Nonuniform Molecular Divergence

The Quantitative Evolutionary Analysis of Genes and Messenger RNAs under Selective Structural Constraints
Part of the Monographs in Evolutionary Biology book series (MEBI)


The divergence of species is accompanied by molecular changes in the primary structure of genes and their messenger RNA products. In the present chapter we consider the simplest of such changes, those caused by point mutation: the replacement of one nucleoside—adenosine (A), cytidine (C), guanosine (G), or thymidine (T)—by another and fixation of that replacement by natural selection or by random drift.


Random Model Fixation Intensity Evolutionary Parameter Codon Site Polyoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beyer, W., Stein, M., Smith, T., and Ulam, S., 1974, A molecular sequence metric and evolutionary trees. Math. Biosci. 19: 9–25.CrossRefGoogle Scholar
  2. Coates, M., and Stone, S., 1980, Simulation of protein evolution by random fixation of allowed codons, J. Mol. Evol. 17: 311–328.CrossRefGoogle Scholar
  3. Dayhoff, M. O., and McLaughlin, P. J., 1972, Early evolution: Transfer RNA. in: Atlas of Protein Sequence and Structure, Volume 5 (M. O. Dayhoff. ed.). National Biomedical Research Foundation, Washington. D. C.. pp. 111–118.Google Scholar
  4. Efstratiadis, A., Kafatos, F. C., and Maniatis, T., 1977, The primary structure of rabbit f3globin mRNA as determined from cloned DNA, Cell 10: 571–585.PubMedCrossRefGoogle Scholar
  5. Fitch, W., 1971, Toward defining the course of evolution: Minimum change for a specific tree topology, Syst. Zool. 20: 406–416.CrossRefGoogle Scholar
  6. Fitch, W., and Margoliash, E., 1967, Construction of phylogenetic trees, Science 155: 279–284.PubMedCrossRefGoogle Scholar
  7. Goodman, M., 1981a, Globin evolution was apparently very rapid in early vertebrates: A reasonable case against the rate-constancy hypothesis, J. Mol. Ernl. 17: 114–120.CrossRefGoogle Scholar
  8. Goodman, M., 1981b, Decoding the pattern of protein evolution, Progr. Biophvs. Mol. Biol. 37: 105–164.CrossRefGoogle Scholar
  9. Goodman, M., Moore. G. W.. and Matsuda, G., 1975, Darwinian evolution in the genealogy of haemoglobin, Nature 253: 603–608.Google Scholar
  10. Grunstein, M., and Grunstein, J. E., 1977, The histone H4 gene of Stronglvocentrotu.s purpuratus: DNA and mRNA sequences at the 5,- end, Cold Spring Harbor Svmp. Quant. Biol. 42: 1083–1092.CrossRefGoogle Scholar
  11. Heindell, H. C., Liu, A., Paddock, G. V., Studnicka, G. M., and Salser, W. A., 1978. The primary sequence of rabbit a–globin mRNA, Cell 15: 43–54.PubMedCrossRefGoogle Scholar
  12. Holmquist, R., I972a, Theoretical foundations of paleogenetics, in: Sixth Berkeley Symposium on Mathematical Statistics and Probability (L. LeCam, J. Neyman, and E. L. Scott, eds.), Volume 5, University of California Press, Berkeley, California, pp. 315–350.Google Scholar
  13. Holmquist, R., 1972b, Empirical support for a stochastic model of evolution, J. Mol. Evol. 1:211–222.Google Scholar
  14. Holmquist, R., 1976, Random and nonrandom processes in the molecular evolution of higher organisms, in: Molecular Anthropology ( M. Goodman, E. E. Tashian, and J. H. Tashian, eds.), Plenum Press, New York, pp. 89–116.Google Scholar
  15. Holmquist, R., 1978a, Evaluation of compositional nonrandomness in proteins, J. Mol. Evol. 11: 349–360.PubMedCrossRefGoogle Scholar
  16. Holmquist, R., 1978b, The REH theory of protein and nucleic acid divergence: A retrospective update, J. Mol. Evol. 11: 361–374.PubMedCrossRefGoogle Scholar
  17. Holmquist, R., 1979. The method of parsimony: An experimental test and theoretical analysis of the adequacy of molecular restoration studies, J. Mol. Biol. 135: 939–958.PubMedCrossRefGoogle Scholar
  18. Holmquist, R., 1980. Evolutionary analysis of a and f3 hemoglobin genes by REH theory under the assumption of the equiprobability of genetics events, J. Mol. Evol. 15:149–159.Google Scholar
  19. Holmquist, R., and Cimino, J. B., 1980, A general method for biological inference: Illustrated by the estimation of nonrandom gene nucleotide transition probabilities, Biosystems 12: 1–22.PubMedCrossRefGoogle Scholar
  20. Holmquist, R., and Pearl, D., 1980, Theoretical foundations for paleogenetics—Part I11: The molecular divergence of nucleic acids and proteins for the case of genetic events of unequal probability, J. Mol. Evol. 16: 211–267.PubMedCrossRefGoogle Scholar
  21. Holmquist, R., Cantor, C., and Jukes, T. H., 1972. Improved procedures for comparing homologous sequences in molecules of proteins and nucleic acids, J. Mol. Biol. 64: 145–161.PubMedCrossRefGoogle Scholar
  22. Jaynes, E. T., 1979, Where do we stand on maximum entropy?, in: The Mari,n,on Entropy Formalism ( R. D. Levine, and M. Tribus, eds.), MIT Press. Cambridge. Massachusetts, pp. 15–118.Google Scholar
  23. Jukes, T. H., 1963, Some recent advances in studies of the transcription of the genetic message, in: Advances in Biological and Medical Physics, Volume 9. Academic Press. New York, pp. 1–41.Google Scholar
  24. Jukes, T. H., 1978, Codons and nearest-neighbor nucleotide pairs in mammalian messenger RNA, J. Mol. Erol. 11: 121–127.CrossRefGoogle Scholar
  25. Jukes. T. H., and Cantor, C. R., 1969, Evolution of protein molecules. in: Mammalian Protein Metabolism, Volume III. Academic Press, New York. pp. 21–132.Google Scholar
  26. Jukes. T. H., and Holmquist, R.. 1972. Estimation of evolutionary changes in certain homologous polypeptide chains, J. Mol. Biol. 64: 163–179.Google Scholar
  27. Jukes, T. H., Holmquist, R., and Moise. H., 1975. Amino acid composition of proteins: Selection against the genetic code, Science 189: 50–51.PubMedCrossRefGoogle Scholar
  28. King, J. L., and Jukes, T. H., 1969. NonDarwinian evolution. Science 164: 788–798.PubMedCrossRefGoogle Scholar
  29. Konkel, D. A., Tilghman, S. M., and Leder, P., 1978, The sequence of the chromosomal mouse ß-globin major gene: Homologies in capping, splicing and poly(A) sites. Cell 15: 1125–1132.PubMedCrossRefGoogle Scholar
  30. Lawn, R. M., Efstratiadis, A., O’Connell, C., and Maniatis, T., 1980 The nucleotide sequence of the human ß-globin gene. Cell 21: 647–651.PubMedCrossRefGoogle Scholar
  31. Marotta, C., Wilson, J. T., Forget. B., and Weissman, S. M., 1977. Human ß-globin messenger RNA, J. Biol. Chem. 252: 5040–5053.Google Scholar
  32. Matsuda, H.. Gojobori, T., and Takahata. N., 1978. Theoretical study on protein polymorphism and its bearing on the evolution of protein molecules, in: Evolution of Protein Molecules (H. Matsubara. and T. Yamanako, eds.). Japan Scientific Societies Press, Tokyo, pp. 89–100.Google Scholar
  33. Montgomery, D. C., Leung, D. W., Smith, M., Shalit, P., Faye. G., and Hall. B., 1980. Isolation and sequence of the gene for iso-2—cytochrome c in Saccharomyces core visiae, Proc. Natl. Acad. Sci. USA 77: 541–545.Google Scholar
  34. Moore, G. W., 1977. Proof of the populous path algorithm for missing mutations in parsimony trees. J. Theor. Biol. 66: 95–106.PubMedCrossRefGoogle Scholar
  35. Nei, M., 1975, Molecular Population Genetics and Evolution. North—Holland/Elsevier. Amsterdam.Google Scholar
  36. Nei, M., and Tateno, Y., 1978, Nonrandom amino acid substitution and estimation of the number of nucleotide substitutions in evolution, J. Mol. Erol. 11: 333–347.CrossRefGoogle Scholar
  37. Nichols, B., and Yanofsky, C., 1979, Nucleotide sequences of trpA of Salmonella tvphitnurimn and Escherichia coli: An evolutionary comparison. Proc. Natl. Acad. Sci. USA 76: 5244–5248.PubMedCrossRefGoogle Scholar
  38. Ratner, V. A., 1977, An algorithm for constructing phylogenetic trees from amino acid sequence data. in: Mathematical Models of Evolution and Selection ( V. A. Ratner. ed.), Academy of Sciences of the USSR, Siberian Department, Institute of Cytology and Genetics, Novosibirsk, pp. 5–52.Google Scholar
  39. Reddy, V. B., Thimmappaya, B., Dhar, R., Subramanian, K. N., Zain, B. S., Pan, J., Ghosh, P. K., Celma, C., and Weissman, S. M., 1978. The genome of simian virus SV40, Science 200: 459–502.CrossRefGoogle Scholar
  40. Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes. J. C., Hutchison III, C. A., Slocombe. P. M., and Smith. M., 1977, Nucleotide sequence of bacteriophage X174 DNA, Nature 265: 687–695.Google Scholar
  41. Schaffner, W., Kunz, G., Daetwyler, H., Telford. J., Smith. H. O., and Birnstiel. M. L., 1978, Genes and spacers of cloned sea urchin histone DNA analyzed by sequencing, Cell 14: 655–671.Google Scholar
  42. Seif, I., Khoury, G., and Dhar, R. 1979. The genome of human papovavirus BKV, Cell 18: 963–977.PubMedCrossRefGoogle Scholar
  43. Smith, M., Leung, D. W., Gillam, S., and Astell, C. R., 1979. Sequence of the gene for iso—l-cytochrome c in Saccharomyces cerevi.siae, Cell 16: 753–761.PubMedCrossRefGoogle Scholar
  44. Soeda, E., Arrand, J. R., Smolar, N., Walsh, J. E.,. and Griffin. B. E., I980a. Coding potential and regulatory signals of the polyoma virus genome, Nature 283:445–453.Google Scholar
  45. Soeda, E., Maruyama, T., Arrand, J., and Griffin. B. E., 1980b, Host-dependent evolution of three papova viruses, Nature 285: 165–167.PubMedCrossRefGoogle Scholar
  46. Sures. I., Lowry, and Laurence. H. K., 1978, The DNA sequence of sea urchin (S. porpuratus) H2A, H2B and H3 histone coding and spacer regions. Cell 15: 1033–1044.Google Scholar
  47. Uzzell, T.. and Corbin, K. W., 1971, Fitting discrete probability distributions to evolutionary events, Science 172: 1089–1096.PubMedCrossRefGoogle Scholar
  48. Yockey, H. P., 1977, A prescription which predicts functionally equivalent residues at given sites in protein sequences, J. Theor. Biol. 67: 337–343.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  1. 1.Space Sciences LaboratoryUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Department of StatisticsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations