Advertisement

Motivation pp 367-423 | Cite as

The Neuropsychology of Drinking Behavior

  • Alan N. Epstein

Abstract

Animals seek water when the state of thirst arises in their brains and the tonic activity of the state governs their behavior as they select water and ingest it. The problem of the neuropsychology of drinking behavior is therefore essentially that of the brain mechanisms that are the state of thirst. That is, drinking behavior would be understood if we had intimate knowledge of the complex and specific state of brain activity that concurrently gives rise to the experience that we describe as thirst, that generates the urge to drink that underlies the search for water, and that controls the animal’s consumption of it. There are some solutions to this problem. We know something of the mechanisms for the control of ingestion itself because they are closely linked to the water losses which initiate drinking. And we have some understanding of the events that lead to the satiation of water intake. These matters will be the subject of this review. But we know nothing of the neural mechanisms of the cognitive and hedonic phenomena that are so prominent in the meaning of the concept of thirst. After all, it is the expectation of water and the pleasure of its ingestion that characterize thirst for all of us. These are mentioned here and will be discussed later because they should not be omitted from our thinking about the neuropsychology of drinking behavior despite our ignorance of their brain mechanisms.

Keywords

Physiological Psychology Drinking Behavior Water Deprivation Preoptic Area Zona Incerta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelaal, A. E., Mercer, P. F., and Mogenson, G. J. Drinking elicited by polyethylene glycol and isoproterenol reduced by antiserum to angiotensin II. Canadian Journal of Physiology and Pharmacology, 1974, 52, 362–363.PubMedCrossRefGoogle Scholar
  2. Abdelaal, A. E., Mercer, P. F., and Mogenson, G. J. Plasma angiotensin II levels and water intake following β-adrenergic stimulation, hypovolemia, cellular dehydration and water deprivation. Pharmacology, Biochemistry and Behavior, 1976, 4, 317–321.CrossRefGoogle Scholar
  3. Abraham, S. F., Baker, R. M., Blaine, E. H., Denton, D. A., and McKinley, M. J. Water drinking induced in sheep by angiotensin—A physiological or pharmacological effect? Journal of Comparative and Physiological Psychology, 1975, 8, 503–518.CrossRefGoogle Scholar
  4. Abraham, S. F., Denton, D. A., McKinley, M. J., and Weisinger, R. S. Effect of an angiotensin antagonist, Sar1-Ala8-angiotensin II on physiological thirst. Pharmacology, Biochemistry and Behavior, 1976, 4, 243–247.CrossRefGoogle Scholar
  5. Adolph, E. F. Regulation of water intake in relation to body water content. In Handbook of Physiology, Alimentary Canal, Sec. 6, Vol. 1. American Physiological Society, Washington, D.C., 1969.Google Scholar
  6. Adolph, E. F., Baker, J. P., and Hoy, P. A. Multiple factors in thirst. American Journal of Physiology, 1954, 178, 538–562.PubMedGoogle Scholar
  7. Ahern, G. L., Landin, M. L., and Wolf, G. Escape from deficits in sodium intake after thalamic lesions as a function of preoperative experience. Journal of Comparative and Physiological Psychology, 1978, 92, 544–554.PubMedCrossRefGoogle Scholar
  8. Akert, K. The mammalian sub-fornical organ. Journal of Neuro-Visceral Relationships, 1969, Suppl. IX, 78–93.Google Scholar
  9. Almli, C. R., and Weiss, C. R. Drinking behaviors: Effects of lateral preoptic and lateral hypothalamic destruction. Physiology and Behavior, 1974, 13, 527–538.PubMedCrossRefGoogle Scholar
  10. Almli, C. R., Golden, G. T., and McMullen, N. T. Ontogeny of drinking behavior of preweaning rats with lateral preoptic damage. Brain Research Bulletin, 1976, 1, 437–442.PubMedCrossRefGoogle Scholar
  11. Andersson, B. The effect of injections of hypertonic NaCl-solutions in different parts of the hypothalamus of goats. Acta Physiologica Scandinavica, 1953, 28, 188–201.PubMedCrossRefGoogle Scholar
  12. Andersson, B. Thirst and brain control of water balance. American Scientist, 1971, 59, 408–415.PubMedGoogle Scholar
  13. Andersson, B., and Larsson, B. Influence of local temperature changes in the preoptic area and rostral hypothalamus on the regulation of food and water intake. Acta Physiologica Scandinavica, 1961, 52, 75–89.PubMedCrossRefGoogle Scholar
  14. Andersson B., and McCann, S. M. The effect of hypothalamic lesions in the water intake of the dog. Acta Physiologica Scandinavica, 1956, 35, 312–320.PubMedGoogle Scholar
  15. Andersson, B., and Wyrwicka, W. The elicitation of a drinking motor conditioned reaction by electrical stimulation of the hypothalamic “drinking area.” Acta Physiologica Scandinavica, 1957, 41, 194–198.PubMedCrossRefGoogle Scholar
  16. Andersson, B., Dallman, M. F., and Olsson K. Observations on central control of drinking and release of antidiuretic hormone (ADH). Life Sciences, 1969, 8 Part 1, 425–432.PubMedCrossRefGoogle Scholar
  17. Andersson, B., Leksell, G., and Lishajko, F. Perturbations in fluid balance induced by medially placed forebrain lesions. Brain Research, 1975, 99, 261–215.PubMedCrossRefGoogle Scholar
  18. Asscher, A. W., and Anson, S. G. A vascular permeability factor of renal origin. Nature, 1962, 198, 1097–1099.CrossRefGoogle Scholar
  19. Austin, V. T., and Steggerda, F. R. Congential dysfunction of the salivary glands with observations on the physiology of thirst. Illinois Medical Journal, 1936, 69, 127–138.Google Scholar
  20. Avrith, D. B., and Fitzsimons, J. T. Increased sodium appetite in the rat induced by intracranial administration of components of the renin-angiotensin system. Journal of Physiology (London), 1979, 301, 349–364.Google Scholar
  21. Baldwin, B. A., and Cooper, T. R. Effects of warming and cooling the hypothalamus on food and water intake in sheep. Paper presented to the Seventh International Conference on the Physiology of Food and Fluid Intake, Warsaw, July 1980.Google Scholar
  22. Beilharz, S., Bott, E., Denton, D. A., and Sabine, J. R. The effect of intracarotid infusions of the 4M NaCl on the sodium drinking of sheep with a parotid fistula. Journal of Physiology, 1965, 178, 80–91.PubMedGoogle Scholar
  23. Bennett, J. P., Jr., and Snyder, S. Angiotensin II binding to mammalian brain membranes Journal of Biological Chemistry, 1976, 251, 7423–7430.PubMedGoogle Scholar
  24. Black, S. L., Kucharczyk, J., and Mogenson, G. J. Disruption of drinking to intracranial angiotensin by a lateral hypothalamic lesion. Pharmacology, Biochemistry and Behavior, 1974, 2, 515–522.CrossRefGoogle Scholar
  25. Blair-West, J. R., and Brook, A. H. Circulatory changes and renin secretion in sheep in response to feeding. Journal of Physiology (London), 1969, 204, 15–30.Google Scholar
  26. Blank, D. L., and Wayner, M. J. Lateral preoptic single unit activity: Effects of various solutions. Physiology and Behavior, 1975, 15, 723–730.PubMedCrossRefGoogle Scholar
  27. Blass, E. M. Evidence for basal forebrain thirst osmoreceptors in rats. Brain Research, 1974, 82, 69–76.PubMedCrossRefGoogle Scholar
  28. Blass, E. M., and H. W. Chapman. An evaluation of the contribution of cholinergic mechanisms to thirst. Physiology of Behavior, 1971, 7, 679–686.CrossRefGoogle Scholar
  29. Blass, E. M., and Epstein, A. N. A lateral preoptic osmosensitive zone for thirst in the rat. Journal of Comparative and Physiological Psychology, 1971, 76, 378–394.PubMedCrossRefGoogle Scholar
  30. Blass, E. M., and Fitzsimons, J. T. Additivity of effect and interaction of a cellular and an extracellular stimulus of drinking. Journal of Comparative and Physiological Psychology, 1970, 70, 200–205.PubMedCrossRefGoogle Scholar
  31. Blass, E. M., and Hall, W. G. Behavioral and physiological bases of drinking inhibition in water deprived rats. Nature, 1974, 249, 485–486.PubMedCrossRefGoogle Scholar
  32. Blass, E. M., and Hanson, D. G. Primary hyperdipsia in the rat following septal lesions. Journal of Comparative and Physiological Psychology, 1970, 70, 87–93.PubMedCrossRefGoogle Scholar
  33. Blass, E. M., and Moran, J. S. Specific inhibition of angiotensin mediated drinking in rats by stimulation of the septum. Neuroscience Abstracts, 1975, 1, 470.Google Scholar
  34. Blass, E. M., Nussbaum, A. I., and Hanson, D. G. Septal hyperdipsia: Specific enhancement of drinking to angiotensin in rats. Journal of Comparative and Physiological Psychology, 1974, 81, 422–439.CrossRefGoogle Scholar
  35. Booth, D. A. Effects of intrahypothalamic glucose injection on eating and drinking elicited by insulin. Journal of Comparative and Physiological Psychology, 1968a, 65, 13–16.PubMedCrossRefGoogle Scholar
  36. Booth, D. A. Mechanism of action of norepinephrine in eliciting an eating response on injection into the rat hypothalamus. Journal of Pharmacology and Experimental Therapeutics, 1968b, 160, 336–348.PubMedGoogle Scholar
  37. Borer, K. T. The disappearance of preferences and aversions for sapid solutions in rats ingesting untasted fluids. Journal of Comparative and Physiological Psychology, 1968, 65, 213–221.PubMedCrossRefGoogle Scholar
  38. Bott, E., Denton, D. A., and Weller, S. The effect of angiotensin II infusion renal hypertension and nephrectomy on salt appetite of sodium deficient sheep. Australian Journal of Experimental and Biological Medical Sciences, 1967, 45, 595–612.CrossRefGoogle Scholar
  39. Bridge, J. G., and Hatton G. I. Septal unity activity in response to alterations in blood volume and osmotic pressure. Physiology and Behavior, 1973, 10, 769–774.PubMedCrossRefGoogle Scholar
  40. Brown, J. J., Curtis, J. R., Lever, A. F., Robertson, J. I. S., DeWardener, H. E., and Wing, A. J. Plasma renin concentration and the control of blood pressure in patients on maintenance haemodialysis. Nephron, 1969, 6, 329–349.PubMedCrossRefGoogle Scholar
  41. Bryant, R. W., and Falk, J. L. Angiotensin I as a dipsogen: Efficacy in brain independent of conversion to angiotensin II. Pharmacology, Biochemistry and Behavior, 1973, 1, 469–475.CrossRefGoogle Scholar
  42. Bryant, R. W., Fluharty, S. J., and Epstein, A. N. Arousal of a specific and persistent sodium appetite with continuous intracerebroventricular infusion of angiotensin II. Journal of Physiology (London), 1980, 301, 365–382.Google Scholar
  43. Buggy, J., and Fisher, A. E. Evidence for a dual central role for angiotensin in water and sodium intake. Nature, 1974, 250, 733–735.PubMedCrossRefGoogle Scholar
  44. Buggy, J., and Fisher, A. E. Anteroventral third ventricle site of action for angiotensin induced thirst. Pharmacology, Biochemistry and Behavior, 1976, 4, 651–660.CrossRefGoogle Scholar
  45. Buggy, J., Fisher, A. E., Hoffman, W. E., Johnson, A. K., and Phillips, M. I. Ventricular Obstruction: Effect of drinking induced by intracranial angiotensin, Science, 1975, 190, 72–74.Google Scholar
  46. Buggy, J., Hoffman, W. E., Phillips, M. I., Fisher, A. E., and Johnson, A. K. Osmosensitivity of the rat third ventricle and interactions with angiotensin. American Journal of Physiology, 1979, 236, R75–R82.PubMedGoogle Scholar
  47. Buranarugsa, P., and Hubbard, J. I. The neuronal organization of the rat subfornical organ in vitro and a test of the osmo- and morphine receptor hypotheses. Journal of Physiology (London), 1979, 291, 101–116.Google Scholar
  48. Burkhardt, R., Peters-Haefeli, L., and Peters, G. The mechanism of thirst-induction by intrahy-pothalamic renin. In B. Peters, J. T. Fitzsimons, and L. Peters-Haefeli (Eds.), Control Mechanisms of Drinking. New York: Springer-Verlag, 1975.Google Scholar
  49. Campbell, W. B., Brooks, S. N., and Pettinger, W. A. Angiotensin II- and angiotensin III-induced aldosterone release in vivo in the rat. Science, 1974, 184, 994–996.PubMedCrossRefGoogle Scholar
  50. Cannon, W. B. The physiological basis of thirst. Proceedings of the Royal Society (London), 1918, Ser. B 90, 283–301.CrossRefGoogle Scholar
  51. Chiaraviglio, E. Effect of renin-angiotensin system on sodium intake. Journal of Physiology (London), 1976a, 255, 57–66.Google Scholar
  52. Chiaraviglio, E. Angiotensin-norepinephrine interaction on sodium intake. Behavioral Biology, 1976b, 17, 411–416.PubMedCrossRefGoogle Scholar
  53. Chiaraviglio, E., and Taleisnik, S. Water and salt intake induced by hypothalamic implants of cholinergic and adrenergic agents. American Journal of Physiology, 1969, 216, 1418–1422.PubMedGoogle Scholar
  54. Cizek, L. J., Semple, R. E., Hyang, K. C., and Gregersen, M. I. Effect of extracellular electrolyte depletion on water intake in dogs. American Journal of Physiology, 1951, 164, 415–422.PubMedGoogle Scholar
  55. Couburn, P. C., and Stricker, E. M. Osmoregulatory thirst in rats following lateral preoptic lesions. Neuroscience Abstracts, 1976, 2, 298.Google Scholar
  56. Cooling, M. J., and Day, M. D. Antagonism of central dipsogenic and peripheral vasoconstrictor responses to angiotensin II with Sar1-Ala8-angiotensin in the conscious cat. Journal of Pharmacy and Pharmacology, 1973, 25, 1005–1006.PubMedCrossRefGoogle Scholar
  57. Conn, J. W., Cohen, E. L., Lucas, C. P., McDonald, W. J., Mayor, G. H., Blough, W. M. Jr., Eveland, W. C., Bookstein, J. J., and Lapides, J. Primary reninsim. Archives of Internal Medicine, 1972, 130, 682–686.PubMedCrossRefGoogle Scholar
  58. Corbit, J. D. Cellular dehydration and hypovolaemia are additive in producing thirst. Nature, 1968, 218, 886–887.CrossRefGoogle Scholar
  59. Covian, M. J., Gentil, C. G., and Antunes-Rodrigues, J. Water and sodium chloride intake following microinjections of angiotensin II into the septal area of the rat. Physiology and Behavior, 1972, 9, 373–377.PubMedCrossRefGoogle Scholar
  60. Covian, M. R., Antunes-Rodrigues, J., Gentil, C. G., Saad, W. A., Camargo, L. A., and Silva Neto, C. R. Central Control of salt balance. In G. J. Mogenson, and F. R. Calaresu (Eds.), Neural Integration of Physiological Mechanisms and Behaviour. Toronto: University of Toronto Press, 1975.Google Scholar
  61. Cross, B. A., and Green, J. D. Activity of single neurones in the hypothalamus: Effect of osmotic and other stimuli. Journal of Physiology (London), 1959, 148, 554–569.Google Scholar
  62. Davis, J. O. The control of aldosterone secretion. Physiologist, 1962, 5, 65–86.PubMedGoogle Scholar
  63. DeCaro, G., Massi, M., and Micossi, L. G. Antidipsogenic effect of intracranial injections of substance P in rats. Journal of Physiology (London), 1978, 279, 133–140.Google Scholar
  64. DeCaro, G., Micossi, L. G., and Venturi, L. Drinking behavior induced by intracerebroventricular administration of enkephalins to rat. Nature, 1979, 277, 51.CrossRefGoogle Scholar
  65. Denton, D. A., McKinley, M. J., Nelson, J. F., and Weisinger, R. S. Pregnancy, lactation, and hormone-induced mineral appetite. In Y. Katsuki, S. Masayau, S. Takagi, and Y. Domura (Eds.), Food Intake and Chemical Senses. Tokyo: Japan Scientific Societies Press, 1977.Google Scholar
  66. Deuben, R. R., and Buckley, J. P. Identification of a central site of action of angiotensin II. Journal of Pharmacology and Experimental Therapeutics. 1970, 175, 139–146.PubMedGoogle Scholar
  67. Dickinson, C. J., and Ferrario, C. M. Central neurogenic effects of angiotensin. In I. H. Page, and F. M. Bumpus (Eds.), Angiotensin. Heidelberg: Springer-Verlag, 1974.Google Scholar
  68. Edinger, H. M. Single unit firing patterns during drinking. Proceedings of the IV International Conference of Regulation of Food & Water Intake. Cambridge, England, 1971.Google Scholar
  69. Edwards, G. L., and Ritter, R. C. Area postrema lesions increase drinking in response to angiotensin II and extracellular dehydration. Journal of Neuroscience, 1982, in press.Google Scholar
  70. Epstein, A. N. Reciprocal changes in feeding behavior produced by intrahypothalamic chemical injection. American Journal of Physiology, 1960a, 199, 969–974.PubMedGoogle Scholar
  71. Epstein, A. N. Water intake without the act of drinking. Science, 1960b, 131, 497–498.PubMedCrossRefGoogle Scholar
  72. Epstein, A. N. The lateral hypothalamic syndrome. In E. Stellar and J. M. Sprague (Eds.), Progress in Physiological Psychology. New York: Academic Press, 1971.Google Scholar
  73. Epstein, A. N. Feeding and drinking in suckling rats. In D. Novin, W. Wyrwicka, and G. Bray (Eds.), Hunger: Basic Mechanisms and Clinical Implications. New York: Raven Press, 1976.Google Scholar
  74. Epstein, A. N. Consensus, controversies, and curiosities. In M. J. Fregly (Ed.), Angiotensin-Induced Thirst: Peripheral and Central Mechanisms. Federation Proceedings, 1978, 37, 2711–2715.Google Scholar
  75. Epstein, A. N., and Hsiao, S. Angiotensin as dipsogen. In G. Peters, J. T. Fitzsimons, and L. Peters-Haefeli (Eds.), Control Mechanisms of Drinking. Heidelberg: Springer-Verlag, 1975.Google Scholar
  76. Epstein, A. N., and Stellar E. The control of salt preference in the adrenalectomized rat. Journal of Comparative and Physiological Psychology, 1955, 48, 167–172.PubMedCrossRefGoogle Scholar
  77. Epstein, A. N., and Teitelbaum, P. Severe and persistent deficits in thirst produced by lateral hypothalamic damage. In M. J. Wayner (Ed.), Thirst: Proceedings of the First International Symposium on Thirst in the Regulation of Body Water. Oxford: Pergamon Press, 1964.Google Scholar
  78. Epstein, A. N., Spector, D., Samman, A., and Goldblum, C. Exaggerated prandial drinking in the rat without salivary glands. Nature, 1964, 201, 1342–1343.PubMedCrossRefGoogle Scholar
  79. Epstein, A. N., Fitzsimons, J. T., and Rolls, B. J. Drinking induced by injection of angiotensin into the brain of the rat. Journal of Physiology (London), 1970, 210, 474.Google Scholar
  80. Epstein, A. N., Fitzsimons, J. T., and Johnson, A. K. Prevention by angiotensin II antiserum of drinking induced by intracranial angiotensin. Journal of Physiology (London), 1972, 230, 42–43P.Google Scholar
  81. Epstein, A. N., Kissileff, H. R., and Stellar, E. The Neuropsychology of Thirst. Washington, D. C.: V. H. Winston, 1973.Google Scholar
  82. Evered, M. D., and Mogenson G. J. Regulatory and secondary water intake in rats wtih lesions of the zona incerta. American Journal of Physiology, 1976, 230, 1049–1057.PubMedGoogle Scholar
  83. Evered, M. D., and Mogenson, G. J. Impairment in fluid ingestion in rats with lesions of the zona incerta. American Journal of Physiology, 1977, R53–R58.Google Scholar
  84. Falk, J. L. The behavioral regulation of water-electrolyte balance. In M. R. Jones (Ed.), Nebraska Symposium on Motivation. Lincoln: University of Nebraska Press, 1961.Google Scholar
  85. Falk, J. L., and Herman, T. S. Specific appetite for NaCl without postingestional repletion. Journal of Comparative and Physiological Psychology, 1961, 54, 405–408.PubMedCrossRefGoogle Scholar
  86. Felix, D., and Akert, K. The effect of angiotensin II on neurons of the cat subfornical organ. Brain Research, 1974, 76, 350–353.PubMedCrossRefGoogle Scholar
  87. Findlay, A. L. R., Elfont, R. M., and Epstein, A. N. The site of the dipsogenic action of angiotensin II in the American opossum. Brain Research, 1980, 198, 85–94.PubMedCrossRefGoogle Scholar
  88. Fitzsimons, J. T. Drinking by nephrectomized rats injected with various substances. Journal of Physiology (London), 1961a, 155, 562–579.Google Scholar
  89. Fitzsimons, J. T. Drinking by rats depleted of body fluid without increase in osmotic pressure. Journal of Physiology (London), 1961b, 159, 297–309.Google Scholar
  90. Fitzsimons, J. T. Drinking caused by constriction of the inferior vena cava in the rat. Nature, 1964, 204, 479–480.PubMedCrossRefGoogle Scholar
  91. Fitzsimons, J. T. The role of renal thirst factor in drinking induced by extracellular stimuli. Journal of Physiology (London), 1969, 201, 349–369.Google Scholar
  92. Fitzsimons, J. T. The renin-angiotensin system in the control of drinking. In L. Martini, M. Motta, and F. Franschini (Eds.), The Hypothalamus. New York: Amsterdam Press, 1970.Google Scholar
  93. Fitzsimons, J. T. The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat’s diencephalon. Journal of Physiology (London), 1971, 214, 295–303.Google Scholar
  94. Fitzsimons, J. T. The Physiology of Thirst and Sodium Appetite. Cambridge: Cambridge University Press, 1979.Google Scholar
  95. Fitzsimons, J. T., and Le Magnen, J. Eating as a regulatory control of drinking in the rat. Journal of Comparative and Physiological Psychology, 1969, 67, 273–283.PubMedCrossRefGoogle Scholar
  96. Fitzsimons, J. T., and Moore-Gillon, M. J. Drinking and antidiuresis in response to reductions in venous return in the dog: Neural and endocrine mechanisms. Journal of Physiology (London), 1980, 308, 403–416.Google Scholar
  97. Fitzsimons, J. T., and Oatley, K. Additivity of stimuli for drinking in rats. Journal of Comparative and Physiological Psychology, 1968, 66, 450–455.PubMedCrossRefGoogle Scholar
  98. Fitzsimons, J. T., and Setler, P. E. Catecholaminergic mechanisms in angiotensin-induced drinking. Journal of Physiology (London), 1971, 218, 43–44P.Google Scholar
  99. Fitzsimons, J. T., and Simons, B. J. The effect on drinking in the rat of intravenous infusion of angiotensin, given alone or in combination with other stimuli of thirst. Journal of Physiology (London), 1969, 203, 45–57.Google Scholar
  100. Fitzsimons, J. T., and Stricker, E. M. Sodium appetite and the renin-angiotensin system. Nature, New Biology, 1971, 231, 58–60.PubMedCrossRefGoogle Scholar
  101. Fitzsimons, J. T., and Wirth, J. B. The renin-angiotensin system and sodium appetite. Journal of Physiology (London), 1978, 274, 63–80.Google Scholar
  102. Fitzsimons, J. T., Epstein, A. N., and Johnson, A. K. Peptide antagonists of the renin-angiotensin system in the characterization of the receptors for angiotensin-induced thirst. Brain Research, 1978, 153, 319–331.PubMedCrossRefGoogle Scholar
  103. Fitzsimons, J. T., Kucharczyk, J., and Richards, G. Systemic angiotensin-induced drinking in the dog: A physiological phenomenon. Journal of Physiology, 1978, 276, 435–448.PubMedGoogle Scholar
  104. Fluharty, S. J., and Epstein, A. N. Effects of intracerebroventricular arachidonic acid and indo-methacin on angiotensin-induced drinking. In B. Samuelsson, P. W. Ramwell, and R. Paoletti (Eds.), Advances in Prostaglandin and Thromboxane Research, (Vol. 8). New York: Raven Press, 1980.Google Scholar
  105. Fuxe, K., Ganten, D., Hökfelt, T., and Bolme, P. Immunohistochemical evidence for the existence of angiotensin-II-containing nerve terminals in the brain and spinal cord in the rat. Neuroscience Letters 1976, 2, 229–234.PubMedCrossRefGoogle Scholar
  106. Ganong, W. F., Mulrow, P. J., Boryczka, and Cera, G. Evidence for a direct effect of angiotensin II on adrenal cortex of the dog. Proceedings of the Society for Experimental Biology and Medicine, 1962, 109, 381–384.PubMedGoogle Scholar
  107. Ganten, D., Hutchinson, J. S., Schelling, P., Ganten, U., and Fischer, H. The iso-renin angiotensin systems in extrarenal tissue. Clinical Experimental Pharmacology and Physiology, 1975, 2, 127–151.Google Scholar
  108. Gilman, A. The relation between blood osmotic pressure, fluid distribution and voluntary water intake. American Journal of Physiology, 1937, 120, 323–328.Google Scholar
  109. Glowinski, J., and Iversen, L. L. Regional studies of catecholamines in the rat brain. Journal of Neurochemistry, 1966, 13, 655–669.PubMedCrossRefGoogle Scholar
  110. Goldstein, D. J., and Halperin, J. A. Mast cell histamine and cell dehydration thirst. Nature, 1977, 267, 250–252.PubMedCrossRefGoogle Scholar
  111. Goodwin, F. J., Kirshman, J. D., Sealey, J. E., and Laragh, J. H. Influence of the pituitary gland on sodium conservation, plasma renin and renin substrate concentration in the rat. Endocrinology, 1970, 86, 824–834.PubMedCrossRefGoogle Scholar
  112. Grace, J. E., and Stevenson, J. A. F. Thermogenic drinking in the rat. American Journal of Physiology, 1971, 220, 1009–1015.PubMedGoogle Scholar
  113. Graeff, F. G., Gentil, C. G., Perex, V. L., and Covian, M. R. Lever-pressing behavior caused by intraseptal angiotensin II in water satiated rats. Pharmacology, Biochemistry and Behavior, 1973, 1, 357–359.CrossRefGoogle Scholar
  114. Gronan, R. J., and York, D. H. Effects of angiotensin on cells in the preoptic area of rats. Neuroscience Abstracts, 1976, 2, 300.Google Scholar
  115. Gross, F., Bock, K. D., and Turrian, H. Untersuchen über die Blutdruckwirkung von Angiotensin. Helvetica Physiologica et Pharmacologica Acta, 1961, 19, 42–47.PubMedGoogle Scholar
  116. Grossman, S. P. Eating or drinking elicited by direct adrenergic or cholinergic stimulation of hypothalamus. Science, 1960, 132, 301–302.PubMedCrossRefGoogle Scholar
  117. Grossman, S. P. The biology of motivation. Annual Review of Psychology, 1979, 30, 209–242.PubMedCrossRefGoogle Scholar
  118. Gutman, Y., Benzakein, F., and Chaimovitz, M. Kidney factors affecting water consumption in the rat. Israel Journal of Medicine and Science, 1967, 3, 910–911.Google Scholar
  119. Gutman, Y., Benzakein, F., and Chaimovitz, M. Effect of illumination on water intake, thirst, and urine output in the rat. American Journal of Physiology, 1969, 277, 471–474.Google Scholar
  120. Hainsworth, F. R., and Epstein, A. N. Severe impairment of heat-induced saliva-spreading in rats recovered from lateral hypothalamic lesions. Science, 1966, 153, 1255–1257.PubMedCrossRefGoogle Scholar
  121. Hainsworth, F. R., Stricker, E. M., and Epstein, A. N. Water metabolism of rats in the heat: Dehydration and drinking. American Journal of Physiology, 1968, 214, 983–989.PubMedGoogle Scholar
  122. Hall, G. H., and Blass, E. M. Orogastric, hydrational, and behavioral controls of drinking following water deprivation in rats. Journal of Comparative and Physiological Psychology, 1975, 89, 939–954.PubMedCrossRefGoogle Scholar
  123. Harvey, J. A., and Hunt, H. F. Effect of septal lesions on thirst in the rat as indicated by water consumption and operant responding for water reward. Journal of Comparative and Physiological Psychology, 1965, 59, 49–56.PubMedCrossRefGoogle Scholar
  124. Hatton, G. I. Time course of blood changes during acute water deprivation in rats. Physiology and Behavior, 1971, 7, 35–38.PubMedCrossRefGoogle Scholar
  125. Hatton, G. I. Nucleus circularis: Is it an osmoreceptor in the brain? Brain Research Bulletin, 1976, 1, 123–131.PubMedCrossRefGoogle Scholar
  126. Hatton, G. I., and Almli, C. R. Plasma osmotic pressure and volume changes as determinants of drinking thresholds. Physiology and Behavior, 1969, 4, 207–214.CrossRefGoogle Scholar
  127. Hoffman, W. E., and Phillips, M. I. Regional study of cerebral ventricle sensitive sites to angiotensin II. Brain Research, 1976, 110, 313–330.PubMedCrossRefGoogle Scholar
  128. Hoffman, W. E., Ganten, V., Phillips, M. I., Schmid, P. G., Schelling, P., and Ganten, D. Inhibition of drinking in water-deprived rats by combined central angiotensin II and atropine receptor blockade. American Journal of Physiology, 1978, 234, F41-F47.PubMedGoogle Scholar
  129. Holmes, J. H., and Montgomery, A. V. Relation of route of administration and types of fluid to satisfaction of thirst in dog. American Journal of Physiology, 1960, 199, 907–911.PubMedGoogle Scholar
  130. Houpt, K. A., and Epstein, A. N. The complete dependence of beta-adrenergic drinking on the renal dipsogen. Physiology and Behavior, 1971, 1, 897–902.CrossRefGoogle Scholar
  131. Houpt, K. A., and Epstein, A. N. The ontogeny of the controls of food intake in the rat: GI fill and glucoprivation. American Journal of Physiology, 1973, 225, 58–66.PubMedGoogle Scholar
  132. Hsiao, S., Epstein, A. N., and Camardo, J. S. The dipsogenic potency of intravenous angiotensin. Hormones and Behavior, 1977, 8, 129–140.PubMedCrossRefGoogle Scholar
  133. Jalowiec, J. E., and Stricker, E. M. Sodium appetite in rats after apparent recovery from acute sodium deficiency. Journal of Comparative and Physiological Psychology, 1970, 73, 238–244.PubMedCrossRefGoogle Scholar
  134. Jiméniz-Diaz, C., Linazasoro, J. M., and Merchante, A. Further study of the part played by the kidneys in regulation of thirst. Bulletin of the Institute for Medical Research. University of Madrid, 1959, 12, 50–57.Google Scholar
  135. Johsnon, A. K., and Epstein, A. N. The cerebral ventricles as the avenue for the dipsogenic action of intra-cranial angiotensin. Brain Research, 1975, 86, 399–418.CrossRefGoogle Scholar
  136. Johnson, A. K., and Schwob, J. E. Cephalic angiotensin receptors mediating drinking to systemic angiotensin II. Pharmacology, Biochemistry and Behavior, 1974, 3, 1077–1084.CrossRefGoogle Scholar
  137. Johnson, A. K., Buggy, J., and Housh M. W. Effects of lesions surrounding the antero-ventral third ventricle (AC3V) on fluid homeostasis. Neuroscience Abstracts, 1976, 2, 301.Google Scholar
  138. Johnson, A. K., Mann, J. F. E., Housh, M. W., and Ganten, D. Plasma angiotensin II (A II) levels and thirst. Neuroscience Abstracts, 1978, 4, 175.Google Scholar
  139. Kenney, N. J., and Epstein, A. N. The antidipsogenic action of prostaglandin E2 (PGE2). Neuroscience Abstracts, 1975, 1, 469.Google Scholar
  140. Kenney, N. J., and Esptesin, A. N. The antidipsogenic role of the E-prostaglandins. Journal of Comparative and Physiological Psychology, 1978, 92, 204–219.PubMedCrossRefGoogle Scholar
  141. Kenney, N. J. and Moe, K. E. The role of endogenous prostaglandin E in angiotensin-II-induced drinking. Journal of Comparative and Physiological Psychology, 1981, 35, 383–390.CrossRefGoogle Scholar
  142. Kirkstone, B. J., and Levitt, R. A. Comparisons between drinking induced by water deprivation or chemical stimulation. Behavioral Biology, 1974, 11, 547–559.CrossRefGoogle Scholar
  143. Kissileff, H. R. Food associated drinking in the rat. Journal of Comparative and Physiological Psychology, 1969, 67, 284–300.PubMedCrossRefGoogle Scholar
  144. Kissileff, H. R. Nonhomeostatic controls of drinking. In A. N. Epstein, H. R. Kissileff, and E. Stellar (Eds.), The Neuropsychology of Thirst: New Findings and Advances in Concept. Washington, D.C.: H. V. Winston, 1973.Google Scholar
  145. Kissileff, H. R., and Epstein, A. N. Exaggerated prandial drinking in the recovered lateral rat without saliva. Journal of Comparative and Physiological Psychology, 1969, 67, 301–308.PubMedCrossRefGoogle Scholar
  146. König, J. F. R., and Klippel, R. N. The Rat Brain: A Stereotaxic Atlas of the Forebrain and Lower Parts. New York: Krieger, 1970.Google Scholar
  147. Kozlowski, S., and Szczepanska-Sadowska, E. Mechanisms of hypovolaemic thirst and interactions between hypovolaemia, hyperosmolarity and the antidiuretic system. In G. Peters, J. T. Fitzsimons, and L. Peters-Haefeli (Eds.), Control Mechanisms of Drinking. Berlin: Springer-Verlag, 1975.Google Scholar
  148. Koslowski, S., Drzewieki, K., and Sobocinska, J. The influence of expansion of extracellular fluid volume on the thirst threshold. Bulletin de l’Académie Polonaise des Sciences, 1968, 16, 47–51.Google Scholar
  149. Kraly, F. S. Abdominal vagotomy inhibits osmotically induced drinking in the rat. Journal of Comparative and Physiological Psychology, 1978, 92, 999–1013.PubMedCrossRefGoogle Scholar
  150. Kraly, S. F., Gibbs, J., and Smith, G. P. Disordered drinking after abdominal vagotomy in rats. Nature, 1975, 258, 226–228.PubMedCrossRefGoogle Scholar
  151. Křekček, J., and Křeko’vce, J. The development of the regulation of water metabolism: III. The relation between water and milk intake in infant rats. Physiologia Bohemoslovenica, 1957, 6, 26–34.Google Scholar
  152. Kriekhaus, E. E., and Wolf, G. Acquisition of sodium by rats: Interaction of innate mechanisms and latent learning. Journal of Comparative and Physiological Psychology, 1968, 65, 197–201.CrossRefGoogle Scholar
  153. Laragh, J. H., and Sealey, J. E. The renin-angiotensin-aldosterone hormonal system and regulation of sodium, potassium, and blood pressure homeostasis. In Renal Physiology; Section 8: Handbook of Physiology. American Physiological Society of Washington, D.C., 1973.Google Scholar
  154. Lashley, K. S. The experimental analysis of instinctive behavior. Psychological Review, 1938, 45, 445–471.CrossRefGoogle Scholar
  155. Lehr, D., and Goldman, W. Continued pharmacologic analysis of consummatory behavior in the albino rat. European Journal of Pharmacology, 1973, 23, 197–210.PubMedCrossRefGoogle Scholar
  156. Lehr, D., Goldman, H. W., and Casner, P. Renin-angiotensin role in thirst: Paradoxical enhancement of drinking by angiotensin converting enzyme inhibitor. Science, 1973, 182, 1031–1033.PubMedCrossRefGoogle Scholar
  157. Leibowitz, S. F. Histamine: A stimulatory effect on drinking behavior in the rat. Brain Research, 1973, 63, 440–444.PubMedCrossRefGoogle Scholar
  158. Leibowitz, S. F. Brain catecholaminergic mechanisms for control of hunger. In D. Novin, W. Wyrwicka, and G. Bray (Eds.), Hunger: Basic Mechanisms and Clinical Implications. New York: Raven Press, 1976.Google Scholar
  159. Leksell, L. G. Influence of prostaglandin E1 on cerebral mechanisms involved in the control of fluid balance. Acta Physiologica Scandinavica, 1976, 98, 85–93.PubMedCrossRefGoogle Scholar
  160. Levin, R., and Stern, J. M. Maternal influences on ontogeny of suckling and feeding rhythms in the rat. Journal of Comparative and Physiological Psychology, 1975, 89, 711–721.PubMedCrossRefGoogle Scholar
  161. Levitt, R. A., and Fisher, A. E. Anticholinergic blockade of centrally induced thirst. Science, 1966, 154, 520–522.PubMedCrossRefGoogle Scholar
  162. Linazasoro, J. M., Jiménez-Diaz, C, Castro-Mendoza, H. The kidney and thirst regulation. Bulletin of the Institute for Medical Research. University of Madrid, 1954, 7, 53–61.Google Scholar
  163. Lorens, S. A., and Yunger, L. M. Morphine analgesia, two-way avoidance and consummatory behavior following lesions in the midbrain raphe nuclei of rat. Pharmacology, Biochemistry and Behavior, 1974, 2, 215–221.CrossRefGoogle Scholar
  164. McKinley, M. J., Blaine, E. H., and Denton, D. A. Brain osmoreceptors, cerebrospinal fluid electrolyte composition and thirst. Brain Research, 1974, 70, 532–537.PubMedCrossRefGoogle Scholar
  165. McKinley, M. J., Denton, D. A., and Weisinger, R. S. Sensors for antidiuresis and thirst-osmoreceptors or CSF sodium detectors? Brain Research, 1978, 141, 89–103.PubMedCrossRefGoogle Scholar
  166. McKinley, M. J., Denton, D. A., Graham, W. F., Leksell, L. G., Mouw, D. R., Scoggins, B. A., Smith, M. H., Weisinger, R. S., and Wright, R. D. Lesions of the Organum vasculosum of the lamina terminalis inhibit water drinking to hypertonicity in sheep. Paper presented to the Seventh International Conference on the Physiology of Food and Fluid Intake, Warsaw, July 1980.Google Scholar
  167. Maebashi, M., and Yoshinaga, K. Effect of dehydration on plasma renin activity. Japanese Circulation Journal, 1967, 31, 609–613.PubMedCrossRefGoogle Scholar
  168. Malmo, R. B., and Malmo, H. P. Responses of lateral preoptic neurons in the rat to hypertonic sucrose and NaCl. Electroencephalography and Clinical Neurophysiology, 1979, 46, 401–408.PubMedCrossRefGoogle Scholar
  169. Malmo, R. B., and Mundl, W. J. Osmosensitive neurons in the rat’s preoptic area: Medial-lateral comparison. Journal of Comparative and Physiological Psychology, 1975, 88, 161–175.PubMedCrossRefGoogle Scholar
  170. Malvin, R. L., Mouw, D., and Vander, A. J. Angiotensin: Physiological role in water deprivation induced thirst of rats. Science, 1977, 197, 171–173.PubMedCrossRefGoogle Scholar
  171. Mann, J. F. E., Johnson, A. K., and Ganten, D. Plasma angiotensin II: Dipsogenic levels and the angiotensin-generating capacity of the renin-angiotensin system. American Journal of Physiology, 1980, 238, R372-R377.PubMedGoogle Scholar
  172. Marshall, J. F., and Ungerstedt, U. Apomorphine-induced restoration of drinking to thirst challenges in 6-hydroxydopamine-treated rats. Physiology and Behavior, 1976, 17, 817–822.PubMedCrossRefGoogle Scholar
  173. Marshall, J. F., Richardson, J. S., and Teitelbaum, P. Nigrostriatal bundle damage and the lateralhypothalamic syndrome. Journal of Comparative and Physiological Psychology, 1974, 87, 808–830.PubMedCrossRefGoogle Scholar
  174. Mayer, A. Variations de la tension osmotique du sang chez les animaux privés de liquides. Compte Rendu des Séances de la Société de Biologie, 1900, 52, 153–155.Google Scholar
  175. Misantone, L. J., Ellis, S., and Epstein, A. N. Development of angiotensin-induced drinking in the rat. Brain Research, 1980, 186, 195–202.PubMedCrossRefGoogle Scholar
  176. Miselis, R., Nicolaïdis, S., Menard, M., and Siatitsas, Y. Concurrent measures of renin and drinking in response to hypovolemia. Neuroscience Abstracts, 1976, 2, 305.Google Scholar
  177. Miselis, R. R., Shapiro, B., and Hand, P. J. Subfornical organ efferents to neural systems for control of body water. Science, 1979, 205, 1022–1025.PubMedCrossRefGoogle Scholar
  178. Mogenson, G. J., and Kucharczyk, J. Evidence that the lateral hypothalamus and midbrain participate in the drinking response elicited by intracranial angiotensin. In G. Peters, J. T. Fitzsimons, and L. Peters-Haefeli (Eds.), Control Mechanisms of Drinking. New York: Springer-Verlag, 1975.Google Scholar
  179. Montemurro, D. G., and Stevenson, J. A. F. Adipsia produced by hypothalamic lesions in the rat. Canadian Journal of Biochemistry and Physiology, 1957, 35, 31–37.PubMedCrossRefGoogle Scholar
  180. Mook, D. G. Some determinants of preference and aversion in the rat. Annals of the New York Academy of Sciences, 1969, 157, 1158–1175.PubMedCrossRefGoogle Scholar
  181. Moore, R. Y. Visual pathways and the central neural regulation of diurnal rhythms. In F. F. Schmitt and F. G. Worden (Eds.), The NeurosciencesThird Study Program. Cambridge: M.I.T. Press, 1974, 537–542.Google Scholar
  182. Moore-Gillon, M. J. Effects of vagotomy on drinking in the rat. Journal of Physiology (London), 1980, 308, 417–426.Google Scholar
  183. Moran, J. S., and Blass, E. M. Inhibition of drinking by septal stimulation in rats. Physiology and Behavior, 1976, 77, 23–27.CrossRefGoogle Scholar
  184. Mouw, D., Bonjour, J. P., Malvin, R. L., and Vander, A. Central action of angiotensin in stimulating ADH release. American Journal of Physiology, 1971, 220, 239–242.PubMedGoogle Scholar
  185. Myers, R. D., Hall, G. H., and Rudy, T. A. Drinking in the monkey evoked by nicotine or angiotensin II microinjected in hypothalamic and mesencephalic sites. Pharmacology, Biochemistry and Behavior, 1973, 7, 15–22.CrossRefGoogle Scholar
  186. Nachman, M., and Valentino, D. A. Roles of taste and postingestional factors in the satiation of sodium appetite in rats. Journal of Comparative and Physiological Psychology, 1966, 62, 280–283.PubMedCrossRefGoogle Scholar
  187. Nairn, R. C, Masson, C. M. C, and Corcoran, A. C. The production of serous effusions in nephrectomized animals by the administration of renal extracts and renin. Journal of Pathology and Bacteriology, 1956, 71, 155–163.PubMedCrossRefGoogle Scholar
  188. Neill, D. B., and Linn, C. L. Deficits in consummatory responses to regulatory challenges following basal ganglia lesions in rats. Physiology and Behavior, 1975, 14, 617–624.PubMedCrossRefGoogle Scholar
  189. Nicolaïdis, S. Réponses des unités osmosensibles hypothalamiques aux stimulations salines et aqueuses de la langue. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 1968, 267, 2352–2355.Google Scholar
  190. Nicolaïdis, S. Role des récepteurs internes et externes dans la prise d’eau régulatrice et non régulatrice. Journées Internationales de Néphrologie, 1974, 16B, 159–174.Google Scholar
  191. Nicolaïdis, S., and Fitzsimons, J. T. La dépendance de la prise d’eau induite par l’angiotensine II envers la fonction vasomotrice cérébrale locale chez le rat. Comptes Rendus de l’Académie des Sciences, Series D, 1975, 281, 1417–1420.Google Scholar
  192. Norgren, R. Taste pathways to hypothalamus and amygdala. Journal of Comparative Neurology, 1976, 166, 17–30.PubMedCrossRefGoogle Scholar
  193. Olds, J., and Hirano, M. Conditioned responses of hippocampal and other neurons. Journal of Electroencephalography and Clinical Neurophysiology, 1969, 26, 159–166.CrossRefGoogle Scholar
  194. Olsson, K. Further evidence for the importance of CSF Na+ concentration in central control of fluid balance. Acta Physiologica Scandinavica, 1973, 88, 183–188.PubMedCrossRefGoogle Scholar
  195. Olsson, K., Larsson, B., and Liljekvist, E. Intracerebroventricular glycerol: A potent inhibitor of ADH-release and thirst. Acta Physiologica Scandinavica, 1976, 98, 47–477.CrossRefGoogle Scholar
  196. Oltmans, G. A., and Harvey, J. A. The LH Syndrome and brain catecholamine levels after lesions of the nigrostriatal bundle. Physiology and Behavior, 1972, 8, 69–78.PubMedCrossRefGoogle Scholar
  197. Oomura, U., Ono, T. Ooyama, H., and Wayner, M. J. Glucose and osmosensitive neurones of the rat hypothalamus. Nature, 1969, 222, 282–284.PubMedCrossRefGoogle Scholar
  198. Osborne, M. J., Pooters, N., Angles d’ Auriac, G., Epstein, A. N., Worcel, M., and Meyer, P. Metabolism of tritiated angiotensin II in anaesthetized rats. Pflügers Archives, 1971, 326, 101–114.CrossRefGoogle Scholar
  199. Page, I. H., and Bumpus, F. M. Angiotensin. New York: Springer-Verlag, 1974.CrossRefGoogle Scholar
  200. Pals, D. T., Masucci, F. D., Denning, G. S., Jr., Sipos, F., and Fessier, D. C. Role of the pressor action of angiotensin II in experimental hypertension. Circulation Research, 1971, 29, 673–681.PubMedCrossRefGoogle Scholar
  201. Peck, J. W. Discussion: Thirst(s) resulting from bodily water imbalances. In A. N. Epstein, H. R. Kissileff, and E. Stellar (Eds.), The Neuropsychology of Thirst. Washington, D.C.: V. H. Winston, 1973.Google Scholar
  202. Peck, J. W., and Blass, E. M. Localization of thirst and antidiuretic osmoreceptors by intracranial injections in rats. American Journal of Physiology, 1975, 228, 1501–1509.PubMedGoogle Scholar
  203. Peck, J. W., and Novin, D. Evidence that osmoreceptors mediating drinking in rabbits are in the lateral preoptic area. Journal of Comparative and Physiological Psychology, 1971, 74, 134–147.PubMedCrossRefGoogle Scholar
  204. Peskar, B., Meyer, D. K., Tauchmann, U., and Hertting, G. Influence of isoproterenol, hydralazine and phentolamine on the renin activity of plasma and renal cortex of rats. European Journal of Pharmacology, 1970, 9, 394–396.PubMedCrossRefGoogle Scholar
  205. Pettinger, W. A., Marchelle, M., and Augusto, L. Renin suppression by DOC and NaCl in the rat. American Journal of Physiology, 1971, 227, 1071–1074.Google Scholar
  206. Phillips, M. I., and Felix, D. Specific angiotensin II receptive neurons in the cat subfornical organ. Brain Research, 1976, 109, 531–540.PubMedCrossRefGoogle Scholar
  207. Phillips, M. I., and Hoffman, W. E. Sensitive sites in the brain for the blood pressure and drinking responses to angiotensin II. In J. P. Buckley, C. Ferrario and M. F. Lokhandwala (Eds.), Central Actions ofAngiotensin and Related Hormones. New York: Pergamon Press, 1974.Google Scholar
  208. Radio, G. J., Summy-Long, J., Daniel-Severs, A., and Severs, W. B. Hydration changes produced by central infusion of angiotensin II. American Journal of Physiology, 1972, 223, 1221–1226.PubMedGoogle Scholar
  209. Ramsay, D. J., and Reid, I. A. Some central mechanisms of thirst in the dog. Journal of Physiology (London), 1975, 253, 517–525.Google Scholar
  210. Ramsay, D. J., Reid, I. A., and Ganong, W. F. Evidence that the effects of isoproterenol on water intake and urine production are mediated by angiotensin. Federation Proceedings, 1976, 35, 620.Google Scholar
  211. Ramsay, D. J., Rolls, B. J., and Wood, R. J. Body fluid changes which influence drinking in the water deprived rat. Journal of Physiology (London), 1977a, 266, 453–469.Google Scholar
  212. Ramsay, D. J., Rolls, B. J., and Wood, R. J. Thirst following water deprivation in dogs. American Journal of Physiology, 1977b, 232, R93-R100.Google Scholar
  213. Ranck, J. Behavioral correlates and firing repertoires of neurons in septal nuclei in unrestrained rats. In J. DeFrance (Ed.), The Septal Nuclei. New York: Plenum Press, 1976.Google Scholar
  214. Reid, I. A. Is there a brain renin-angiotensin system? Circulation Research, 1977, 41, 147–153.PubMedCrossRefGoogle Scholar
  215. Reid, I. A., Simpson, J. B., Ramsay, D. J., and Kipen, H. M. Mechanisms of dipsogenic action of tetradecapeptide renin substrate. Federation Proceedings, 1977, 36, 482.Google Scholar
  216. Rice, K. K., and Richter, C. P. Increased sodium chloride and water intake of normal rats treated with desoxycorticosterone acetate. Endocrinology, 1943, 33, 106–115.CrossRefGoogle Scholar
  217. Richter, C. P. Increased salt appetite in adrenalectomized rats. American Journal of Physiology, 1936, 115, 155–161.Google Scholar
  218. Richter, C. P. Salt appetite of mammals: Its dependence on instinct and metabolism. In Masson et Cie (Ed.), L’Instinct dans le comportement des animaux et de l’homme. Paris: Libraires de l’Académie de Médecine, 1956.Google Scholar
  219. Richter, C. P. Biological Clocks in Medicine and Psychiatry. Springfield, III: Charles C Thomas, 1965.Google Scholar
  220. Rogers, P. W., and Kurtzman, N. A. Renal failure, uncontrollable thirst and hyperreninemia. Journal of the American Medical Association, 1973, 225, 1236–1238.PubMedCrossRefGoogle Scholar
  221. Rolls, B. J., and Jones, B. P. Cessation of drinking following intracranial injections of angiotensin in the rat. Journal of Comparative and Physiological Psychology, 1972, 80, 26–29.PubMedCrossRefGoogle Scholar
  222. Rolls, B. J., Jones, B. P., and Fallows, D. J. A comparision of the motivational properties of thirst induced by intracranial angiotensin and by water deprivation. Physiology and Behavior, 1972, 9, 777–782.PubMedCrossRefGoogle Scholar
  223. Rolls, B. J., Wood, R. J., and Rolls, E. T. Thirst: The initiation, maintenance, and termination of drinking. In J. M. Sprague, and Epstein, A. N. (Eds.), Progress in Psychobiology and Physiological Psychology (Vol. 9). New York: Academic Press, 1980.Google Scholar
  224. Rowland, N., and Nicolaïdis, S. Periprandial self intravenous drinking in the rat. Journal of Comparative and Physiological Psychology, 1974, 87, 16–25.PubMedCrossRefGoogle Scholar
  225. Russell, P. J. D., Abdelaal, A. E., and Mogenson, G. J. Graded levels of hemorrhage, thirst, and angiotensin II in the rat. Physiology and Behavior, 1975, 15, 117–119.PubMedCrossRefGoogle Scholar
  226. Schmidt, D. E., Speth, R. C, Welsch, F., and Schmidt, M. J. The use of microwave radiation in the determination of acetylcholine in the rat brain. Brain Research, 1972, 38, 377–389.PubMedCrossRefGoogle Scholar
  227. Schwob, J. E., and Johnson, A. K. Evidence for involvement of the renin-angiotensin system in isoproterenol dipsogenesis. Neuroscience Abstracts, 1975, 1, 467.Google Scholar
  228. Seligman, M. E. P., Mineka, S., and Fillit, H. Conditioned drinking produced by procaine, NaCl, and angiotensin. Journal of Comparative and Physiological Psychology, 1971, 77, 110–121.PubMedCrossRefGoogle Scholar
  229. Seoane, J. R., and Baile, C. A. Ionic changes in cerebrospinal fluid and feeding, drinking and temperature in sheep. Physiology and Behavior, 1973, 10, 915–923.PubMedCrossRefGoogle Scholar
  230. Setler, P. E. The role of catecholamines in thirst. In A. N. Epstein, H. R. Kissileff, and E. Stellar (Eds.), The Neuropsychology of Thirst. Washington, D.C.: H. V. Winston, 1973.Google Scholar
  231. Severs, W. B., and Daniels-Severs, A. E. Effects of angiotensin on the central nervous system. Pharmacological Review, 1973, 25, 415–449.Google Scholar
  232. Severs, W. B., Summy-Long, J., Taylor, J. S., and Connor, J. D. A central effect of angiotensin: Release of pituitary pressor material. Journal of Pharmacology and Experimental Therapeutics, 1970, 174, 27–34.PubMedGoogle Scholar
  233. Severs, W. B., Summy-Long, J., and Daniels-Severs, A. Effect of a converting enzyme inhibitor (SQ 20881) on angiotensin-induced drinking. Proceedings of the Society for Experimental Biology and Medicine, 1973, 142, 203–204.PubMedGoogle Scholar
  234. Share, L. Extracellular fluid volume and vasopressin secretion. In W. F. Ganong, and L. Martini (Eds.), Frontiers in Neuroendocrinology 1969. New York: Oxford University Press, 1969.Google Scholar
  235. Shelling, P., Ganten, D., Heckl, R., Hayduk, K., Hutchinson, J. S., Sponer, G., and Ganten, U. On the origin of angiotensin-like peptides in cerebrospinal fluid. In J. P. Buckley, C. Ferrario, and M. F. Lokhandwala (Eds.), Central Actions of Angiotensin and Related Hormones. New York: Pergamon Press, 1974.Google Scholar
  236. Shrager, E. E., Osborne, M. J., Johnson, A. K., and Epstein, A. N. Entry of angiotensin into cerebral ventricles and circumventricular structures. In D. S. Davies and J. L. Reid (Eds.), Central Action of Drugs in Blood Pressure Regulation. Baltimore: University Park Press, 1975.Google Scholar
  237. Simpson, J. G., and Routtenberg, A. The subfornical organ and carbachol-induced drinking. Brain Research, 1972, 45, 135–142.PubMedCrossRefGoogle Scholar
  238. Simpson, J. B., and Routtenberg, A. Subfornical organ: Site of drinking elicitation by angiotensin II. Science, 1973, 181, 1172–1174.PubMedCrossRefGoogle Scholar
  239. Simpson, J. B., and Routtenberg, A. Subfornical organ: Acetylcholine application elicits drinking. Brain Research, 1974, 79, 157–164.PubMedCrossRefGoogle Scholar
  240. Simpson, J. B., Gordon, and Epstein, A. N. Dipsogenic potency of intracranial renin substrate after nephrectomy. Federation Proceedings, 1974, 33, 417.Google Scholar
  241. Simpson, J. B., Epstein, A. N., and Camardo, J. S. The localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ. Journal of Comparative and Physiological Psychology, 1978, 92, 581–608.PubMedCrossRefGoogle Scholar
  242. Sirett, N. E., McLean, A. S., Bray, J. J., and Hubbard, J. I. Distribution of angiotensin II receptors in the rat brain. Brain Research, 1977, 122, 299–312.PubMedCrossRefGoogle Scholar
  243. Smith, G. P., Strohmeyer, A. J., and Reis, D. J. Effect of lateral hypothalamic injections of 6-hydroxydopamine on food and water intake in rats. Nature, 1972, 235, 27–29.CrossRefGoogle Scholar
  244. Sorenson, J. D., Jr., and Harvey, J. A. Decreased brain acetylcholine after septal lesions in rats: Correlation with thirst. Physiology and Behavior, 1971, 6, 723–725.CrossRefGoogle Scholar
  245. Spector, N. H., Brobeck, J. R., and Hamilton, C. L. Feeding and core temperature in albino rats: Changes induced by preoptic heating and cooling. Science, 1968, 161, 286–288.PubMedCrossRefGoogle Scholar
  246. Stellar, E. The physiology of motivation. Psychological Review, 1954, 61, 5–22.PubMedCrossRefGoogle Scholar
  247. Stellar, E., Hyman, R., and Samet, S. Gastric factors controlling water and salt solution drinking. Journal of Comparative and Physiological Psychology, 1954, 47, 220–226.PubMedCrossRefGoogle Scholar
  248. Stephan, F. K., and Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proceedings of the National Academy of Science, 1972, 69, 1583–1586.CrossRefGoogle Scholar
  249. Stricker, E. M. Some physiological and motivational properties of the hypovolemic stimulus for thirst. Physiology and Behavior, 1968, 3, 379–385.CrossRefGoogle Scholar
  250. Stricker, E. M. Osmoregulation and volume regulation in rats: Inhibition of hypovolemic thirst by water. American Journal of Physiology, 1969, 217, 98–105.PubMedGoogle Scholar
  251. Strieker, E. M. The renin-angiotensin system and thirst: A réévaluation. II. Drinking elicited in rats by caval ligation or isoproterenol. Journal of Comparative and Physiological Psychology, 1977, 191, 1220–1231.CrossRefGoogle Scholar
  252. Strieker, E. M. The physiological basis of sodium appetite: A new look at the “depletion-repletion” model. In M. R. Kare, M. J. Fregly, and R. A. Bernard (Eds.), Biological and Behavioral Aspects of Salt Intake. New York: Academic Press, 1980.Google Scholar
  253. Strieker, E. M., and Wolf, G. Behavioral control of intravascular fluid volume: Thirst and sodium appetite. In P. J. Morgane (Ed.), Neural Regulation of Food and Water Intake. Annals of the New York Academy of Sciences, 1969, 157, 533–567.Google Scholar
  254. Stricker, E. M., and Zigmond, M. J. Recovery of function after damage to central catecholamine-containing neurons: A neurochemical model for the lateral hypothalamic syndrome. In J. M. Sprague and A. N. Epstein (Eds.), Progress in Psychobiology and Physiological Psychology (Vol. 6). New York: Academic Press, 1976.Google Scholar
  255. Stricker, E. M., Bradshaw, W. G., and McDonald, R. H., Jr. The renin-angiotensin system and thirst: A reevaluation. Science, 1976, 194, 1169–1171.PubMedCrossRefGoogle Scholar
  256. Swanson, L. W., and Sharpe, L. G. Centrally induced drinking: Comparison of angiotensin II-and carbachol-sensitive sites in rats. American Journal of Physiology, 1973, 225, 566–572.PubMedGoogle Scholar
  257. Swanson, L. W., Sharpe, L. G., and Griffin, D. Drinking to intracerebral angiotensin II and carbachol: Dose-response relationships and ionic involvement. Physiology and Behavior, 1973, 10, 595–600.PubMedCrossRefGoogle Scholar
  258. Swanson, L. W., Marshall, G. R., Needlemen, P., and Sharpe, L. G. Characterization of central angiotensin II receptors involved in the elicitation of drinking in the rat. Brain Research, 1973, 49, 441–446.PubMedCrossRefGoogle Scholar
  259. Tang, M. Dependence of Polyethylene glycol-induced dipsogenesis on intravascular fluid volume depletion. Physiology and Behavior, 1976, 17, 811–816.PubMedCrossRefGoogle Scholar
  260. Tang, M., and Falk, J. L. Sar1-Ala8 angiotensin II blocks renin-angiotensin but not beta-adrenergic dipsogenesis. Pharmacology, Biochemistry and Behavior, 1974, 2, 401–408.CrossRefGoogle Scholar
  261. Teitelbaum, P., and Epstein, A. N. The lateral hypothalamic syndrome: Recovery of feeding and drinking after lateral hypothalamic lesions. Psychological Review, 1962, 69, 74–90.PubMedCrossRefGoogle Scholar
  262. Thrasher, T. N., Ramsay, D. J., Keil, L. C, and Brown, C. J. Thirst and vasopressin release: An osmoreceptor or sodium receptor mechanism? Federation Proceedings, 1978, 37, 815.Google Scholar
  263. Thrasher, T. N., Simpson, J. B., and Ramsay, D. J. Drinking responsiveness following ablation of the subfornical organ (SFO) or Organum vasculosum of the lamina terminalis (OVLT) in dogs. Paper presented to the Seventh International Conference on the Physiology of Food and Fluid Intake, Warsaw, July 1980.Google Scholar
  264. Tondat, L. M., and Almli, C. R. Hyperdipsia produced by severing ventral septal fiber systems. Physiology and Behavior, 1975a, 75, 701–706.CrossRefGoogle Scholar
  265. Tondat, L. M., and Almli, C. R. Lateral preoptic and lateral hypothalamic units: In search of the osmoreceptors for thirst. Physiology and Behavior, 1975b, 15, 713–722.CrossRefGoogle Scholar
  266. Tondat, L. M., and Almli, C. R. Evidence for independent osmosensitivity of lateral preoptic and lateral hypothalamic neurons. Brain Research Bulletin, 1976, 1, 241–249.PubMedCrossRefGoogle Scholar
  267. Trippodo, N. C, McCaa, R. E., and Guyton, A. C. Effect of prolonged angiotensin II infusion on thirst. American Journal of Physiology, 1976, 230, 1063–1066.PubMedGoogle Scholar
  268. Tweedle, C. D., and Hatton, G. I. Ultrastructural comparisons of neurons of supraoptic and circularis nuclei in normal and dehydrated rats. Brain Research Bulletin, 1976, 1, 103–121.PubMedCrossRefGoogle Scholar
  269. Ueda, H., Katayama, S., and Kato, R. Area postrema-angiotensin-sensitive site in brain. Advances in Experimental Biology and Medicine, 1972, 17, 109–116.CrossRefGoogle Scholar
  270. Ungerstedt, U. Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine systems. Acta Physiologica Scandinavica Supplement, 1971, 367, 95–122.Google Scholar
  271. Valenstein, E. S., Cox, V. C, and Kakolewski, J. W. Polydipsia elicited by the synergistic action of a saccharin and glucose solution. Science, 1967, 157, 552–554.PubMedCrossRefGoogle Scholar
  272. Vance, W. B. Observations on the role of the salivary secretions in the regulation of food and fluid intake in the white rat. Psychological Monographs, 1965, 79, No. 598.Google Scholar
  273. Verney, E. B. The antidiuretic hormone and the factors which determine its release. Proceedings of the Royal Society (London), 1947, Ser. B. 135, 25–106.CrossRefGoogle Scholar
  274. Vincent, J. D., Arnauld, E., and Bioulac, B. Activity of osmosensitive cells in the hypothalamus of the behaving monkey during drinking. Brain Research, 1972, 44, 371–384.PubMedCrossRefGoogle Scholar
  275. Volicer, L., and Loew, C. G. Penetration of angiotensin II into the brain. Neuropharmacology, 1971, 10, 631–636.PubMedCrossRefGoogle Scholar
  276. Walsh, L. L., and Grossman, S. P. Zona incerta lesions: Disruption of regulatory water intake. Physiology and Behavior, 1973, 11, 885–887.PubMedCrossRefGoogle Scholar
  277. Walsh, L. L., and Grossman, S. P. Electrolytic lesions and knife cuts in the region of the zona incerta impair sodium appetite. Physiology and Behavior, 1977, 18, 587–596.PubMedCrossRefGoogle Scholar
  278. Walsh, L. L., and Grossman, S. P. Dissociation of responses to extracellular thirst stimuli following zona incerta lesions. Pharmacology Biochemistry and Behavior, 1978, 8, 409–415.CrossRefGoogle Scholar
  279. Waterhouse, J. M., and Coxon, R. V. The entry of glycerol into brain tissue. Journal of Neurological Sciences, 1970, 10, 305–311.CrossRefGoogle Scholar
  280. Wayner, M. J., Ono, T., and Nolley, D. Effects of angiotensin II on central neurons. Pharmacology, Biochemistry and Behavior, 1973, 1, 679–691.CrossRefGoogle Scholar
  281. Weindl, A. Neuroendocrine aspects of circumventricular organs. In W. F. Ganong, and L. Martini (Eds.), Frontiers in Neuroendocrinology, 1973. New York: Oxford University Press, 1973.Google Scholar
  282. Weisinger, R. S., Gonsidine, P., Denton, D. A., and McKinley, M. J. Rapid Effect of change in cerebrospinal fluid sodium concentration on salt appetite. Nature, 1979, 280, 490.PubMedCrossRefGoogle Scholar
  283. Weiss, C. S., and Almli, C. R. Lateral preoptic and lateral hypothalamic units: In search of the osmoreceptors for thirst. Physiology and Behavior, 1975, 15, 713–722.PubMedCrossRefGoogle Scholar
  284. Wettendorff, H. Modifications du sang sous l’influence de la privation d’eau: Contribution à l’étude de la soif. Travaux du Laboratoire de Physiologie. Institut de Physiologie. Instituts Solvay, 1901,4, 353–484.Google Scholar
  285. Wirth, J. R., and Epstein, A. N. The ontogeny of thirst in the infant rat. American Journal of Physiology, 1976, 230, 188–198.PubMedGoogle Scholar
  286. Wishart, T. B., and Mogenson, G. J. Reduction in water intake by electrical stimulation of the septal region of the rat brain. Physiology and Behavior, 1970, 5, 1399–1404.PubMedCrossRefGoogle Scholar
  287. Wislocki, G. B., and Leduc, E. H. Vital straining of the hematoencephalic barrier by silver nitrate and trypan blue and cytological comparisons of the neurohypophysis, pineal body, area postrema, intercolumnar tubercle and supraoptic crest. Journal of Comparative Neurology, 1952, 96, 371–413.PubMedCrossRefGoogle Scholar
  288. Wolf, A. V. Osmometric analysis of thirst in man and dog. American Journal of Physiology, 1950, 161, 75–86.PubMedGoogle Scholar
  289. Wood, R. J., Rolls, B. J., and Ramsay, D. J. Drinking following intracarotid infusions of hypertonic solutions in dogs. American Journal of Physiology, 1977, 232, R88–92.PubMedGoogle Scholar
  290. Zimmer, L. J., Meliza, L., and Hsaio, S. Effects of cervical and subdiaphragmatic vagotomy on osmotic and volemic thirst. Physiology and Behavior, 1976, 16, 665–670.PubMedCrossRefGoogle Scholar
  291. Zimmerman, M. B., Blaine, E. H., and Stricker, E. M. Water intake in hypovolemic sheep: Effects of crushing the left atrial appendage. Science, 1980, 277, 489–491.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Alan N. Epstein
    • 1
  1. 1.Department of Biology and Institute of Neurological SciencesUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations