Genomic DNA: New Approaches to Evolutionary Problems

  • Alan F. Scott
  • Kirby D. Smith
Part of the Monographs in Evolutionary Biology book series (MEBI)


The genome of a haploid cell from most eukaryotes contains over three billion base pairs of DNA. The organization of this DNA is complex. Much of it consists of various families of repeated sequences, some of which have changed rapidly in time, while others have been conserved evolutionarily. A relatively small portion of the genome contains the few thousand expressed genes that code for proteins. Regulatory sequences, important in differentiation and adaptation, are also present. Further, there may be sequences that migrate within and between chromosomes, perhaps altering the phenotype, and sequences that might direct the rearrangement of chromosomes, which also could profoundly affect the development of organisms and their morphology. In short, all of the information that constitutes an individual as a member of a species, genus, or higher taxonomic group is encoded in the genome, and it is here that evolutionary change is recorded. In the past, in order to investigate the interrelatedness of species and the genetic processes by which they evolve, systematists and evolutionary biologists have, by necessity, been forced to study the consequences of gene expression. But the revolution in DNA techniques that has emerged from molecular biology now makes it possible to study and compare gene structure and organization directly. The insights that are emerging from these new approaches for studying the genome have already drastically altered our concept of the gene. In the future they may also alter our view of evolution. In this chapter we hope to survey some of the principal methods that are being used in evolutionary studies of genomic DNA, to describe a few results of their application, and to discuss their prospects for the future. Much of what we present will be speculative or preliminary, but it may indicate some of the directions of evolutionary biology in the years ahead.


Satellite DNAs Ribosomal Gene Globin Gene Recombinant Phage Globin Gene Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. W., Kaufman, R. E., Kretschmer, P. J., Harrison, M., and Nienhuis, A. W., 1980, A family of long reiterated DNA sequences, one copy of which is next to the human beta globin gene, Nucl. Acids Res. 8: 6113–6128.PubMedCrossRefGoogle Scholar
  2. Adams J. W., Barton, P. J. R., Cline, A., Malcolm, S.. Davis-Moulton. A.. Scott. A. F., Smith, K. D., Nienhuis, A. W., 1982, Further characterization of the 6.4 Kb repeated sequence of humans. Nucleotide sequence of the 5’ end, chromosomal distribution, and homology to other primate DNAs, in press.Google Scholar
  3. Allen, G., and Fantes, K. H., 1980, A family of structural genes for human lymphoblastoid (leukocyte-type) interferon, Nature 287: 408–411.PubMedCrossRefGoogle Scholar
  4. Arnheim, N., and Southern, E. M., 1977. Heterogeneity of the ribosomal genes in mice and men, Cell 11: 363–370.PubMedCrossRefGoogle Scholar
  5. Ashburner, M., 1980, Drosophila at Kolymbari, Nature 288: 538–540.Google Scholar
  6. Avise, J. C., Patton, J. C., and Aquadro, C. F., 1980, Evolutionary genetics of birds, J. Hered. 71: 303–310.Google Scholar
  7. Azad, A. A., and Deacon, N. J., 1980, The 3’-terminal primary structure of five eukaryotic l8S rRNAs determined by the direct chemical method of sequencing. The highly conserved sequences include an invariant region complementary to eukaryotic 5S rRNA, Nuci. Acids Res. 8: 4365–4376.CrossRefGoogle Scholar
  8. Barrie, P. A., Jeffreys, A. J., and Scott, A. F., 1981, Evolution of the ß-globin gene cluster in man and the primates, J. Mol. Biol. 149: 319–336.PubMedCrossRefGoogle Scholar
  9. Benton, W. D., and Davis, R. W., 1977, Screening Agt recombinant clones by hybridization to single plaques in situ, Science 196: 180–182.PubMedCrossRefGoogle Scholar
  10. Bostock, C., 1980, A function for satellite DNA?. Trends Biol. Sci. 5: 117–119.CrossRefGoogle Scholar
  11. Botstein, D., White, R. L., Skolnick, M., and Davis, R. W., 1980, Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet. 32: 314–331.PubMedGoogle Scholar
  12. Boyer, S. H., Noyes, A. N., Boyer, M. L., and Marr, K., 1973, Hemoglobin ‘a chains in apes. Primary structures and the presumptive nature of back mutation in a normally silent gene. J. Biol. Chem. 248: 992–1003.PubMedGoogle Scholar
  13. Boyer, S. H., Panny, S. R., Smith, K. D., and Dover, G. J., 1981, How many ancestral mutations have led to the hemoglobin A—S polymorphism: Approaches to an answer in: Birth Defects Symposium XI, Human Mutation: Population and Biological Aspects (E. Hock, and H. Porter, eds.), Academic Press, New York. pp. 35–47.Google Scholar
  14. Britten, R. J., and Davidson, E. H., 1971, Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty, Q. Rev. Biol. 46: 111–133.PubMedCrossRefGoogle Scholar
  15. Britten, R. J., Graham, D. E., and Neufeld, B. E., 1974, Analysis of repeating DNA sequences by reassociation, in: Methods in Enzymology Volume 29 ( L. Grossman and K. Moldave, eds.), Academic Press, New York, pp. 363–418.Google Scholar
  16. Brown, W. M., George, M., and Wilson, A. C., 1979. Rapid evolution of animal mitochondria) DNA, Proc. Natl. Acad. Sci. USA 76: 1967–1971.PubMedCrossRefGoogle Scholar
  17. Cleary, M. L., Haynes, J. R., Schon, E. A., and Lingrel. J. B., 1980, Identification by nucleotide sequence analysis of a goat pseudoglobin gene, Nucl. Acids Res. 8:4791–4802.Google Scholar
  18. Cooke, H., 1976, Repeated sequence specific to human males, Nature 262: 182–186.PubMedCrossRefGoogle Scholar
  19. Cooke, H. J., and McKay, R. D. G., 1978, Evolution of a human Y-chromosome specific repeated sequence, Cell 13: 453–460.PubMedCrossRefGoogle Scholar
  20. Cory, S., and Adams, J. M., 1977, A very large repeating unit of mouse DNA containing the 18S, 28S and 5.8S rRNA genes, Cell 11: 795–805.PubMedCrossRefGoogle Scholar
  21. Craik, C. S., Buchman, S. R., and Beychok, S., 1980. Characterization of globin domains: Heme binding to the central exon product, Proc. Natl. Acad. Sci. USA 77: 1384–1388.PubMedCrossRefGoogle Scholar
  22. Davidson, E. H., and Britten, R. J., 1979, Regulation of gene expression: Possible role of repetitive sequences, Science 204: 1052–1059.PubMedCrossRefGoogle Scholar
  23. Deisseroth, A., Nienhuis, A., Turner, P., Velez. R., Anderson, W. F., Ruddle, F., Lawrence, J., Creagen, R., and Kucherlapati, R., 1977, Localization of the human a-globin structural gene to chromosome 16 in somatic cell hybrids by molecular hybridization assay, Cell 12: 205–218.Google Scholar
  24. Doolittle, W. F., and Sapienza, C., 1980, Selfish genes, the phenotype paradigm and genome evolution, Nature 284: 601–603.PubMedCrossRefGoogle Scholar
  25. Duncan, C., Biro. P. A., Choudary, P. V., Elder, J. T., Wang, R. R. C., Forget, B. G., DeRiel, J. K., Weissman, S. M., 1979, RNA polymerase 111 transcriptional units are interspersed among human non-a-globin genes, Proc. Natl. Acad. Sci. USA 76: 5095–5099.PubMedCrossRefGoogle Scholar
  26. Dunsmuir, P., Brorein, W. J., Simon, M. A., and Rubin. G. M., 1980, Insertion of the Drosophila transposable element copia generates a 5 base pair duplication, Cell 21: 575–579.PubMedCrossRefGoogle Scholar
  27. Eaton, W. A., 1980, The relationship between coding sequences and function in haemoglobin, Nature 284: 183–185.PubMedCrossRefGoogle Scholar
  28. Efstratiadis, A., Posakony, J. W., Maniatis, T., Lawn, R. M., O’Connell, C., Spritz, R. A., DeRiel, J. K., Forget, B. G., Weissman, S. M., Slightom, J. L., Blechl, A. E., Shoulders, C. C., Proudfoot, N. J., 1980, The structure and evolution of the human O- globin gene family, Cell 21: 653–668.PubMedCrossRefGoogle Scholar
  29. Embury, S. E., Lebo, R. V., Dozy, A. M., and Kan. Y. W., 1979, Organization of the aglobin genes in the Chinese a-thalassemia syndromes, J. Clin. Invest. 63: 1307–1310.PubMedCrossRefGoogle Scholar
  30. Enquist, L., Sternberg, N., 1979, In vitro packaging of lamda Dcrm vectors and their use in cloning DNA fragments, in: Methods in Enzymology, vol. 68, (R. Wu. ed.) Academic Press, New York, pp. 281–298.Google Scholar
  31. Feldenzer, J., Mears, J. G., Burns, A. L., Natta, C., and Bank, A., 1979, Heterogeneity of DNA fragments associated with the sickle globin gene, J. Clin. Invest. 64: 75l - 755.CrossRefGoogle Scholar
  32. Fiddes, J. C., and Goodman, H. M., 1980, The cDNA for the O-subunit of human chorionic gonadotropin suggests evolution of a gene by readthrough into the 3’-untranslated region, Nature 286: 684–687.PubMedCrossRefGoogle Scholar
  33. Ford, E. H. B., 1978, Evolutionary conservation of gene linkage, Nature 274: 112.PubMedCrossRefGoogle Scholar
  34. Fritsch, E. F., Lawn, R. M., and Maniatis, T., 1980, Molecular cloning and characterization of the human 0-like globin gene cluster, Cell 19: 959–972.PubMedCrossRefGoogle Scholar
  35. Gilbert, W., 1978, Why genes in pieces, Narine 271: 501.Google Scholar
  36. Gillespie, D., 1977, Newly evolved repeated DNA sequences in primates, Science 196: 889–891.PubMedCrossRefGoogle Scholar
  37. Goosens, M., Dozy, A. N., Embury, S. H., Zachariades, Z., Hadjiminas, M. G., Stamatoyannopoulos, G., and Kan, Y. W., 1980, Triplicated a-globin loci in humans. Proc. Natl. Acad. Sci. USA 77: 518–521.CrossRefGoogle Scholar
  38. Gourse, R. L., and Gerbi, S. A., 1980, Fine structure of ribosomal RNA. Ill. Location of evolutionarily conserved regions within ribosomal DNA, J. Mol. Biol. 140: 321–339.PubMedCrossRefGoogle Scholar
  39. Gusella, J., Varsanyi-Breiner, A., Kao, F. -T., Jones, C., Puck, T. T., Keys, C., Orkin, S., and Housman, D., 1979, Precise localization of human ß-globin gene complex on chromosome II, Proc. Natl. Acad. Sci. USA 76: 5239–5243.PubMedCrossRefGoogle Scholar
  40. Henderson, A. S., Atwood, K. C., and Warburton, D., 1976, Chromosomal distribution of rDNA in Pan paniscus, Gorilla gorilla beringei, and Svmphalangus s.vndachJus: Comparison of related primates, Chromosoma 59: 147–155.PubMedCrossRefGoogle Scholar
  41. Hoeijmakers-van Dommelen, H. A. M., Grosveld, G. C., de Boer, E., Flavell, R. A., Varley, J. M., and Jeffreys, A. J., 1980. Localization of repetitive and unique DNA sequences neighbouring the rabbit ß-globin gene, J. Mol. Biol. 140: 531–547.Google Scholar
  42. Holmquist, G. P., and Dancis, B., 1979, Telomere replication, kinetochore organizers, and satellite DNA evolution. Proc. Natl. Acad. Sci. USA 76: 4566–4570.PubMedCrossRefGoogle Scholar
  43. Itakura, K., 1980, Synthesis of genes, Trends Biol. Sci. 5: 114–116.CrossRefGoogle Scholar
  44. Jahn, C. L., Hutchison, C. A., Phillips, S. J., Weaver, S., Haigwood, N. L., Voliva, C. F., and Edgell, M. H., 1980, DNA sequence organization of the ß-globin complex in the BALB/c mouse, Cell 21: 159–168.PubMedCrossRefGoogle Scholar
  45. Jeffreys, A. J., 1979. DNA sequence variants in °y -, Ay-, h-and f3-globin genes in man, Cell 18: 1–10.PubMedCrossRefGoogle Scholar
  46. Jeffreys, A. J., and R. A., Flavell, 1977a. A physical map of the DNA regions flanking the rabbit ß-globin gene, Cell 12: 429–439.PubMedCrossRefGoogle Scholar
  47. Jeffreys, A. J., and Flavell, R. A., 1977b. The rabbit O-globin gene contains a large insert in the coding sequence, Cell 12: 1097–1108.PubMedCrossRefGoogle Scholar
  48. Jelinek, W. R., Toomey, T. P., Leinwand, L., Duncan, C. H., Biro, P. A., Choudary, P. V., Weissman, S. M., Rubin, C. M., Houck, C. M., Deininger, P. L., and Schmid, C.W., 1980, Ubiquitous, interspersed sequences repeated in mammalian genomes, Proc. Natl. Acad. Sci. USA 77: 1398–1402.PubMedCrossRefGoogle Scholar
  49. Jukes, T. H., 1980, Silent nucleotide substitutions and the molecular evolutionary clock. Science 210: 973–978.PubMedCrossRefGoogle Scholar
  50. Kan, Y. W., and Dozy, A. M., 1978, Polymorphism of DNA sequence adjacent to human ß globin structural gene: Relationship to sickle mutation. Proc. Natl. Acad. Sci. USA 75: 5631–5635.PubMedCrossRefGoogle Scholar
  51. Kan, Y. W., and Dozy, A. M., 1980, Evolution of the hemoglobin S and C genes in world populations. Science 209: 388–391.PubMedCrossRefGoogle Scholar
  52. Kaufman, R. E., Kretchmer, P. J., Adams, J. W., Coon, H. C., Anderson. W. F., and Nienhuis, A., 1980. Cloning and characterization of DNA sequences surrounding the human ß-. 5-, and y-globin genes. Proc. Natl. Acad. Sci. USA 77: 4229–4233.Google Scholar
  53. Kazazian, H. H., Phillips. J. A., Boehm. C. D., Vik, T. A., Mahoney, M. J., and Ritchey, A. K., 1980, Prenatal diagnosis of ß-thalassemias by amniocentesis: Linkage analysis using multiple polymorphic restriction endonuclease sites, Blood 56: 926–930.Google Scholar
  54. Kohne, D. E., Chiscon, J. A., and Hoyer, B. H., 1972. Evolution of primate DNA sequences, J. Hum. Erol. 1: 627–644.CrossRefGoogle Scholar
  55. Konkel, D. A., Maizel, J. V., and Leder, P., 1979. The evolution and sequence comparison of two recently diverged mouse chromosomal ß-globin genes. Cell 18: 865–873.PubMedCrossRefGoogle Scholar
  56. Kunkel, L. M., and Smith, K. D., 1982, Evolution of human Y-chromosome DNA, Chromosoma,in press.Google Scholar
  57. Kunkel, L. M., Smith, K. D., and Boyer, S. H., 1976. Human Y-chromosome-specific reiterated DNA, Science 191: 1189–1190.PubMedCrossRefGoogle Scholar
  58. Kunkel. L. M., Smith, K. D., Boyer, S. H., Borgaonkar, D. S., Wachtel, S. S., Miller, O. J., Breg, W. R., Jones, H. W., and Rary, J. M., 1977. Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants, Proc. Natl. Acad. Sci. USA 74: 1245–1249.Google Scholar
  59. Kunkel, L. M., Smith, K. D., and Boyer, S. H., 1979, Organization and heterogeneity of sequences within a repeating unit of human Y chromosome deoxyribonucleic acid, Biochemistry 18: 3343–3353.PubMedCrossRefGoogle Scholar
  60. Lacy, E., and Maniatis, T., 1980, The nucleotide sequence of a rabbit ß-globin pseudogene, Cell 21: 545–553.PubMedCrossRefGoogle Scholar
  61. Lacy, E., Hardison, R. C., Quon, D., Maniatis, T., 1979, The linkage arrangement of four rabbit ß-like globin genes. Cell 18: 1273–1283.PubMedCrossRefGoogle Scholar
  62. Lalley, P. A., Minna, J. D., and Francke, U., 1978. Conservation of autosomal gene synteny groups in mouse and man, Nature 278: 160–163.CrossRefGoogle Scholar
  63. Lawn, R. M., Fritisch, E. F., Parker, R. C., Blake, G., Maniatis, T., 1978, The isolation and characterization of linked S-ß-globin genes from a cloned library of human DNA, Cell 15: 1157–1174.PubMedCrossRefGoogle Scholar
  64. Lawn, R. M., Efstratiadis, A., O’Connell, C., and Maniatis, T., 1980, The nucleotide sequence of the human ß-globin gene. Cell 21: 647–651.PubMedCrossRefGoogle Scholar
  65. Levis, R., Dunsmuir, P., and Rubin, G. M., 1980. Terminal repeats of the Drosophila transposable element copia: Nucleotide sequence and genomic organization. Cell 21: 581–588.PubMedCrossRefGoogle Scholar
  66. Little, P. F. R., Annison. G., Darling, S., Williamson, R., Camba, L., and Modell, B., 1980, Model for antenatal diagnosis of ß-thalassaemia and other monogenic disorders by molecular analysis of linked DNA polymorphism. Nature 285: 144–147.Google Scholar
  67. Long, E. O., and Dawid, 1. B., 1980. Repeated genes in eukaryotes. Anna. Rev. Biochem. 49: 727–764.CrossRefGoogle Scholar
  68. Mahoney, W. C., and Nute, P. E., 1980. Amino acid sequence of the hemoglobin a chain from a baboon (Papio c vnocephalus): A product of gene fusion?, Biochemistry 19: 1529–1534.PubMedCrossRefGoogle Scholar
  69. Maio, J. J., Brown, F. L., and Musich, P. R., 1977, Subunit structure of chromatin and the organization of eukaryotic highly repetitive DNA: Recurrent periodicities and models for the evolutionary origins of repetitive DNA, J. Mol. Biol. 117: 637–655.PubMedCrossRefGoogle Scholar
  70. Maniatis, T., Hardison, R. C., Lacy, E., Lauer, J., O’Connell, C., Quon, D., Sim, G. K., and Efstratiadis, A., 1978, The isolation of structural genes from libraries of eukaryotic DNA, Cell 15:687–701.PubMedCrossRefGoogle Scholar
  71. Manuelidis, L., 1976, Repeating restriction fragments of human DNA, Nod. Acids Res. 3: 3063–3076.Google Scholar
  72. Martin, S. L., Zimmer, E. A., Kan, Y. W., and Wilson. A. C., 1980, Silent h-globin gene in Old World monkeys, Proc. Natl. Acad. Sci. USA 77: 3563–3566.PubMedCrossRefGoogle Scholar
  73. Maxam, A. M., and Gilbert, W., 1977, A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74: 560–564.PubMedCrossRefGoogle Scholar
  74. Maxam, A. M., and Gilbert, W., 1980, Sequencing end-labeled DNA with base-specific chemical cleavages, in: Methods in Enzymology Volume 65 ( L. Grossman and K. Moldave, Eds.), Academic Press, New York. pp. 499–560.Google Scholar
  75. McClintock, B., 1956, Controlling elements and the gene. Cold Spring Harbor Svmp. Quant. Biol. 21: 197–216.CrossRefGoogle Scholar
  76. Nei, M., and Wen-Hsiung, L., 1979, Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273.PubMedCrossRefGoogle Scholar
  77. Nishioka, Y., Leder, A., and Leder, P., 1980, Unusual a-globin gene that has cleanly lost both globin intervening sequences, Proc. Natl. Acad. Sci. USA 77: 2806–2809.PubMedCrossRefGoogle Scholar
  78. Nussinov, R., 1980, Some rules in the ordering of nucleotides in the DNA. Nucl. Acids Res. 8: 4545–4562.PubMedCrossRefGoogle Scholar
  79. Orgel, L. E., and Crick, F. H. C., 1980, Selfish DNA: The ultimate parasite. Nature 284: 604–607.PubMedCrossRefGoogle Scholar
  80. Panny, S. R., Scott, A. F., Smith, K. D., Phillips, III, J. A., Kazazian, Jr., H. H., Talbot, Jr., C. C., and Boehm, C. D., 1981, Population heterogeneity of the Hpa I restriction site associated with the ß-globin gene: Implications for prenatal diagnosis, Am. J. Hum. Genet. 33: 25–35.Google Scholar
  81. Phillips, J. A., Scott, A. F., Smith, K. D., Young, K. E., Lightbody, K. L., Jiji, R. M.. and Kazazian, H. H., 1979, A molecular basis for various a-thalassemia states in American Blacks, Blood 54: 1439–1445.PubMedGoogle Scholar
  82. Phillips, J. A., Kazazian, H. H., Boehm, D. D., Panny, S. R., Scott, A. F., and Smith, K. D., 1980, Prenatal diagnosis of sickle cell anemia by restriction endonuclease analysis: Hind 11I polymorphisms in y-globin genes extend test applicability. Proc. Natl. Acad. Sci. USA 77: 2853–2856.PubMedCrossRefGoogle Scholar
  83. Proudfoot, N. J., and Maniatis, T., 1980. The structure of a human a-globin pseudogene and its relationship to a-globin gene duplication, Cell 21: 537–544.PubMedCrossRefGoogle Scholar
  84. Razin, A., and Riggs, A. D., 1980, DNA methylation and gene function. Science 210: 604–610.PubMedCrossRefGoogle Scholar
  85. Rice, N. R., 1972, Changes in repeated DNA in evolution, Brookhaven Swap. Biol. 23: 44–79.Google Scholar
  86. Robbins, J., Rosteck, P., Haynes, J. R., Freyer, G., Cleary, M. L., Kalter, H. D., Smith, K., and Lingrel, J. B., 1979. The isolation and partial characterization of recombinant DNA containing genomic globin sequences from the goat. J. Biol. Chem. 254:6187–6195..Google Scholar
  87. Roberts, R. J., 1980, Restriction and modification enzymes and their recognition sequences, Nucl. Acids Res. 8: r63 - r80.PubMedCrossRefGoogle Scholar
  88. Roeder, G. S., and Fink, G. R., 1980. DNA rearrangements associated with a transposable element in yeast, Cell 21: 239–249.PubMedCrossRefGoogle Scholar
  89. Rubin, C. M., Houck, C. M., Deininger, P. L., Friedman, T., and Schmid, C. W., 1980. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences, Nature 284: 372–374.PubMedCrossRefGoogle Scholar
  90. Russell, G. J., Walker, P. M. B., Elton, R. A., and Subak-Sharpe, J. H., 1976. Doublet frequency analysis of fractionated vertebrate nuclear DNA. J. Mol. Biol. 108: 1–23.PubMedCrossRefGoogle Scholar
  91. Ryder, O. A., 1980. Satellite DNAs of the Equidae. Abstract. Second International Congress of Systematic and Evolutionary Biology.Google Scholar
  92. Sakano, H., Maki, R., Kurosawa, Y., Roeder, W., and Tonegawa, S, 1980. Two types of somatic recombination are necessary for the generation of complete immunoglobin heavy-chain genes, Nature 286: 676–683.PubMedCrossRefGoogle Scholar
  93. Sanger, F., Nicklen, S., and Coulson, A. R., 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.PubMedCrossRefGoogle Scholar
  94. Scott, A. F., Phillips, J. A., and Migeon, B. R., 1979, DNA restriction endonuclease analysis for localization of human ß-and 8-globin genes on chromosome 11. Proc. Natl. Acad. Sci. USA 76: 4563–4565.PubMedCrossRefGoogle Scholar
  95. Scott. A. F., Panny, S. R., Smith, K. D., Boyer. S. H., and Bush. R. M., 1980. Comparative restriction mapping of the primate non-alpha globin gene region and the construction of a gorilla genomic library, Abstract. Second International Congress of Systematic and Evolutionary Biology.Google Scholar
  96. Sibley, C. G., and Ahlquist, J. E., 1980. The phlogeny of the ratite birds by DNA x DNA hybridization, Abstract, Second International Congress of Systematic and Evolutionary Biology.Google Scholar
  97. Sinclair, J. H., and Brown, D. D., 1971. Retention of common nucleotide sequences in the ribosomal deoxyribonucleic acid of eukaryotes and some of their physical characteristics, Biochemistry 10: 2761–2769.PubMedCrossRefGoogle Scholar
  98. Slightom, J. L., Blechl, A. E., and Smithies, O., 1980. Human fetal °y-and y-globin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes, Cell 21: 627–638.PubMedCrossRefGoogle Scholar
  99. Smith, G. P., 1976, Evolution of repeated DNA sequences by unequal crossover. Science 191: 528–535.PubMedCrossRefGoogle Scholar
  100. Smith. H. O., 1979, Nucleotide sequence specificity of restriction endonucleases. Science 205: 455–462.Google Scholar
  101. Smith, M., Leung, D. W., Gillam, S., Astelf, C. R., Montgomery, D. L., and Hall, B. D.Google Scholar
  102. Southern, E. M., 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98: 503–517.PubMedCrossRefGoogle Scholar
  103. Sutcliffe, J. G., Shinnick, T. M., Green, N., Liu, F. -T., Niman, H. L., and Lerner, R. A., 1980, Chemical synthesis of a polypeptide predicted from nucleotide sequence allows detection of a new retroviral gene product. Nature 287: 801–805.PubMedCrossRefGoogle Scholar
  104. Tuan, D., Biro, P. A., DeRiel, J. K., Lazarus, H., and Forget, B. G., 1979. Restriction endonuclease mapping of the human y globin gene loci. Nucl. Acids Res. 6: 2519–2544.PubMedCrossRefGoogle Scholar
  105. Vanin, E. F., Goldberg, G. I., Tucker, P. W., and Smithies, O., 1980. A mouse a-globinrelated pseudogene lacking intervening sequences, Nature 286: 222–226.PubMedCrossRefGoogle Scholar
  106. Wetzel, R., 1980, Applications of recombinant DNA technology. Am. Sci. 68: 664–675.PubMedGoogle Scholar
  107. Williams, B. G., and Blattner, F. R., 1979, Construction and characterization of the hybrid bacteriophage lambda Charon vectors for DNA cloning. J. Virol. 29: 555–575.PubMedGoogle Scholar
  108. Wilson, A. C., Sarich, V. M., and Maxson, L. R., 1974, The importance of gene rearrangement in evolution: Evidence from studies on rates of chromosomal. protein and anatomical evolution, Proc. Natl. Acad. Sci. USA 71: 3028–3030.PubMedCrossRefGoogle Scholar
  109. Wu, J. C., and Manuelidis, L., 1980, Sequence definition and organization of a human repeated DNA, J. Mol. Biol. 142: 363–386.PubMedCrossRefGoogle Scholar
  110. Wyman, A. R., and White, R., 1980, A highly polymorphic locus in human DNA, Proc. Natl. Acad. Sci. USA 77: 6754–6758.PubMedCrossRefGoogle Scholar
  111. Young, M. W., 1979, Middle repetitive DNA: A fluid component of the Drosophila genome. Proc. Natl. Acad. Sci. USA 76: 6274–6278.PubMedCrossRefGoogle Scholar
  112. Zimmer, E. A., Martin, S. L., Beverley, S. M., Kan, Y. W., and Wilson, A. C., 1980. Rapid duplication and loss of genes coding for the a chains of hemoglobin. Proc. Natl. Acad. Sci. USA 77: 2158–2162.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Alan F. Scott
    • 1
    • 2
  • Kirby D. Smith
    • 1
    • 2
  1. 1.The Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Laboratory for Human Biochemical GeneticsHoward Hughes Medical InstituteBaltimoreUSA

Personalised recommendations