Features of Gene Structure, Organization, and Expression That Are Providing Unique Insights into Molecular Evolution and Systematics

Part of the Monographs in Evolutionary Biology book series (MEBI)


Over the last 20 or so years, the study of amino acid sequences of proteins derived from different biologic species has greatly enriched our knowledge of both the mechanisms of molecular evolution and the phylogenetic relationships of the species. Increasingly sophisticated computer techniques have been employed in an effort to extract all of the phylogenetic information contained in such data sets. Several problems have arisen along the way, among the most persistent being the uncertainty of whether two sequences are truly orthologous and the species divergence is being examined, or whether they are paralogous and the gene divergences are being examined. Indeed, where gross discrepancies between gene phylogeny and species phylogeny occur, the probability is that paralogous genes are involved (Goodman, 1981; Goodman et al., this volume, Chapter 4).


Gene Duplication Molecular Evolution World Monkey Noncoding Region Globin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, J., 1979, RNA processing and the intervening sequence problem, Anou. Rev. Biochem. 48: 1035–1069.CrossRefGoogle Scholar
  2. Air, G. M., 1979, Rapid DNA sequence analysis, CRC Crit. Rev. Mechem. 6: 1–33.CrossRefGoogle Scholar
  3. Argos, P., and Rossman, M. G., 1979, Structural comparisons of heure binding-proteins, Biochemistry 22: 4951–4960.CrossRefGoogle Scholar
  4. Arnheim, N., and Kuehn, M., 1979, The genetic behavior of a cloned mouse ribosomal segment mimics mouse ribosomal gene evolution. J. Mol. Biol. 134: 743–765.PubMedCrossRefGoogle Scholar
  5. Baralle, F. E., Shoulders, C. C., and Proudfoot, N. J., 1980, The primary structure of the human epsilon-globin gene. Cell 21: 621–626.PubMedCrossRefGoogle Scholar
  6. Barnicot, N. A., and Wade, P. T., 1970, Protein structure and the systematics of Old World monkeys, in: Old World Monkeys ( J. R. Napier and P. H. Napier, eds.), Academic Press, New York, pp. 227–260.Google Scholar
  7. Barrie, P. A., Jeffreys, A. J., and Scott, A. F., 1981, Evolution of the /3-globin gene cluster in man and the primates, J. Mol. Biol. 149: 319–336.PubMedCrossRefGoogle Scholar
  8. Beard, J. M., Barnicot, N. A., and Hewett-Emmett, D., 1976, A and ß chains of the major haemoglobin and a note on the minor component of Tarsius, Nature 259: 333–341.CrossRefGoogle Scholar
  9. Bell. G. I., Pictet, R. L., Rutter, W. J., Cordell. B., Tischer, E., and Goodman. H. M, 1980. Sequence of the human insulin gene, Nature 284: 26–32.CrossRefGoogle Scholar
  10. Benoist, C., and Chambon, P., 1981, In vivo sequence requirements of the SV40 early promoter region, Nature 290: 304–310.Google Scholar
  11. Benyajati, C., Place, A. R., Powers, D. A., and Sofer, W., 1981, Alcohol dehydrogenase gene of Drosophila melanogasler: Relationship of intervening sequences to functional domains in the protein. Proc. Natl. Acad. Sei. USA 78: 2717–2721.CrossRefGoogle Scholar
  12. Blake, C. C. F., 1981, Exons and the structure. function and evolution of haemoglobin. Nature 291: 616.PubMedCrossRefGoogle Scholar
  13. Bolivar, F., Rodriguez, R. L., Green, P. J., Betlach, M. C., Heynecker, H. L., and Boyer. H. W., 1977, Construction and characterization of new cloning vehicles. II. A multipurpose cloning system, Gene 2: 95–113.PubMedCrossRefGoogle Scholar
  14. Boyer, S. H., Noyes, A. N., Timmons, C. F., and Young, R. A., 1972, Primate hemoglobins: Polymorphisms and evolutionary patterns, J. Hum. Erol. 1: 515–543.CrossRefGoogle Scholar
  15. Boyer, S. H., Noyes, A. N., Boyer, M. L., and Marr, K., 1973, Hemoglobin 3alpha chains in apes-Primary structures and presumptive nature of back mutation in a normally silent gene, J. Biol. Chem. 248: 992–1003.PubMedGoogle Scholar
  16. Brack, C., and Tonegawa, S., 1977. Variable and constant parts of the immunoglobulin light chain gene of a mouse myeloma cell are 1250 nontranslated bases apart, Proc. Nat/. Acad. Sci. USA 74: 5652–5656.CrossRefGoogle Scholar
  17. Bradshaw, R. A., 1980. Insulin-related growth factors, Protides Biol. Fluids 28: 165–168.Google Scholar
  18. Breathnach, R., and Chambon, P., 1981. Organization and expression of eucaryotic split genes coding for proteins, Annu. Rev. Biochem. 50: 349–383.PubMedCrossRefGoogle Scholar
  19. Breathnach, R., Benois, C., O’Hare, K., Gannon, F., and Chambon, P., 1978, Ovalbumin gene—Evidence for a leader sequence in messenger-RNA and DNA sequences at exonintron boundaries, Proc. Natl. Acad. Sci. USA 75: 4853–4857.PubMedCrossRefGoogle Scholar
  20. Browne, J. K., Paddock, G. V., Liu, A., Clarke, P., Heindell, H. C., and Salser. W., 1977, Nucleotide sequences from the rabbit beta globin gene inserted into Escherichia coli plasmids, Science 195: 389–391.PubMedCrossRefGoogle Scholar
  21. Buell, G. N., Wickens, M. P., Payvar, F., and Shimke, R. T., 1978. Synthesis of full length cDNAs from four partially purified oviduct mRNAs. J. Biol. Chem. 253: 2471–2482.PubMedGoogle Scholar
  22. Buettner-Janusch, J., Buettner-Janusch, V., and Coppenhaver, D., 1972. Properties of the hemoglobins of newborn and adult prosimians (Prosimii: lemuriformes and lorisiformes). Folio Primatol. 17: 177–192.CrossRefGoogle Scholar
  23. Busslinger, M., Moschonas, N., and Flavell, R. A., 1981. Thalassemia: aberrant splicing results from a single point mutation in an intron. Cell 27: 289–298.PubMedCrossRefGoogle Scholar
  24. Calame, K., Rogers, J., Early, P., Davis, M., Livant, D., Wall, R., and Hood, L., 1980. Mouse Cp. heavy chain immunoglobulin gene segment contains three intervening sequences separating domains, Nature 284: 452–455.PubMedCrossRefGoogle Scholar
  25. Chakrabarty, A. M. (ed.), 1978, Genetic Engineering, CRC Press. Boca Raton. Florida.Google Scholar
  26. Chambon, P., 1981, Split genes. Sci Am. 244: 60–71.PubMedCrossRefGoogle Scholar
  27. Chapman, B. S., Tobin, A. J., and Hood, L. E., 1980, Complete amino acid sequences of the major early embryonic a-like globins of the chicken. J. Biol. Chem. 255: 9051–9059.PubMedGoogle Scholar
  28. Cleary, M. L., Haynes, J. R., Schon, E. A., and Lingrel, J. B., 1980, Identification by nucleotide sequence analysis of a goat pseudoglobin gene. Nucl. Acids Res. 8: 4791–4802.PubMedCrossRefGoogle Scholar
  29. Cleary, M. L., Schon, E. A., and Lingrel, J. B., 1981, Two related pseudogenes are the result of a gene duplication in the goat ß-globin locus, Cell 26: 181–190.PubMedCrossRefGoogle Scholar
  30. Corden, J., Wasylyk, B., Buchwalder, A., Sassone-Corsi, P., Kedinger, C., and Chambon, P., 1980, Promoter sequences of eukaryotic protein-coding genes, Science 209: 1406–1414.PubMedCrossRefGoogle Scholar
  31. Craik, C. S., Buchman, S. R., and Beychok, S., 1980. Characterization of globin domains: Heme binding to the central exon product, Proc. Natl. Acad. Sci. USA 77: 1384–1388.PubMedCrossRefGoogle Scholar
  32. Cunningham, B. A., Wang, J. L., Berggard, I., and Peterson, P. A., 1973. Complete aminoacid sequence of beta2-microglobulin, Biochemistry 12: 4811–4822.PubMedCrossRefGoogle Scholar
  33. Czelusniak, J., Goodman, M., Hewett-Emmett, D., Weiss, M. L., Venta, P. J., and Tashian, R. E., 1982, Phylogenetic origins and adaptive evolution of avian and mammalian haemoglobin genes which are expressed differentially during ontogeny. Nature,in press.Google Scholar
  34. DeNoto, F. M., Moore, D. D., and Goodman, M., 1981, Human growth hormone DNA sequence and mRNA structure: possible alternative splicing, Noel. Acids Res. 9: 3719–3730.CrossRefGoogle Scholar
  35. Dolan, M., Sugarman, B. J., Dodgson, J. B., and Engel, J. D., 1981, Chromosomal arrangement of the chicken ß-type globin genes, Cell 24: 669–677.PubMedCrossRefGoogle Scholar
  36. Eaton, W. A., 1980, The relationship between coding sequences and function in haemoglobin, Nature 284: 183–185.PubMedCrossRefGoogle Scholar
  37. Efstratiadis, A., Posakony, J. W., Maniatis, T., Lawn, R., O’Connell, C. O., Spritz, R. A., DeRiel, J. K., Forget, B. G., Weissman, S. M., Slightom, J. L., Blechl, A. E., Smithies, O., Baralle, F. E., Shoulders, C. C., and Proudfoot, N. J., 1980, The structure and evolution of the human 0-globin gene family, Cell 21: 653–668.PubMedCrossRefGoogle Scholar
  38. Fiddes, J. C., Seeburg, P. H., DeNoto, F. M., Hallewell, R. A., Baxter, J. D., and Goodman, H. M., 1979, Structure of genes for human growth hormone and chorionic somatomammotropin, Proc. Natl. Acad. Sci. USA 76: 4294–4298.PubMedCrossRefGoogle Scholar
  39. Fitzgerald, M., and Shenk, T., 1981, The sequence 5’-AAUAAA-3’ forms part of the recognition site for polyadenylation of late SV40 mRNAs, Cell 24: 251–260.PubMedCrossRefGoogle Scholar
  40. Fukumaki, Y., Ghosh, P. K., Benz, Jr., E. J., Reddy, V. B., Lebowitz, B., Forget, B. G., and Weissman, S. M., 1982, Abnormally spliced messenger RNA in erythroid cells from patients with ß’ -thalassemia and monkey cells expressing a cloned ß-thalassemic gene, Cell 28: 535–593.CrossRefGoogle Scholar
  41. Gilbert, W., 1978, Why genes in pieces? Nature 271: 501.PubMedCrossRefGoogle Scholar
  42. GO, M., 1981. Correlation of DNA exonic regions with protein structural units in haemoglobin, Nature 291: 90–92.PubMedCrossRefGoogle Scholar
  43. Goodman, M., 1981, Decoding the pattern of protein evolution. Prog. Bioplp.s. Mol. Biol. 37: 105–164.CrossRefGoogle Scholar
  44. Goodman, M., Moore, G. W., and Matsuda, G., 1975, Darwinian evolution in the genealogy of haemoglobin, Nature 253: 603–608.PubMedCrossRefGoogle Scholar
  45. Grossman, L. (ed.). 1980, Methods in Enzymology, Volume 65. Nucleic Acids, Part 1, Academic Press, New York.Google Scholar
  46. Grosveld, G. C., Shewmaker, C. K., Jat, P., and Havel, R. A., 1981a, Localization of DNA sequences necessary for transcription of the rabbit 0-globin gene in vitro, Cell 25: 215–226.PubMedCrossRefGoogle Scholar
  47. Grosveld, G. C., Koster, A., and Flavell, R. A., 1981b, A transcription map for the rabbit ß-globin gene. Cell 23: 573–584.PubMedCrossRefGoogle Scholar
  48. Hampe, A., Therwath, A., Sonario, P., and Galibert, F., 1981. Nucleotide sequence of a cloned duck ß-globin cDNA, Gene 14: 11–21.PubMedCrossRefGoogle Scholar
  49. Hansen, J. N., Konkel, D. A., and Leder, P., 1982. The sequence of a mouse embryonic ß-globin gene. J. Biol. Chem. 257: 1048–1052.PubMedGoogle Scholar
  50. Hardison, R. C., 1981, The nucleotide sequence of rabbit embryonic globin gene 03, J. Biol. Chem. 256: 11780–11786.PubMedGoogle Scholar
  51. Hardison, R. C., Butler, E. T., III, Lacy, E., and Maniatis, T., 1979, The structure and transcription of four linked rabbit (3-like globin genes, Cell 18: 1285–1297.PubMedCrossRefGoogle Scholar
  52. Haynes, J. R., Rosteck, P., Jr., and Lingrel, J. B., 1980a, Unusual sequence homology at the 5’ ends of the developmentally regulated ß-, ß-. and y-globin genes of the goat. Proc. Natl. Acad. Sci. USA 77: 7127–7131.PubMedCrossRefGoogle Scholar
  53. Haynes, J. R., Rosteck, P., Jr., Schon, E. A., Gallagher, P. M., Burke, D., J., Smith, K., and Lingrel, J. B., 1980b. The isolation of the ß-, ßc-. and y-globin genes and a presumptive embryonic globin gene from a goat DNA recombinant library, J. Biol. Chem. 255: 6355–6367.Google Scholar
  54. Heindell, H. C., Liu, A., Paddock, G. V., Studnicka, G. M., and Salser, W. A., 1978. The primary sequence of rabbit a-globin mRNA, Cell 15: 43–54.PubMedCrossRefGoogle Scholar
  55. Hewett-Emmett, D., Czelusniak, J., and Goodman, M., 198la, The evolutionary relationships of the enzymes involved in blood coagulation and hemostasis. Ann. N.Y. Acad. Sci. 370: 511–527.Google Scholar
  56. Hewett-Emmett, D., Czelusniak, J., Goodman, M., Venta, P. J., and Tashian, R. E., 198lb, Evolution of nucleotide sequences coding for hemoglobin chains, Fed. Proc. 40: 1591.Google Scholar
  57. Higgs, D. R., Old. J. M., Pressley, L., Clegg, J. B., and Weatherall, D. J., 1980. A novel a-globin gene arrangement in man, Nature 284: 632–635.Google Scholar
  58. Hofer, E., and Darnell, J. E., 1981. The primary transcription unit of the mouse ß-major globin gene, Cell 23: 585–593.PubMedCrossRefGoogle Scholar
  59. Hood, L., Campbell, J. H., and Elgin, S. C. R., 1975. The organization, expression. and evolution of antibody genes and other multigene families, Anna. Rev. Genet. 9: 305–353.CrossRefGoogle Scholar
  60. Jacq, C., Miller, J. R., and Brownlee, G. G., 1977, A pseudogene structure in 5S DNA of Xenopus laevis, Cell 12: 109–120.PubMedCrossRefGoogle Scholar
  61. Jahn, C. L., Hutchinson, C. A., Phillips, S. J., Weaver, S., Haigwood, N. L., Voliva, C. F., and Edgell, M. H., 1980, DNA sequence organization of the 0-globin complex in the BALB/c mouse, Cell 21: 159–168.PubMedCrossRefGoogle Scholar
  62. Jeffreys, A. J., Wilson, V., Wood, D., and Simons, J. P., 1980. Linkage of adult a-and 0- globin genes in X. laevis and gene duplication by tetraploidization, Cell 21: 555–564.PubMedCrossRefGoogle Scholar
  63. Jensen, E. O., Paludan, K., Hyldig-Nielsen, J. J., Jdrgensen, P., and Marcker, K. A., 1981, The structure of a chromosomal leghaemoglobin gene from soybean. Nature 291: 677–679.CrossRefGoogle Scholar
  64. Jukes, T. H., 1980, Silent nucleotide substitutions and the molecular evolutionary clock, Science 210: 973–978.PubMedCrossRefGoogle Scholar
  65. Jung, A., Sippel, A. E., Grez, M., and Schutz, G., 1980. Exons encode functional and structural units of chicken lysozyme. Proc. Natl. Acad. Sci. USA 77: 5759–5763.PubMedCrossRefGoogle Scholar
  66. Kafatos, F. C., Efstratiadis, A., Forget, B. G., and Weissman, S. M., 1977. Molecular evolution of human and rabbit ß-globin mRNAs. Proc. Natl. Acad. Sci. USA 74: 5618–5622.PubMedCrossRefGoogle Scholar
  67. Kedes, L. H., 1979, Histone genes and histone messengers. Anna. Rev. Biochem. 48: 837–870.CrossRefGoogle Scholar
  68. Kimura, M., 1981, Estimation of evolutionary distances between homologous nucleotide sequences, Proc. Natl. Acad. Sei. USA 78: 454–458.CrossRefGoogle Scholar
  69. Knöchel, W., Wittig, B., Wittig, S., John, M. E., Grundmann, U., Oberthür, W. Godovac, J., and Braunitzer, G., 1982, No evidence for “stress” a-globin genes in chicken. Nature 259: 710–712.CrossRefGoogle Scholar
  70. Konkel, D. A., Maizel, J. V., Jr., and Leder, P., 1979, The evolution and sequence comparison of two recently diverged mouse chromosomal ß-globin genes, Cell 18: 865–873.PubMedCrossRefGoogle Scholar
  71. Kretschmer, P. J., Coon, H. C., Davis, A., Harrison, M., and Nienhuis, A. W., 1981. Hemoglobin switching in sheep, J. Biol. Chem. 256: 1975–1982.PubMedGoogle Scholar
  72. Küpper, H., Keller, Kurz, C., Forss, S., Schaller, H., Franze, R., Strohmaier, K., Marquardt, O., Zaslaysky, V. G., and Hofschneider, P. H., 1981. Cloning of cDNA of major antigen of foot and mouth disease virus and expression in E. coli, Nature 289:555–559.Google Scholar
  73. Kurosky, A., Barnett, D. R., Lee, T.-H., Touchstone, B., Hay, R. E., Arnott, M. S., Bowman, B. H., and Fitch, W. M., 1980, Covalent structure of human haptoglobin: A serine protease homolog, Proc. Natl. Acad. Sci. USA 77: 3388–3392.PubMedCrossRefGoogle Scholar
  74. Lacy, E., and Maniatis, T., 1980, The nucleotide-sequence of a rabbit beta-globin pseudogene, Cell 21: 545–553.PubMedCrossRefGoogle Scholar
  75. Lawn, R. M., Efstratiadis, A., O’Connell, C., and Maniatis, T., 1980, The nucleotide-sequence of the human beta-globin gene. Cell 21: 647–651.PubMedCrossRefGoogle Scholar
  76. Lawn, R. M., Adelman, J., Dull, T. J., Gross, M., Goeddel, D., and Ullrich, A., 1981. DNA sequence of two closely linked human leukocyte interferon genes, Science 212: 1159–1162.PubMedCrossRefGoogle Scholar
  77. Lazawska, J., Jacq, C., and Slonimski, P. P., 1980, Sequence of introns and flanking exons in wild-type and box 3 mutations of cytochrome b reveals an interlaced splicing protein coded by an intron, Cell 22: 333–348.CrossRefGoogle Scholar
  78. Leder, P., Hansen, J. N., Konkel, D., Leder, A., Nishioka, Y., and Talkington, C., 1980, Mouse globin system: A functional and evolutionary analysis, Science 209: 1336–1342.PubMedCrossRefGoogle Scholar
  79. Leder, A., Swan, D., Ruddle, F., D’Eustachio, P., and Leder, P., 1981, Dispersion of alike globin genes of the mouse to three different chromosomes, Nature 293: 196–200.PubMedCrossRefGoogle Scholar
  80. Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L., and Steitz, J. A., 1980. Are snRNPs involved in splicing? Nature 283: 220–224.PubMedCrossRefGoogle Scholar
  81. Lewin, B., 1980a, Alternatives for splicing: Recognizing the ends of introns. Cell 22: 324–326.PubMedCrossRefGoogle Scholar
  82. Lewin, B., 1980b, Alternatives for splicing: An intron-coded protein. Cell 22: 645–646.PubMedCrossRefGoogle Scholar
  83. Li, W.-H., Gojobori, T., Nei, M., 1981, Pseudogenes as a paradigm of neutral evolution, Nature 292: 237–239.PubMedCrossRefGoogle Scholar
  84. Liebhaber, S. A., Goosens, M., Poon, R., and Kan, Y. W., 1980. Cloning and complete nucleotide sequence of the human 5’ a globin gene, Proc. Natl. Acrid. Sci. USA 77: 7054–7058.CrossRefGoogle Scholar
  85. Loeb, L. A., Weymouth, L. A., Kunkel, T. A., Gopinathan, K. P., Beckman, R. A., and Duhe, D. K., 1979, On the fidelity of DNA replication. Cold Spring Harbor Symp. Quant. Biol. 43: 921–927.PubMedCrossRefGoogle Scholar
  86. Lomedico, P., Rosenthal, N., Efstratiadis, A., Gilbert, W., Kolodner, R., and Tizard, R., 1979, The structure and evolution of the two nonallelic rat preproinsulin genes, Cell 18: 545–558.PubMedCrossRefGoogle Scholar
  87. Marie, J., Simon, M.-P., Dreyfus, J.-C., and Kahn, A., 1981. One gene. but two messenger RNAs encode liver L and red cell L’ pyruvate kinase subunits. Nature 292: 70–72.PubMedCrossRefGoogle Scholar
  88. Marquardt, H., Todaro, G. J., Henderson, L. E., and GroszIan, S., 1981, Purification and primary structure of a polypeptide with multiplication-stimulating activity from rat liver cell cultures. Homology with human insulin-like growth factor II, J. Biol. Chem. 256: 6859–6865.PubMedGoogle Scholar
  89. Martin, S. L., Zimmer, E. A., Kan, Y. W., and Wilson, A. C., 1980, Silent 8-globin gene in Old World monkeys, Proc. Natl. Acad. Sci. USA 77: 3563–3566.PubMedCrossRefGoogle Scholar
  90. Maxam, A. M., and Gilbert, W., 1980. Sequencing end-labelled DNA with base-specific chemical cleavages, in: Methods in Enzymology, Volume 65, Academic Press, New York, pp. 499–560.Google Scholar
  91. Michelson, A. M., and Orkin, S. H., 1980. The 3’ untranslated regions of the duplicated human a-globin genes are unexpectedly divergent. Cell 22: 371–377.PubMedCrossRefGoogle Scholar
  92. Miyata, T., and Yasunaga, T., 1981, Rapidly evolving mouse a-globin-related pseudo gene and its evolutionary history, Proc. Natl. Acad. Sci. USA 78: 450–453.PubMedCrossRefGoogle Scholar
  93. Murray, V., and Holliday, R., 1979, Mechanism for RNA splicing of gene transcripts, FEBS Lett. 106: 5–7.PubMedCrossRefGoogle Scholar
  94. Nishioka, Y., and Leder, P., 1979, The complete sequence of a chromosomal mouse aglobin gene reveals elements conserved throughout vertebrate evolution, Cell 18: 875–882.PubMedCrossRefGoogle Scholar
  95. Nishioka, Y., Leder, A., and Leder, P., 1980, Unusual a-globin-like gene that has cleanly lost both globin intervening sequences. Proc. Natl. Acad. Sci. USA 77: 2806–2809.PubMedCrossRefGoogle Scholar
  96. Ohno, S., 1970. Evolution by Gene Duplication, Springer-Verlag, New York.Google Scholar
  97. Okayama, H., and Berg. P., 1982. High efficiency cloning of full-length cDNA, Mol. Cell. Biol. 2: 161–170.PubMedGoogle Scholar
  98. Orkin, S. H., Goff, S. C., and Hechtman, R. L., 1981, Mutation in an intervening splice junction in man, Proc. Natl. Acad. Sci. USA 78: 5041–5045.PubMedCrossRefGoogle Scholar
  99. Partington, G. A., and Baralle, F. E., 1981. Isolation of a Xenopus lae vis a-globin gene, J. Mol. Biol. 145: 463–469.PubMedCrossRefGoogle Scholar
  100. Patient, R. K., Elkington, J. A., Kay, R. M., and Williams, J. G., 1980, Internal organization of the major adult a-and ß-globin genes of X. laevis, Cell 21: 565–573.PubMedCrossRefGoogle Scholar
  101. Perler, F., Efstratiadis, A., Lomedico, P., Gilbert, W., Kolodner, R., and Dodgson, J., 1980, The evolution of genes: The chicken preproinsulin gene. Cell 20: 555–566.PubMedCrossRefGoogle Scholar
  102. Popp, R. A., Lalley, P. A., and Whitney, J. B., 1981, Mouse a-globin genes and a-like pseudogenes are not syntenic, Fed. Proc. 40: 763.Google Scholar
  103. Proudfoot, N., 1980, Pseudogenes, Nature 286: 840–841.PubMedCrossRefGoogle Scholar
  104. Proudfoot, N. J., and Baralle, F. E., 1979, Molecular cloning of human E-globin gene, Proc. Natl. Acad. Sci. USA 76: 5435–5439.PubMedCrossRefGoogle Scholar
  105. Proudfoot, N. J., and Brownlee, G. G., 1974, Sequence at the 3’ end of globin mRNA shows homology with immunoglobin light chain mRNA, Nature 252: 359–362.PubMedCrossRefGoogle Scholar
  106. Proudfoot, N., and Brownlee, G. G., 1976. 3’ non-coding region sequences in eukaryotic messenger-RNA, Nature 263: 211–214.Google Scholar
  107. Proudfoot, N. J., and Maniatis, T., 1980, The structure of a human alpha-globin pseudogene and its relationship to alpha-globin gene duplication, Cell 21: 537–544.PubMedCrossRefGoogle Scholar
  108. Proudfoot, N. J., Shander, M. H. M., Manley, J. L., Gefter, M. L., and Maniatis, T., 1980. Structure and in vitro transcription of human globin genes, Science 209: 1329–1336.PubMedCrossRefGoogle Scholar
  109. Richards, R. I., and Wells, J. R. E., 1980. Chicken globin genes. Nucleotide sequence of cDNA clones coding for the a-globin expressed during hemolytic anemia. J. Biol. Chem. 255: 9306–9311.PubMedGoogle Scholar
  110. Richards, R. I., Shine, J., Ullrich, A., Wells, J. R. E., and Goodman, H. M., 1979. Molecular cloning and sequence analysis of adult chicken ß-globin cDNA. Nucl. Acids Res. 7: 1137–1146.PubMedCrossRefGoogle Scholar
  111. Rogers, J., and Wall, R., 1980, A mechanism for RNA splicing. Proc. Natl. Acad. Sci. USA 77: 1877–1879.PubMedCrossRefGoogle Scholar
  112. Sakano, H., Rogers, J. H., Hveppi, K., Brack, C., Traunecker, A., Maki, R., Wall, R., and Tonegawa, S., 1979, Domains and the hinge region of an immunoglobulin heavy-chain are encoded in separate DNA segments, Nature 277: 627–633.PubMedCrossRefGoogle Scholar
  113. Salser, W. A., Cummings, I., Liu, A., Strommer, J., Padayatty, J., and Clarke, P., 1979, Analysis of chicken globin cDNA clones: Discovery of a novel chicken a globin gene induced by stress in young chickens. in: Cellular and Molecular Regulation of Hemoglobin Switching ( G. Stamatoyannopoulos and A. Nienhuis. eds.). Grune and Stratton. New York, pp. 621–643.Google Scholar
  114. Sanger, F., 1981, Determination of nucleotide sequences in DNA. Bioscience Reports 1: 318.CrossRefGoogle Scholar
  115. Sanger, F., and Coulson, A. R., 1975, A rapid method for determining sequences in DNA by primed synthesis with DNA polymerise, J. Mol. Biol. 94: 441–448.PubMedCrossRefGoogle Scholar
  116. Sanger, F., and Coulson, A. R., 1978, The use of thin acrylamide gels for DNA sequencing, FEBS Lett. 87: 107–110.PubMedCrossRefGoogle Scholar
  117. Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA 74: 5463–5467.PubMedCrossRefGoogle Scholar
  118. Scarpulla, R. C., Agne, K. M., and Wu, R., 1981, Isolation and structure of a rat cytochrome c gene, J. Biol. Chem. 256: 6480–6486.PubMedGoogle Scholar
  119. Shafritz, D. A., 1977, Messenger RNA and its translation, in: Molecular Mechanisms of Protein Biosynthesis ( H. Weissbach and S. Pestka, eds.), Academic Press. New York. pp. 555–601.Google Scholar
  120. Sharp, P. A., 1981, Speculations on RNA splicing. Cell 23: 643–646.PubMedCrossRefGoogle Scholar
  121. Shatkin, A. J., 1976, Capping of eukaryotic mRNAs (review), Cell 9: 645–653.PubMedCrossRefGoogle Scholar
  122. Slightom, J. L., Blechl, A. E., and Smithies, O., 1980, Human fetal y-and ay-globin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes, Cell 21: 627–638.PubMedCrossRefGoogle Scholar
  123. Smithies, O., and Poulik, M. D., 1972, Initiation of protein-synthesis at an unusual position in an immunoglobulin gene, Science 175: 187–189.PubMedCrossRefGoogle Scholar
  124. Solnick, D., 1981, An adenovirus mutant defective in splicing RNA from early region IA, Nature 291: 508–510.PubMedCrossRefGoogle Scholar
  125. Springgate, C. F., Battilla, N., and Loeb, L. A., 1973. Infidelity of DNA synthesis by reverse transcriptase, Biochem. Biophvs. Res. Commun. 52: 401–407.CrossRefGoogle Scholar
  126. Spritz, R. A., DeRiel, J. K., Forget, B., and Weissman, S., 1980, Complete nucleotide-sequence of the human delta-globin gene, Cell 21: 639–646.PubMedCrossRefGoogle Scholar
  127. Stein, J. P., Catterall, J. F., Kristo, P., Means, A. R., and O’Malley, B. W., 1980, Ovomucoid intervening sequences specify functional domains and generate protein polymorphism, Cell 21: 681–687.PubMedCrossRefGoogle Scholar
  128. Stewart, P. R., and Letham, D. S. (eds.), 1973, The Ribonucleic Acids, Springer-Verlag, New York.Google Scholar
  129. Tonegawa, S., Maxam, A. M., Tizard, R., Bernard, O., and Gilbert, W., 1978. Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain, Proc. Natl. Acad. Sci. USA 75: 1485–1489.PubMedCrossRefGoogle Scholar
  130. Ullrich, A., Dull, T. J., Gray, A., Brosius, J., and Sures, I., 1980. Genetic variation in human insulin genes. Science 209: 612–615.PubMedCrossRefGoogle Scholar
  131. van Ooyen, A., van den Berg, J., Mantel, N., and Weissmann, C., 1979, Comparison of total sequence of a cloned rabbit ß-globin gene and its flanking regions with a homologous mouse sequence, Science 206: 337–344.PubMedCrossRefGoogle Scholar
  132. Vanin, E. F., Goldberg, G. I., Tucker, P. W., and Smithies, O., 1980. A mouse a-globinrelated pseudogene lacking intervening sequences. Nature 286: 222–226.PubMedCrossRefGoogle Scholar
  133. Vogeli, G., Anvedimento, E. V., Sullivan, M., Maizel, J. V., Lozano, G., Adams, S. L., Pastan, I., and DeCrombruggle, B., 1980, Isolation and characterization of genomic DNA coding for a2 type I collagen, Nucl. Acids Res. 8: 1823–1837.PubMedCrossRefGoogle Scholar
  134. Wallis, M., 1980, Growth hormone: Deletions in the protein and introns in the gene, Nature 284: 512.PubMedCrossRefGoogle Scholar
  135. Wasylyk, B., Kédinger, C., Corden, J., Bryson, O., and Chambon, P., 1980. Specific in vitro initiation of transcription on conalbumin and ovalbumin genes and comparison with adenovirus-2 early and late genes, Nature 285: 367–372.PubMedCrossRefGoogle Scholar
  136. Weatherall, D. J., and Clegg, J. B., 1979, Recent developments in the molecular genetics of human hemoglobin. Cell 16: 467–479.PubMedCrossRefGoogle Scholar
  137. Weissman, S. M., 1979, Current approaches to analysis of the nucleotide sequence of DNA. Anal. Mechem. 98: 243–253.Google Scholar
  138. Wickens, M. P., Buell, G. N., and Schimke, R. T., 1978. Synthesis of double-stranded DNA complementary to lysozyme. ovomucoid, and ovalbumin mRNAs. J. Biot Cheer. 253: 2483–2495.Google Scholar
  139. Williams, J. G., Kay, R. M., and Patient, R. K., 1980, The nucleotide sequence of the major /3-globin mRNA from Xenopus laeris, Nucl. Acids. Res. 8: 4247–4258.PubMedCrossRefGoogle Scholar
  140. Wilson, J. T., Forget, B. G., Wilson, L. B., and Weissman, S. M., 1977. Human globin messenger RNA: Importance of cloning for structural analysis. Science 196: 200–202.PubMedCrossRefGoogle Scholar
  141. Wilson, J. T., Wilson, L. B., Reddy, V. B., Cavallesco, C., Ghosh, P. K., deRiel, J. K., Forget, B. G., and Weissman, S. M., 1980, Nucleotide sequence of the coding portion of human a globin messenger RNA. J. Biol. Chem. 255: 2807–2815.PubMedGoogle Scholar
  142. Wu, R. (ed.), 1979, Recombinant DNA, in: Methods in Enzymology, Volume 68, Academic Press, New York.Google Scholar
  143. Yang, V. W., Lerner, M. R., Steitz, J. A., and Flint, S. J., 1981, A small nuclear ribonucleoprotein is required for splicing of adenoviral early RNA sequences. Proc. Natl. Acad. Sci. USA 78: 1371–1375.PubMedCrossRefGoogle Scholar
  144. Young, R. A., Hagenbüchle, O., and Schibler, U., 1981, A single mouse a-amylase gene specifies two different tissue-specific mRNAs. Cell 23: 451–458.PubMedCrossRefGoogle Scholar
  145. Zimmer, E. A., Martin, S. L., Beverley, S. M., Kan, Y. W., and Wilson, A. C., 1980. Rapid duplication and loss of genes coding for the a chains of hemoglobin, Proc. Natl. Acad. Sci. USA 77: 2158–2162.PubMedCrossRefGoogle Scholar
  146. Zuckerkandl, E., and Pauling, L., 1965. Evolutionary divergence and convergence in proteins, in: Evolving Genes and Proteins ( V. Bryson and H. J. Vogel. eds.). Academic Press, New York. p. 77.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  1. 1.Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations