Wassarman, P. M., Schultz, R. M., and Letourneau, G. E. 1979. Protein synthesis during meiotic maturation of mouse oocytes in vitro. Dev. Biol. 69: 94–107.PubMedGoogle Scholar
  446. Wasserman, W. J., and Masui, Y. 1975. Effects of cycloheximide on a cytoplasmic factor initiating meiotic maturation in Xenopus oocytes. Exp. Cell Res. 91: 381–388.PubMedGoogle Scholar
  447. Wasserman, W. J., and Smith, L. D. 1978. Oocyte maturation in nonmammalian vertebrates. In: Jones, R. E., ed., The Vertebrate Ovary, New York, Plenum Press, pp. 443–468.Google Scholar
  448. Webb, A. C., LaMarca, M. J., and Smith, L. D. 1975. Synthesis of mtRNA by full-grown and maturing oocytes of Rana pipiens and Xenopus laevis. Dev. Biol. 45: 44–55.PubMedGoogle Scholar
  449. Wegnez, M., Denis, H., Mazabraud, A., and Clerot, J. C. 1978. Biochemical research on oogenesis: RNA accumulation during oogenesis of the dogfish Scyliorhinus caniculus. Dev. Biol. 52: 99–111.Google Scholar
  450. White, M. J. D. 1946. The cytology of the Cecidomyidae (Diptera). II. The chromosome cycle and anomalous spermatogenesis of Miastor. J. Morphol. 79: 323–370.PubMedGoogle Scholar
  451. Whitington, F. M., and Dixon, K. E. 1975. Quantitative studies of germ plasm and germ cells during early embryogenesis of Xenopus laevis. J. Embryol. Exp. Morphol. 33: 57–74.PubMedGoogle Scholar
  452. Wiblet, M., Baltus, E., and Brachet, J. B. 1975. Méiose: Rôle d’une histone kinase dans la condensation des chromosomes d’oocytes ovariens de Xenopus laevis et d Ambystoma mexi- canum. C. R. Acad. Sci. 281: 1891–1893.Google Scholar
  453. Wieben, E. D., 1981. Regulation of the synthesis of lactate dehydrogenase-X during spermatogenesis in the mouse. J. Cell Biol. 88: 492–498.PubMedGoogle Scholar
  454. Williams, J. 1962. Serum proteins and livetins of hen’s egg yolk. Biochem. J. 83: 346–355.PubMedGoogle Scholar
  455. Wilson, D., and Wilson, M. 1956. Biology of Janthina. J. Mar. Biol. Assoc. U.K. 35: 291–305.Google Scholar
  456. Wischnitzer, S. 1966. The ultrastructure of the cytoplasm of the developing amphibian egg. Adv. Morphol. 5: 131–179.Google Scholar
  457. Wolfe, S. L., and John, B. 1965. The organization and ultrastructure of male meiotic chromosomes in Oncopeltus fasciatus. Chromosoma 17: 85–103.PubMedGoogle Scholar
  458. Wolgemuth, D. J., Jagiello, G. M., and Henderson, A. S. 1979. Quantitation of rRNA genes in fetal human oocyte nuclei using rRNA: DNA hybridization in situ. Exp. Cell Res. 118: 181–190.PubMedGoogle Scholar
  459. Wong, P. Y. D., Au, C. L., and Ngai, H. K. 1979. Some characteristics of the salt and water transport in the rat epididymis. In: Fawcett, D. W., and Bedford, J. M., eds., The Spermatozoon, Munich, Urban amp; Schwarzenberg, pp. 57–63.Google Scholar
  460. Wong, Y. C., Wong, P. Y. D., and Yeung, C. H. 1978. Ultrastructural correlation of water reabsorption in isolated rat cauda epididymis. Experientia 34: 485–487.PubMedGoogle Scholar
  461. Woodland, H. R. 1974. Changes in the polysome content of developing Xenopus laevis embryos. Dev. Biol. 40: 90–101.PubMedGoogle Scholar
  462. Woodland, H. R. 1979. The modifications of stored histones H3 and H4 during the oogenesis and early development of Xenopus laevis. Dev. Biol. 68: 360–370.PubMedGoogle Scholar
  463. Woodland, H. R., and Wilt, F. H. 1980a. The functional stability of sea urchin histone mRNA injected into oocytes of Xenopus laevis. Dev. Biol. 75: 199–213.PubMedGoogle Scholar
  464. Woodland, H. R., and Wilt, F. H. 1980b. The stability and translation of sea urchin histone mRNA molecules injected into X. laevis eggs and developing embryos. Dev. Biol. 75: 214–221.PubMedGoogle Scholar
  465. Woods, F. A. 1902. Origin and migration of the germ cells in Acanthias. Am. J. Anat. 1: 307–320.Google Scholar
  466. Wyatt, G. R., and Pan, M. C. 1978. Insect plasma proteins. Annu. Rev. Biochem. 47: 779–817.PubMedGoogle Scholar
  467. Zamboni, L. 1970. Ultrastructure of mammalian oocytes and ova. Biol. Reprod. 2 (Suppl.): 44–63.PubMedGoogle Scholar
  468. Zamboni, L. 1974. Fine morphology of the follicle wall and the follicle cell-oocyte association. Biol. Reprod. 10: 125–149.PubMedGoogle Scholar
  469. Zamboni, L., and Mastroianni, L. 1966. Electron microscopic studies on rabbit ova. I. The follicular oocyte. J. Ultrastruct. Res. 14: 95–117.Google Scholar
  470. Zihler, J. 1972. Zur Spermatogeneses und Befruchtungsbiologie von Hydra. Wilhelm Roux Arch. Dev. Biol. 169: 239–267.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations