Motivation pp 235-261 | Cite as

Prey Selection by Frogs and Toads

A Neuroethological Model
  • David J. Ingle


Studies of motivation in animals typically use operant conditioning methods to measure the strength of variables which determine the interest of an organism in obtaining a particular type of reinforcement. Although many important facts have been gathered concerning the dependence of behavior upon physiological changes within the body and within the brain, it has been rather difficult to identify the central neural mechanisms which underlie the reinforcement process itself. In the present chapter we shall look at motivational processes from a different angle. Instead of asking how environmental input can prove rewarding to the organism, we shall ask how variations in central motivational states can influence the natural tendencies of animals to approach or avoid specific objects. From the viewpoint of ethologists motivation is regarded as an “internal force” tending to express itself in certain modes of behavior (searching for food, hiding, threatening) if adequate environmental stimuli are present to release the natural behavioral patterns.


Optic Tectum Prey Selection Small Stimulus Bufo Bufo Black Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandler, R. J., and Flynn, J. P. Visual patterned reflex during hypothalamically elicited attack. Science, 1971, 171, 703–706.CrossRefGoogle Scholar
  2. Barlow, H. B. Summation and inhibition in the frog’s retina. Journal of Physiology, 1953, 173, 377–407.Google Scholar
  3. Bechterev, W. Über die Function der Vierhügel. Archiv für die Gesamte Physiologie des Menschen und der Tiere, 1884, 73, 501–534.Google Scholar
  4. Brown, W. T., and Ingle, D. Receptive field changes produced in frog thalamic units by lesions of the optic tectum. Brain Research, 1973, 59, 405–409.PubMedCrossRefGoogle Scholar
  5. Brown, W. T., and Marks, W. B. Unit responses in the frog’s caudal thalamus. Brain, Behavior, and Evolution, 1977, 14, 274–297.CrossRefGoogle Scholar
  6. Butenandt, E., and Grüsser, O.-J. The effect of stimulus area on the response of movement detecting neurons in the frog’s retina. Pfluegers Archiv für die Gesamte Physiologie des Menschen und der Tiere, 1968, 298, 238–293.Google Scholar
  7. Chi, C. C., and Flynn, J. P. The effects of hypothalamic and reticular stimulation on evoked responses in the visual system of the cat. Electroencephalography and Clinical Neurophysiology, 1968, 24, 343–356.PubMedCrossRefGoogle Scholar
  8. Collett, T. Stereopsis in toads. Nature, 1977, 267, 349–351.PubMedCrossRefGoogle Scholar
  9. Edwards, S. B., Ginsburgh, C., Henkel, G. K., and Stein, B. E. Sources of subcortical projections to the superior colliculus in the cat. Journal of Comparative Neurology, 1979, 184, 309–330.PubMedCrossRefGoogle Scholar
  10. Ewert, J.-P. Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L.) durch elektrische Mittelhirnreizung. Zeitschrift für Vergleichende Physiologie, 1967, 54, 455–481.CrossRefGoogle Scholar
  11. Ewert, J.-P. Der Einfluss von Zwischenhirndefekten auf die Visuomotorik in Beute- and Fluchtverhalten der Erdkröte (Bufo bufo L.). Zeitschrift für Vergleichende Physiologie, 1968, 61, 41–70.Google Scholar
  12. Ewert, J.-P. Neural mechanisms of prey-catching and avoidance behavior in the toad (Bufo bufo L.). Brain, Behavior, and Evolution, 1970a, 3, 36–56.CrossRefGoogle Scholar
  13. Ewert, J.-P. Personal communication, 1970b.Google Scholar
  14. Ewert, J.-P. Single-unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Zeitschrift für Vergleichende Physiologie, 1971, 74, 81–102.CrossRefGoogle Scholar
  15. Ewert, J.-P. The neural basis of visually guided behavior. Scientific American, 1974, 230, 34–42.PubMedCrossRefGoogle Scholar
  16. Ewert, J.-P. The visual system of toad: Behavioral and physiological studies on a pattern recognition system. In K. Fite (Ed.). The Amphibian Visual System. New York: Academic Press, 1976.Google Scholar
  17. Ewert, J.-P., and Borchers, H.-W. Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte Bufo bufo (L.). Zeitschrift für Vergleichende Physiologie, 1971, 71, 165–189.CrossRefGoogle Scholar
  18. Ewert, J.-P. and Gebauer, L. Grössenkonstanzphänomene im Beutefangverhalten der Erdkröte (Bufo bufo L.). Journal of Comparative Physiology, 1973, 85, 303–315.CrossRefGoogle Scholar
  19. Ewert, J.-P., and Hock, F. J. Movement sensitive neurones in the toad’s retina. Experimental Brain Research, 1972, 16, 41–59.CrossRefGoogle Scholar
  20. Ewert, J-P., and Rehn, B. Quantitative Analyse der Reiz-Reaktionsbeziehungen bei visuellem Auslösen des Fluchtsverhaltens der Wechselkrote (Bufo viridis Laur.). Behavior, 1969, 35, 212–234.CrossRefGoogle Scholar
  21. Ewert, J.-P., and Seifert, G. Seasonal change of contrast-detection in the toad’s (Bufo Bufo L.) visual system. Journal of Comparative Physiology, 1974, 94, 177–186.CrossRefGoogle Scholar
  22. Ewert, J.-P., and von Seelen, W. Neurobiologie und System-Theorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik, 1974, 14, 167–183.PubMedCrossRefGoogle Scholar
  23. Ewert, J.-P., and von Wietersheim, A. Musterauswertung durch Tectum- und Thalamus/Praetectum-Neurone im visuellen System der Kröte (Bufo bufo L.). Journal of Comparative Physiology, 1974a, 92, 131–148.CrossRefGoogle Scholar
  24. Ewert, J.-P., and von Wietersheim, A. Der Einfluss von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber visuellen Mustern bei der Kröte (Bufo bufo L.). Journal of Comparative Physiology, 1974b, 92, 149–160.CrossRefGoogle Scholar
  25. Ewert, J.-P., Hock, F. J., and von Wietersheim, A., Thalamus/Praetectum/Tectum. Retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L.). Journal of Comparative Physiology, 1974, 92, 343–356.CrossRefGoogle Scholar
  26. Grobstein, P., Personal communication, 1980.Google Scholar
  27. Grüsser, O.-J., and Grüsser-Cornehls, U. Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Zeitschrift für Vergleichende Physiologie, 1968, 59, 1–24.CrossRefGoogle Scholar
  28. Grüsser, O.-J., and Grüsser-Cornehls, U. Physiology of the anuran visual system. In R. Llinas and W. Precht (Eds.), Neurobiology of the Frog. New York: Springer-Verlag, 1976.Google Scholar
  29. Ingle, D. Visual releasers of prey-catching behavior in frogs and toads. Brain, Behavior, and Evolution, 1968, 1, 500–518.CrossRefGoogle Scholar
  30. Ingle, D. Prey-catching behavior of anurans toward moving and stationary objects. Vision Research, Supplement 3, 1971, 447–456.CrossRefGoogle Scholar
  31. Ingle, D. Depth vision in monocular frogs. Psychonomic Science, 1972, 29, 37–38.Google Scholar
  32. Ingle, D. Two visual systems in the frog. Science, 1973a, 181, 1053–1055.PubMedCrossRefGoogle Scholar
  33. Ingle, D. Size-preference for prey catching in frogs: Relationship to motivational state. Behavioral Biology, 1973b, 9, 485–491.PubMedCrossRefGoogle Scholar
  34. Ingle, D. Disinhibition of tectal neurons by pretectal lesions in the frog. Science, 1973c, 180, 422–424.PubMedCrossRefGoogle Scholar
  35. Ingle, D. Selective visual attention in frogs. Science, 1975, 188, 1033–1035.PubMedCrossRefGoogle Scholar
  36. Ingle, D. Spatial vision in Anurans. In K. V. Fite (Ed.), The Amphibian Visual System. New York: Academic Press, 1976.Google Scholar
  37. Ingle, D. Some effects of pretectum lesions on the frog’s detection of stationary objects. Behavioral Brain Research, 1980, 1, 139–163.CrossRefGoogle Scholar
  38. Ingle, D. The neural bases of visuomotor behavior in vertebrates. In D. Ingle, M. Goodale, and R. Mansfield (Eds.), The Analysis of Visual Behavior. Cambridge: M.I.T. Press, 1982.Google Scholar
  39. Ingle, D., and Cook, J. The effect of viewing distance upon size preference of frogs for prey. Vision Research, 1977, 17, 1009–1014.PubMedCrossRefGoogle Scholar
  40. Kicliter, E., Misantone, L. J., and Stelzner, D. J. Neuronal specificity and plasticity in frog visual system: anatomical correlates. Brain Research, 1974, 82, 293–297.PubMedCrossRefGoogle Scholar
  41. Lazar, G. Efferent pathways of the optic tectum in the frog. Acta Biologica (Szeged), 1969, 20, 171–183.Google Scholar
  42. Lazar, G., and Szekely, G. Golgi studies on the optic center of the frog. Journal für Hirnforschung, 1967, 9, 329–344.PubMedGoogle Scholar
  43. Lettvin, J. Y. Personal communication, 1972.Google Scholar
  44. Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., and Pitts, W. H. What the frog’s eye tells the frog’s brain. Proceedings of the IRE, 1959, 47, 1940–1951.CrossRefGoogle Scholar
  45. Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., and Pitts, W. H. Two remarks on the visual systems of the frog. In W. Rosenblith (Ed.), Sensory Communication. Cambridge: M.I.T. Press, 1961.Google Scholar
  46. McClintock, M. K., and Adler, N. T. The role of the female during copulation in wild and domestic Norway rats (Rattus norvegicus). Behaviour, 1978, 68, 67–96.CrossRefGoogle Scholar
  47. Maturana, H. R. Efferent fibers in the optic nerve of the toad (Bufo bufo). Journal of Anatomy, 1958, 92, 21–27.PubMedGoogle Scholar
  48. Northcutt, R. G., and Neary, T. J. Personal communication, 1981.Google Scholar
  49. Pfaff, D. W., Lewis, C., Diakow, C., and Keiner, M. Neurophysiological analysis of mating behavior responses as hormone-sensitive reflexes. In E. Stellar and J. M. Sprague (Eds.), Progress in Physiological Psychology, New York: Academic Press, 1973.Google Scholar
  50. Rubinson, K. Projections of the tectum opticum of the frog. Brain, Behavior, and Evolution, 1968, 1, 529–561.CrossRefGoogle Scholar
  51. Schneider, D. Beitrag zu einer Analyse des Beute- und Fluchtverhaltens einheimischer Anuren. Biologisches Zentralblatt, 1954, 73, 225–282.Google Scholar
  52. Schneider, G. E. Early lesions of superior colliculus: Factors affecting the formation of abnormal retinal projections. Brain, Behavior, and Evolution, 1973, 8, 73–109.CrossRefGoogle Scholar
  53. Wilczynski, W., and Northcutt, R. G. Afferents to the optic tectum of the leopard frog: an HRP study. Journal of Comparative Neurology, 1977, 173, 219–229.CrossRefGoogle Scholar
  54. Szekely, G., Setalo, G., and Lazar, G. Fine structure of the frog’s optic tectum: Optic fiber termination layers. Journal für Hirnforschung, 1973, 14, 189–225.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • David J. Ingle
    • 1
  1. 1.Department of PsychologyBrandeis UniversityWalthamUSA

Personalised recommendations