Advertisement

Physical and Chemical Kinetic Effects in Soot Formation

  • I. Glassman
  • K. Brezinsky
  • A. Gomez
  • F. Takahashi

Abstract

Evidence indicates that the fuel pyrolysis rate and the particular burn-up time are the controlling factors in soot formation in practical combustion systems. Under premixed flame conditions, the rate of increase with temperature of fuel pyrolysis to form the soot precursors is slower than the rate of increase of the oxidative attack on the pyrolysis products. Thus increasing the flame temperature decreases the tendency to soot. Chemical kinetic and sooting equivalence ratio data will be presented to support this postulate for aliphatic fuels and to show that previous lists categorizing the tendency of fuels to soot are misleading. New chemical kinetic evidence shows that aromatic fuels may not necessarily follow this temperature trend and that the great tendency of aromatic fuels to soot may be due not only to the initial fuel structure but also to the intermediates formed during the breakdown of the ring. Since there is no oxidative attack of the fuel in a diffusion flame, sooting tendency increases with increasing flame temperature. Smoke-point data as a function of temperature reveal the importance of initial fuel structure and fuel pyrolysis kinetics.

Keywords

Mass Flow Rate Equivalence Ratio Flame Temperature Diffusion Flame Premix Flame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. B. Palmer and H. F. Cullis, The formation of carbon from gases, in: The Chemistry and Physics of Carbon, Vol. 1, pp. 265–325, Marcel Dekker, New York (1965).Google Scholar
  2. 2.
    K. H. Homann and H. Gg. Wagner, Some aspects of the mechanisms of carbon formation in pre-mixed flames, in: Eleventh Symp. (Int.) on Combust., pp. 371–379, The Combustion Institute, Pittsburg, PA (1967).Google Scholar
  3. 3.
    H. Gg. Wagner, Soot formation in combustion, in: Seventeenth Symp. (Int.) on Combust., pp. 3–19, The Combustion Institute, Pittsburgh, PA (1979).Google Scholar
  4. 4.
    I. Glassman, Phenomenological Models of Soot Processes in Combustion Systems, Princeton University Department of Mechanical and Aerospace Engineering, Report 1450 (1979); also Air Force Office of Scientific Research Report TR 79-1147 (1979).Google Scholar
  5. 5.
    J. P. Bittner and J. B. Howard, Role of aromatics in soot formation, in: Alternative Hydrocarbon Fuels: Combustion and Chemical Kinetics (C. T. Bowman and J. Birkeland, eds.), Prog. Astronaut. Aeronaut., Vol. 62, pp. 335–358, American Institute of Aeronautics and Astronautics, New York (1978); also, Composition profiles and reaction mechanisms in near-sooting pre-mixed benzene/oxygen/argon flames, in: Eighteenth Symp. (Int.) on Combust., pp. 1105-1116, The Combustion Institute, Pittsburgh, PA (1981).Google Scholar
  6. 6.
    B. S. Haynes and H. Gg. Wagner, Soot formation, Prog. Energy Combust. Sci. 7, 229–273 (1981).CrossRefGoogle Scholar
  7. 7.
    O. I. Smith, Fundamentals of soot formation in flames with application to diesel engines particulate emissions, Prog. Energy Combust. Sci. 7, 275–292 (1981).CrossRefGoogle Scholar
  8. 8.
    H. F. Calcote, Mechanisms of soot nucleation in flames — A critical review, Combust. Flame 42, 215–242 (1981).CrossRefGoogle Scholar
  9. 9.
    C. F. Cullis, D. J. Huchnall, and J. V. Shepard, Studies of radical reactions leading to carbon formation, in: Combustion Institute European Symposium, pp. 111–118, Academic Press, New York (1973).Google Scholar
  10. 10.
    K. H. Homann, Carbon formation in pre-mixed flames, in: The Mechanisms of Pyrolysis, Oxidation and Burning of Organic Materials (L. A. Wall, ed.), U.S. National Bureau of Standards Publication 357, pp. 143-152 (1972).Google Scholar
  11. 11.
    T. Tanzawa and W. C. Gardiner, Jr., Mechanisms of acetylene thermal decomposition, in: Seventeenth Symp. (Int.) on Combust., pp. 563–573, The Combustion Institute, Pittsburgh, PA (1979).Google Scholar
  12. 12.
    C. F. Cullis, Role of acetylenic species in carbon formation, ACS Symp. Ser. 21, 248–357 (1976).Google Scholar
  13. 13.
    L. E. Stein, On the high temperature chemical equilibria of polycyclic aromatic hydrocarbons, J. Phys. Chem. 82, 566–571 (1978).CrossRefGoogle Scholar
  14. 14.
    K. H. Homann, Carbon formation in flames, Combust. Flame 11, 265–287 (1967).CrossRefGoogle Scholar
  15. 15.
    R. Breslow, Organic Reaction Mechanisms, W. A. Benjamin, New York (1965).Google Scholar
  16. 16.
    R. L. Schalla, T. P. Clark, and G. E. McDonald, Formation and Combustion of Smoke in Laminar Flames, NACA Report 1186 (1954).Google Scholar
  17. 17.
    R. L. Schalla and R. R. Hibbard, Smoke and coke formation in combustion of hydrocarbon-air mixtures, in: Basic Considerations in the Combustion of Hydrocarbon Fuels in Air, Chapter 9, NACA Report 1300 (1957).Google Scholar
  18. 18.
    K. P. Schug, Y. Mannheimer-Timnat, P. Yaccarino, and I. Glassman, Sooting behavior of gaseous hydrocarbon diffusion flames and the influence of additives, Combust. Sci. Technol. 22, 235–250 (1980).CrossRefGoogle Scholar
  19. 19.
    I. Glassman and P. Yaccarino, The temperature effect in sooting diffusion flames, in: Eighteenth Symp. (Int.) on Combust., pp. 1175–1183, The Combustion Institute, Pittsburg, PA (1981).Google Scholar
  20. 20.
    I. Glassman and P. Yaccarino, The effect of oxygen concentration on sooting diffusion flames, Combust. Sci. Technol. 24, 107–114 (1980).CrossRefGoogle Scholar
  21. 21.
    I. Glassman and P. Lara, The temperature effect in sooting pre-mixed flames, Paper presented at Eastern States Section/The Combustion Institute Meeting, Carnegie-Mellon University, Pittsburgh (October, 1981).Google Scholar
  22. 22.
    A. D’Alessio and A. Di Lorenzo, Optical and chemical investigation in fuel-rich methane-oxygen pre-mixed flames at atmospheric pressures, in: Fourteenth Symp. (Int.) on Combust., pp. 941–953, The Combustion Institute, Pittsburgh, PA (1973).Google Scholar
  23. 23.
    A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta, and S. Masi, Study of the soot nucleation zone of rich methane-oxygen flames, in: Sixteenth Symp. (Int.) on Combust., pp. 695–708, The Combustion Institute, Pittsburgh, PA (1977).Google Scholar
  24. 24.
    B. S. Haynes, H. Jander, and H. Gg. Wagner, The effect of metal additives on the formation of soot in pre-mixed flames, in: Seventeenth Symp. (Int.) on Combustion, pp. 1365–1374, The Combustion Institute, Pittsburgh, PA (1979).Google Scholar
  25. 25.
    J. C. Street and A. Thomas, Carbon formation in pre-mixed flames, Fuel 34, 4–36 (1955).Google Scholar
  26. 26.
    S. T. Minchin, The chemical significance of tendency to soot, World Pet. Congr. Proc. 2, 738–743 (1933).Google Scholar
  27. 27.
    A. E. Clarke, T. C. Hunter, and F. H. Garner, The tendency to smoke of organic substances on burning, J. Inst. Petrol. 32, 627–642 (1946).Google Scholar
  28. 28.
    B. F. Magnussen and B. H. Hjerhager, An investigation into the behavior of soot in turbulent free jet C2H2 flame, in: Fifteenth Symp. (Int.) on Combust., pp. 1415–1425, The Combustion Institute, Pittsburgh, PA (1975).Google Scholar
  29. 29.
    F. J. Wright, The formation of carbon under well-stirred conditions, in: Twelfth Symp. (Int.) on Combust., pp. 867–874, The Combustion Institute, Pittsburgh, PA (1969).Google Scholar
  30. 30.
    W. S. Blazowski, Dependence of soot production on fuel structures on back-mixed combustion, Combust. Sci. Technol. 21, 87–96 (1980).CrossRefGoogle Scholar
  31. 31.
    W. J. Miller and H. F. Calcote, Ionic mechanisms of carbon formation in flames, Paper presented at Eastern States Section/The Combustion Institute Meeting, United Technologies Research Center, East Hartford, Conn. (November, 1977).Google Scholar
  32. 32.
    R. C. Milliken, Non-equilibrium soot formation in flames, J. Phys. Chem. 66, 794–799 (1962).CrossRefGoogle Scholar
  33. 33.
    F. L. Dryer and I. Glassman, Combustion chemistry of chain hydrocarbons, in: Alternative Hydrocarbon Fuels: Combustion and Chemical Kinetics (C. T. Bowman and J. Birkeland, eds.), Prog. Astronaut. Aeronaut., Vol. 62, pp. 255–306, American Institute of Aeronautics and Astronautics, New York (1978).Google Scholar
  34. 34.
    D. J. Hautman, F. L. Dryer, K. P. Schug, and I. Glassman, A multiple-step overall kinetic mechanism for the oxidation of hydrocarbons, Combust. Sci. Technol. 25, 219–235 (1981).CrossRefGoogle Scholar
  35. 35.
    T. M. Dyer and W. F. Flower, A phenomenological description of particulate formation during constant volume combustion, in: Particulate Carbon Formation During Combustion (D. C. Siegla and G. W. Smith, eds.), pp. 363–390, Plenum Press, New York (1981).Google Scholar
  36. 36.
    J. Peeters and G. Mahner, Structure of ethylene-oxygen flames, reaction mechanisms and rate constants of elementary reactions, in: Combustion Institute European Symposium, pp. 53–59, Academic Press, New York (1973).Google Scholar
  37. 37.
    I. Glassman, The Homogeneous Oxidtion Kinetics of Hydrocarbons: Concisely and With Application, Princeton University Department of Mechanical and Aerospace Engineering Report 1446 (1980).Google Scholar
  38. 38.
    C. Venkat, High Temperature Oxidation of Aromatic Hydrocarbons, Princeton University Department of Chemical Engineering M.S.E. Thesis (1981).Google Scholar
  39. 39.
    C. Venkat, K. Brezinsky, and I. Glassman, High temperature oxidation of aromatic hydrocarbons, in: Nineteenth Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, PA (to appear).Google Scholar
  40. 40.
    B. S. Haynes and H. Gg. Wagner, Sooting structure in a laminar diffusion flame, Ber. Bunsenges. Phys. Chem. 84, 499–506 (1980).Google Scholar
  41. 41.
    J. H. Kent, J. Jander, and H. Gg. Wagner, Soot formation in laminar diffusion flames, in: Eighteenth Symp. (Int.) on Combust., pp. 1117–1126, The Combustion Institute, Pittsburgh, PA (1981).Google Scholar
  42. 42.
    I. M. Kennedy, U. Vandsburger, F. L. Dryer, and I. Glassman, Soot Formation in the Forward Stagnation Region of a Porous Cylinder, Western States Section/The Combustion Institute Paper WSCI 82-39 (1982).Google Scholar
  43. 43.
    P. Yaccarino, Parametric Study of Sooting Diffusion Flames, Princeton University Department of Mechanical and Aerospace Engineering M.S.E. Thesis (1980).Google Scholar
  44. 44.
    S. R. Smith and A. S. Gordon, Studies of diffusion flames I. The methane diffusion flame, J. Phys. Chem. 60, 759–763 (1956).CrossRefGoogle Scholar
  45. 45.
    F. J. Wright, Effect of oxygen on the carbon-forming tendencies of diffusion flames, Fuel 53, 232–235 (1974).CrossRefGoogle Scholar
  46. 46.
    I. Glassma’n, Combustion, Academic Press, New York (1977).Google Scholar
  47. 47.
    D. G. L. James and R. D. Stuart, Kinetic study of the cyclohexadienyl radical, Trans. Faraday Soc. 64, 2752–2769 (1968).CrossRefGoogle Scholar
  48. 48.
    N. Fuji and T. Asaba, Shock-tube study of the reaction of rich mixtures of benzene and oxygen in: Fourteenth Symp. (Int.) on Combust., pp. 433–442, The Combustion Institute, Pittsburgh, PA (1973).Google Scholar
  49. 49.
    L. Crocco, I. Glassman, and I. E. Smith, A flow reactor for high temperature reaction kinetics, Jet Propulsion 27, 1266–1267 (1957).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • I. Glassman
    • 1
  • K. Brezinsky
    • 1
  • A. Gomez
    • 1
  • F. Takahashi
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations