Advertisement

Linear Model of Convective Heat Transfer in a Spray

  • W. A. Sirignano

Abstract

The relative motion between dropets in a spray and the ambient gas is represented in an idealized fashion (Oseen-type approximation) that allows for a linear analysis of gas-phase unsteadiness and transient heating of the droplets.

One-dimensional, unsteady solutions for the gas temperature and droplet temperature are obtained. In addition to the general solution, asymptotic solutions for large liquid thermal inertia and small liquid thermal inertia are obtained and consistency is demonstrated. The solutions are expressed as combinations of exponential terms and convergent Taylor series; the solutions are piecewise analytic and a domain of independence of boundary values is obtained. In general, two characteristic times (and their associated space scales) appear in the solutions, namely a gas residence time and a droplet heating time.

Keywords

Nusselt Number Convective Heat Transfer Droplet Vaporization Droplet Temperature Fuel Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Suzuki and H. H. Chiu, Multidroplet combustion of liquid propellants, in: Proc. Int. Symp. Space Technol. Sci. 9th, pp. 145-154 (1971).Google Scholar
  2. 2.
    H. H. Chiu, H. Y. Kim, and E. J. Croke, Internal group combustion of liquid droplets, Nineteenth Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, PA (1983) (in press).Google Scholar
  3. 3.
    N. A. Chigier, Instrumentation techniques for studying heterogeneous combustion, Prog. Energy Combust. Sci. 3, 175–189 (1977).CrossRefGoogle Scholar
  4. 4.
    N. A. Chigier, Energy, Combustion and Environment, McGraw-Hill Book Co., New York (1981).Google Scholar
  5. 5.
    J. J. Sangiovanni and L. G. Dodge, Observations of flame structure in the combustion of monodispersed droplet streams, in: Seventeenth Symp. (Int.) on Combust., pp. 455–465, The Combustion Institute, Pittsburgh, PA (1979).Google Scholar
  6. 6.
    M. Labowsky and D. E. Rosner, “Group” combustion of droplets in fuel clouds: I Quasi-steady predictions, in: Evaporation-Combustion of Fuels, Advances in Chemistry Series 166 (J. T. Zung, ed.), pp. 63-79, ACS (1978).Google Scholar
  7. 7.
    M. Labowsky, The calculation of the burning rates of interacting fuel droplets, Combust. Sci. Technol. 22, 217–226 (1980).CrossRefGoogle Scholar
  8. 8.
    S. M. Correa and M. Sichel, The group combustion of a spherical cloud of monodisperse fuel droplets, in: Nineteenth Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, PA (1983) (in press).Google Scholar
  9. 9.
    W. A. Sirignano, Fuel droplets vaporization and spray combustion, Prog. Energy Combust. Sci. (to appear in 1984).Google Scholar
  10. 10.
    B. Seth, S. K. Aggarwal, and W. A. Sirignano, Flame propagation through an air-fuel spray mixture with transient droplet vaporization, Combust. Flame 39, 149–168 (1980).CrossRefGoogle Scholar
  11. 11.
    S. K. Aggarwal, G. J. Fix, D. N. Lee, and W. A. Sirignano, Numerical optimization studies of axisymmetric unsteady spray, J. Comput. Phys. 50(1) (1983).Google Scholar
  12. 12.
    S. K. Aggarwal, G. J. Fix, D. N. Lee, and W. A. Sirignano, Numerical computation of fuel-air mixing in a two-phase axi-symmetric coaxial free jet flow, in: Advances in Computer Methods for Partial Differential Equations — IV (R. Vichnevetsky and R. S. Stepleman, eds.), pp. 317-323, IMACS (1981).Google Scholar
  13. 13.
    W. A. Sirignano and C. K. Law, Transient heating and liquid-phase mass diffusion in fuel droplet vaporization, in: Evaporation-Combustion of Fuels, Advances in Chemistry Series 166 (J. T. Zung, ed.), pp. 3-26, ACS (1978).Google Scholar
  14. 14.
    R. Tal (Thau) and W. A. Sirignano, Heat Transfer in Sphere Assemblages at Intermediate Reynolds Number: A Cylindrical Cell Model, ASME Preprint 81-WA/HT-44 (1981).Google Scholar
  15. 15.
    R. Tal (Thau), D. N. Lee, and W. A. Sirignano, Hydrodynamics and Heat Transfer in Sphere Assemblages: Multisphere Cylindrical Cell Models, AIAA Preprint 82-0302 (1982).Google Scholar
  16. 16.
    C. K. Law and W. A. Sirignano, Unsteady droplet combustion with droplet heating — II: Conduction limit, Combust. Flame 28, 175–186 (1977).CrossRefGoogle Scholar
  17. 17.
    S. Prakash and W. A. Sirignano, Liquid fuel droplet heating with internal circulation, Int. J. Heat Mass Transfer 21, 885–895 (1978).CrossRefGoogle Scholar
  18. 18.
    S. Prakash and W. A. Sirignano, Theory of convective droplet vaporization with unsteady heat transfer in the circulating liquid phase, Int. J. Heat Mass Transfer 23, 253–268 (1980).MATHCrossRefGoogle Scholar
  19. 19.
    P. Lara-Urbaneja and W. A. Sirignano, Theory of transient multicomponent droplet vaporization in a convective field, in: Eighteenth Symp. (Int.) on Combust., pp. 1365–1374, The Combustion Institute, Pittsburgh, PA (1981).Google Scholar
  20. 20.
    A. Tong and W. A. Sirignano, Analytical solution for diffusion and circulation in a vaporizing droplet, in: Nineteenth Symp. (Int.) on Combust, pp. 1007–1020, The Combustion Institute, Pittsburgh, PA (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • W. A. Sirignano
    • 1
  1. 1.Department of Mechanical EngineeringCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations