The Intermolecular Interaction

  • Jan Van Kranendonk


In a macroscopic system of hydrogen molecules the interaction between the molecules is responsible for the transition of the system with decreasing temperature from the gaseous into the liquid and ultimately into the solid state, and the properties of the solid are determined by this interaction and by its effect on the internal properties of the molecules. The intermolecular interaction thus plays a central role in the study of the solid hydrogens, and in this chapter we outline the present state of knowledge in this field.


Intermolecular Interaction Reduction Factor Hydrogen Molecule Radial Function Dispersion Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Margenau and N. R. Kestner, Theory of Intermolecular Forces, 2nd ed., Pergamon Press, Oxford (1971).Google Scholar
  2. 2.
    A. K. McMahan, H. Beck and J. A. Krumhansl, Short-range interaction between hydrogen molecules, Phys. Rev. A9, 1852–1864 (1974).ADSGoogle Scholar
  3. 3.
    I. F. Silvera, The solid molecular hydrogens in the condensed phase, Rev. Mod. Phys. 52, 393–452 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    H. Margenau, Exclusion principle and measurement theory, in Quantum Theory of Atoms, Molecules, and the Solid State (P. O. Löwdin, ed.), pp. 81–91, Academic Press, New York (1966).Google Scholar
  5. 5.
    D. M. Silver and R. M. Stevens, Reaction paths on the H4 potential energy surface, J. Chem. Phys. 59, 3378–3394 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    F. H. Ree and C. F. Bender, Repulsive intermolecular potential between two H2 molecules, J. Chem. Phys. 71, 5362–5375 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    J. Van Kranendonk and G. Karl, Theory of the rotational and vibrational excitations in solid parahydrogen, and frequency analysis of the infrared and Raman spectra, Rev. Mod. Phys. 40, 531–555 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    H. F. P. Knaap and J. J. Beenakker, The Lennard-Jones 6–12 potential parameters of H2 and D2, Physica 27, 523–530 (1961).ADSCrossRefGoogle Scholar
  9. 9.
    V. Chandrasekharan and R. D. Etters, On the contribution of intramolecular zero-point energy to the equation of state of solid H2, J. Chem. Phys. 68, 4933–4935 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    H. Kreek and R. J. LeRoy, Intermolecular potentials and isotope effects for molecular hydrogen —inert gas complexes, J. Chem. Phys. 63, 338–344 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    R. J. Bell and I. J. Zucker, Long-range forces, in Rare Gas Solids (M. L. Klein and J. A. Venables, eds.), Vol. I, pp. 122–175, Academic Press, New York (1976).Google Scholar
  12. 12.
    K. F. Niebel and J. A. Venables, The crystal structure problem, in Rare Gas Solids (M. L. Klein and J. A. Venables, eds.), Vol. I, pp. 558–589, Academic Press, New York (1976).Google Scholar
  13. 13.
    C. G. Gray, Spherical tensor approach to multipole expansions. I. Electro-static interactions, Can. J. Phys. 54, 505–512 (1976).ADSCrossRefGoogle Scholar
  14. 14.
    G. A. Victor and A. Dalgarno, Orientation-dependent van der Waals coefficients for various species in molecular hydrogen, J. Chem. Phys. 53, 1316–1317 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    P. W. Langhoff, R. G. Gordon and M. Karplus, Comparison of dispersion force bounding methods with applications to anisotropic interactions, J. Chem. Phys. 55, 2126–2145 (1971).ADSCrossRefGoogle Scholar
  16. 16.
    W. Meyer, Dynamic multipole polarizabilities of H2 and He and long-range interaction coefficients for H2-H2, H2-He, J. Chem. Phys. 17, 27–33 (1976).Google Scholar
  17. 17.
    F. Mulder, A. van der Avoird, and P. E. S. Wormer, Anisotropy of long range interactions between linear molecules: H2-H2 and H2-He, Mol. Phys. 37, 157–180 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    H. F. Schaefer, The Electronic Structure of Atoms and Molecules; a Survey of Rigorous Quantum Mechanical Results, Addison-Wesley Publishing Co., Reading, Mass. (1972).Google Scholar
  19. 19.
    R. D. Etters, R. Danilowicz and W. England, Properties of solid and gaseous hydrogen, based upon anisotropic pair interactions, Phys. Rev. A12, 2199–2212 (1975).ADSGoogle Scholar
  20. 20.
    I. F. Silvera and V. V. Goldman, The isotropic intermolecular potential for H2 and D2 in the solid and gas phases, J. Chem. Phys. 69, 4209 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    R. Ahlrichs, R. Penco and G. Scoles, Intermolecular forces in simple systems, Chem. Phys. 19, 119–130 (1977).CrossRefGoogle Scholar
  22. 22.
    K. Ng, W. J. Meath and A. R. Allnatt, Charge overlap effects and the validity of the multipole results for first-order molecule-molecule interaction energies. Formalism and application to H2-H2, Mol. Phys. 32, 177–194 (1976).ADSCrossRefGoogle Scholar
  23. 23.
    G. A. Gallup, The intermolecular potential and its angular dependence for two H2 molecules, Mol. Phys. 33, 943–953 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Jan Van Kranendonk
    • 1
  1. 1.University of TorontoTorontoCanada

Personalised recommendations