Advertisement

Boltzmann Equation and Rarefied Gas Dynamics

  • C. Cercignani

Abstract

A survey of the present state of the art in theoretical rarefied gas dynamics is presented.

Keywords

Shock Wave Mach Number Boltzmann Equation Kinetic Theory Knudsen Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Cercignani, Mathematical Methods in Kinetic Theory, Plenum Press, New York/Macmillan, London (1969).MATHGoogle Scholar
  2. 2.
    C. Cercignani, Theory and Application of the Boltzmann Equation, Scottish Academic Press, Edinburgh/Elsevier, New York (1975).MATHGoogle Scholar
  3. 3.
    H. Grad, Asymptotic theory of the Boltzmann equation, Phys. Fluids 6, 147 (1963).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    P. N. Hu, private communication.Google Scholar
  5. 5.
    C. Cercignani, Bifurcation problems in fluid-mechanics, Meccanica 5, 7 (1970).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    G. I. Taylor, The conditions necessary for discontinuous motions in gases, Proc. R. Soc. London, Ser. A 84, 371 (1910).MATHCrossRefGoogle Scholar
  7. 7.
    H. Grad, Singular and nonuniform limits of solutions of the Boltzmann equation in transport theory (R. Bellmann et al., eds.), SIAM-AMS Proc, Vol. I, p. 269, Am. Math. Soc, Providence, RI (1969).Google Scholar
  8. 8.
    H. M. Mott-Smith, The solution of the Boltzmann equation for a shock wave, Phys. Rev. 82, 885 (1951).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    H. Salwen, C. Grosch, and S. Ziering, Extension of the Mott-Smith method for a one-dimensional shock wave, Phys. Fluids 7, 180 (1964).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    L. H. Holway, Jr., Kinetic theory of shock structure using an ellipsoidal distribution function, in: Rarefied Gas Dynamics (J. H. de Leeuw, ed.), Vol. I, p. 193, Academic Press, New York (1965).Google Scholar
  11. 11.
    C. Muckenfuss, Some aspects of shock structure according to the bimodal model, Phys. Fluids 5, 1325 (1962).CrossRefGoogle Scholar
  12. 12.
    M. Linzer and D. F. Horning, Structure of shock fronts in argon and nitrogen, Phys. Fluids 6, 1661 (1963).CrossRefGoogle Scholar
  13. 13.
    M. M. Oberai, Mott-Smith distribution and solution of kinetic equations, J. Mec. 6, 317 (1967).Google Scholar
  14. 14.
    R. Narasimha, S. M. Deshpande, and M. R. Ananthasayanam, Least squares methods for shock structure, in: Rarefied Gas Dynamics (L. Trilling and H. Wachman, eds.), Vol. I, p. 417, Academic Press, New York (1969).Google Scholar
  15. 15.
    H. W. Liepmann, R. Narasimha, and M. T. Chahine, Structure of a plane shock layer, Phys. Fluids 5, 1313 (1962).MATHCrossRefGoogle Scholar
  16. 16.
    D. Anderson, Numerical solutions of the Krook kinetic equation, J. Fluid Mech. 25, 271 (1966).MathSciNetCrossRefGoogle Scholar
  17. 17.
    B. M. Segal and J. H. Ferziger, Shock-wave structure using nonlinear model Boltzmann equations, Phys. Fluids 15, 1233 (1972).MATHCrossRefGoogle Scholar
  18. 18.
    J. K. Haviland and M. L. Lavin, Application of the Monte-Carlo method to heat transfer in a rarefied gas, Phys. Fluids 5, 1399 (1962).MathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Perlmutter, Model sampling applied to the normal shock problem, in: Rarefied Gas Dynamics (L. Trilling and H. Wachman, eds.), Vol. I, p. 327, Academic Press, New York (1969).Google Scholar
  20. 20.
    G. A. Bird, Aspects of the structure of strong shock waves, Phys. Fluids 13, 1172 (1970).CrossRefGoogle Scholar
  21. 21.
    B. L. Hicks, S. M. Yen, and B. J. Railly, The internal structure of shock waves, J. Fluid Mech. 53, 85 (1972).MATHCrossRefGoogle Scholar
  22. 22.
    B. Nicolaenko, Shock wave solutions of the Boltzmann equation as a nonlinear bifurcation problem from the essential spectrum, in: Theories Cinetiques et Relativistes, (G. Pichon, ed.), p. 127, CNRS, Paris (1975).Google Scholar
  23. 23.
    J. P. Elliot, D. Baganoff, and R. D. McGregor, Closure relations based on straining and shifting velocity space, in: Rarefied Gas Dynamics (J. L. Potter, ed.), Vol. II, p. 703, Academic Press, New York (1977).Google Scholar
  24. 24.
    J. P. Elliot and D. Baganoff, Solution of the Boltzmann equation at the upstream and downstream singular points in a shock wave, J. Fluid Mech. 65, 603 (1974).MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. A. Reynolds, J. J. Smolderen, and J. F. Wendt, Velocity profile measurement in the Knudsen layer for the Kramers problem, in: Rarefied Gas Dynamics (M. Becker and M. Fiebig, eds.), Vol. I, p. A21, DFVLR Press, Porz-Wahn (1974).Google Scholar
  26. 26.
    W. Rixen and F. Adomeit, Simple moments of the molecular velocity distribution function in plane Poiseuille flow, in: Rarefied Gas Dynamics (M. Becker and M. Fiebig, eds.), Vol. I, p. B18, DFVLR Press, Porz-Wahn (1975).Google Scholar
  27. 27.
    C. Cercignani, Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem, Ann. Phys. 20, 219 (1962).MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    S. K. Loyalka, Velocity profile in the Knudsen layer for the Kramer’s problem, Phys. Fluids 18, 1666 (1975).CrossRefGoogle Scholar
  29. 29.
    C. Cercignani and G. Tironi, Some applications of a linearized kinetic model with correct Prandtl number, Nuovo Cimento 43B, 64 (1966).Google Scholar
  30. 30.
    S. L. Gorelov and M. N. Kogan, Solutions of linear problems of rarefied gas dynamics by the Monte-Carlo method, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 3, 136 (1968); translated in: Fluid Dynamics 3, 96 (1968).Google Scholar
  31. 31.
    G. A. Bird, Direct simulation of the incompressible Kramers problem, in: Rarefied Gas Dynamics (J. L. Potter, ed.), p. 323, Academic Press, New York (1977).Google Scholar
  32. 32.
    C. Cercignani, Knudsen layers. Theory and experiment, in: Recent Developments in Theoretical and Experimental Fluid Mechanics (U. Müller, K. G. Roesner, and B. Schmid, eds.), Springer-Verlag, Berlin (1979).Google Scholar
  33. 33.
    Y. Sone, Asymptotic theory of flow of rarefied gas over a smooth boundary I, in: Rarefied Gas Dynamics (L. Trilling and H. Wachman, eds.), Vol. I, p. 243, Academic Press, New York (1969).Google Scholar
  34. 34.
    Y. Sone, Asymptotic theory of flow of rarefied gas over a smooth boundary II, in: Rarefied Gas Dynamics (D. Dini, ed.), Vol. II, p. 737, Edizioni Tecnico Scientifiche, Pisa (1971).Google Scholar
  35. 35.
    Y. Sone, New kind of boundary layer over a convex solid boundary in a rarefied gas, Phys. Fluids 16, 1422 (1973).MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    H. Hertz, Uber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, in luftleeren Raume, Ann. Phys. 17, 177 (1882).CrossRefGoogle Scholar
  37. 37.
    M. Knudsen, Die maximale Verdampfungsgeschwindigkeit des Quecksilbers, Ann. Phys. 47, 697 (1915).CrossRefGoogle Scholar
  38. 38.
    S. I. Anisimov, Vaporization of metal absorbing laser radiation, Sov. Phys. JETP 27, 182 (1968).Google Scholar
  39. 39.
    T. Ytrehus, Kinetic theory description and experimental results for vapor motion in arbitrary strong evaporation, Von Karman Institute Technical Note 112 (1975).Google Scholar
  40. 40.
    T. Ytrehus, Theory and experiments on gas kinetics in evaporation, in: Rarefied Gas Dynamics (J. L. Potter, ed.), Vol. II, p. 1197, Academic Press, New York (1977).Google Scholar
  41. 41.
    M. Murakami and K. Oshima, Kinetic approach to the transient evaporation and condensation problem, in: Rarefied Gas Dynamics (M. Becker and M. Fiebig, eds.), Vol. II, p. F6, DFVLR Press, Porz-Wahn (1974).Google Scholar
  42. 42.
    C. Cercignani, A nonlinear criticality problem in the kinetic theory of gases, in: Mathematical Problems in the Kinetic Theory of Gases, Verlag Peter Lang D., Frankfurt (1980).Google Scholar
  43. 43.
    M. D. Arthur and C. Cercignani, Non-existence of a steady rarefied supersonic flow in a half-space, ZAMP 31, 634 (1980).MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    C. Cercignani and C. D. Pagani, Variational approach to rarefied flows in cylindrical and spherical geometry, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 555, Academic Press, New York (1967).Google Scholar
  45. 45.
    P. Bassanini, C. Cercignani, and P. Schwendimann, The problem of a cylinder rotating in a rarefied gas, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 505, Academic Press, New York (1967).Google Scholar
  46. 46.
    C. Cercignani and G. Tironi, Some application to the transition regime of a new set of boundary conditions for Navier-Stokes equations, in: Rarefied Gas Dynamics (L. Trilling and H. Wachman, eds.), Vol. I, p. 281, Academic Press, New York (1969).Google Scholar
  47. 47.
    C. Cercignani, Stokes paradox in kinetic theory, Phys. Fluids 11, 303 (1968).MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    C. Cercignani and C. D. Pagani, Flow of a rarefied gas past an axisymmetric body. I. General remarks, Phys. Fluids 11, 1395 (1968).MATHCrossRefGoogle Scholar
  49. 49.
    C. Cercignani, C. D. Pagani and P. Bassanini, Flow of a rarefied gas past an axisymmetric body. II. Case of a sphere, Phys. Fluids 11, 1399 (1968).MATHCrossRefGoogle Scholar
  50. 50.
    R. A. Millikan, The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surface, Phys. Rev. 22, 1 (1923).CrossRefGoogle Scholar
  51. 51.
    H. Grad, Equations of flow in a rarefied gas, New York University, NYO-2543 (1959).Google Scholar
  52. 52.
    L. Sirovich, On the kinetic theory of steady gas flows, in: Rarefied Gas Dynamics (L. Talbot, ed.), p. 238, Academic Press, New York (1961).Google Scholar
  53. 53.
    S. A. Schaaf, Mechanics of rarefied gas, in: Handbuch der Physik (S. Flugge, ed.), Vol. VII, p. 591, Springer-Verlag, Berlin (1963).Google Scholar
  54. 54.
    J. L. Potter, The transitional rarefied-flow regime, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. II, p. 881, Academic Press, New York (1967).Google Scholar
  55. 55.
    D. R. Willis, A study of some nearly free-molecular flow problems, Princeton Univ. Aero. Engineering Lab. Report No. 440 (1958).Google Scholar
  56. 56.
    D. R. Willis, Mass flow through a circular orifice and a two-dimensional slit at high Knudsen numbers, J. Fluid Mech. 21, 21 (1965).MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    D. R. Willis, Heat transfer and shear between coaxial cylinders for large Knudsen numbers, Phys. Fluids 8, 1908 (1965).CrossRefGoogle Scholar
  58. 58.
    H. Grad and P. N. Hu, Drag of a slender cone in hypersonic flow, in: Rarefied Gas Dynamics (L. Trilling and H. Wachman, eds.), Vol. I, p. 561, Academic Press, New York (1969).Google Scholar
  59. 59.
    B. B. Hamel and A. L. Cooper, A first collision theory of the hyperthermal leading edge problem, in: Rarefied Gas Dynamics (L. Trilling and H. Wachman, eds.), Vol. I, p. 433, Academic Press, New York (1969).Google Scholar
  60. 60.
    Y. S. Pan, Drag on a cylinder in hypersonic nearly-free molecular flow, in: Rarefied Gas Dynamics (L. Trilling and H. Wachman, eds.), Vol. I, p. 779, Academic Press, New York (1969).Google Scholar
  61. 61.
    K. O. Stewartson, On the flow near trailing edge of a flat plate II, Mathematika 16, 106 (1969).CrossRefGoogle Scholar
  62. 62.
    A. F. Messiter, Boundary-layer flow near the trailing edge of a flat plate, SIAM J. Appl. Math. 18, 241 (1970).MATHCrossRefGoogle Scholar
  63. 63.
    H. Oguchi, The sharp leading edge problem in hypersonic flow, in: Rarefied Gas Dynamics (L. Talbot, ed.), p. 501, Academic Press, New York (1961).Google Scholar
  64. 64.
    M. Shorenstein and R. F. Probstein, The hypersonic leading-edge problem, AIAA J. 6, 1898 (1968).MATHCrossRefGoogle Scholar
  65. 65.
    W. L. Chow, Hypersonic rarefied flow past the sharp leading edge of a flat plate, AIAA J. 5, 1549 (1967).MATHCrossRefGoogle Scholar
  66. 66.
    W. L. Chow, Hypersonic slip flow past the leading edge of a flat plate, AIAA J. 4, 2062 (1966).CrossRefGoogle Scholar
  67. 67.
    S. Rudman and S. G. Rubin, Hypersonic viscous flow over slender bodies with sharp leading edges, AIAA J. 6, 1833 (1968).Google Scholar
  68. 68.
    H. K. Cheng, S. Y. Chen, R. Mobly, and C. Huber, On the hypersonic leading-edge problem in the merged-layer regime, in: Rarefied Gas Dynamics (L. Trilling and H. Wachman, eds.), Vol. I, p. 451, Academic Press, New York (1969).Google Scholar
  69. 69.
    S. S. Kot and D. L. Turcotte, Beam-continuum model for hypersonic flow over a flat plate, AIAA J. 10, 891 (1972).CrossRefGoogle Scholar
  70. 70.
    W. J. McCroskey, S. M. Bogdonoff, and J. C. McDougall, An experimental model for the sharp flat plate in rarefied hypersonic flow, AIAA J. 4, 1580 (1966).CrossRefGoogle Scholar
  71. 71.
    P. J. Harbour and J. H. Lewis, Preliminary measurements of the hypersonic rarefied flow field on a sharp flat plate using an electron beam probe, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. II, p. 1031, Academic Press, New York (1967).Google Scholar
  72. 72.
    W. W. Joss, I. E. Vas, and S. M. Bogdonoff, Hypersonic rarefied flow over a flat plate, AIAA Paper 68-5 (January, 1968).Google Scholar
  73. 73.
    M. N. Kogan and L. M. Degtyarev, On the computation of flow at large Knudsen numbers, Astronaut. Acta 11, 36 (1965).MATHGoogle Scholar
  74. 74.
    A. F. Charwat, Molecular flow study of the hypersonic sharp leading edge interaction, in: Rarefied Gas Dynamics (L. Talbot, ed.), p. 553, Academic Press, New York (1961).Google Scholar
  75. 75.
    A. B. Huang and P. F. Hwang, Supersonic leading edge problem according to the ellipsoidal model, Phys. Fluids 13, 309 (1970).CrossRefGoogle Scholar
  76. 76.
    A. B. Huang, Kinetic theory of the rarefied supersonic flow over a finite plate, in: Rarefied Gas Dynamics (L. Trilling and H. Wachman, eds.), Vol. I, p. 529, Academic Press, New York (1969).Google Scholar
  77. 77.
    A. B. Huang and P. F. Hwang, Kinetic theory of leading edge flow, IAF Paper Re 63 (October, 1968).Google Scholar
  78. 78.
    F. W. Vogenitz, J. E. Broadwell, and G. A. Bird, Leading edge flow by the Monte-Carlo direct simulation technique, AIAA J. 8, 504 (1970).CrossRefGoogle Scholar
  79. 79.
    W. W. Joss and S. M. Bogdonoff, A detailed study of the flow around the leading edge of a flat plate in hypersonic low density flow, in: Rarefied Gas Dynamics (L. Trilling and H. Wachman, eds.), Vol. I, p. 483, Academic Press, New York (1969).Google Scholar
  80. 80.
    J. B. Anderson and J. B. Fenn, Velocity distributions in molecular beams from nozzle sources, Phys. Fluids 8, 780 (1965).CrossRefGoogle Scholar
  81. 81.
    H. Ashkenas and F. Sherman, The structure and utilization of supersonic free jets in low density wind tunnels, in: Rarefied Gas Dynamics (J. H. de Leeuw, ed.), Vol. II, p. 84, Academic Press, New York (1965).Google Scholar
  82. 82.
    R. H. Edwards and H. K. Cheng, Steady expansion of a gas into a vacuum, AIAA J. 4, 558 (1966).CrossRefGoogle Scholar
  83. 83.
    B. B. Hamel and D. R. Willis, Kinetic theory of source flow expansion with application to the free jet, Phys. Fluids 9, 829 (1966).MathSciNetCrossRefGoogle Scholar
  84. 84.
    R. H. Edwards and H. K. Cheng, Distribution function and temperatures in a monatomic gas under steady expansion into a vacuum, in: Rarefied Gas Dynamics (C. L. Brundin, ed.), Vol. I, p. 819, Academic Press, New York (1967).Google Scholar
  85. 85.
    N. C. Freeman, Solution of the Boltzmann equation for expanding flows, AIAA J. 5, 1696 (1967).MATHCrossRefGoogle Scholar
  86. 86.
    R. E. Grundy, Axially symmetric expansion of a monatomic gas from an orifice into a vacuum, Phys. Fluids 12, 2011 (1969).MATHCrossRefGoogle Scholar
  87. 87.
    T. Soga and H. Oguchi, Numerical analysis of the source expansion flow into vacuum, Phys. Fluids 13, 317 (1972).Google Scholar
  88. 88.
    T. Abe and H. Oguchi, A kinetic-model analysis of the source expansion flow into vacuum, ISAS Report No. 554, Vol. 42, No. 9 (1977).Google Scholar
  89. 89.
    C. Cercignani, Strong evaporation of a polyatomic gas, in: Rarefied Gas Dynamics (S. S. Fisher, ed.), Vol. I, p. 305, AIAA, New York (1981).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • C. Cercignani
    • 1
  1. 1.Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly

Personalised recommendations