Advertisement

Simulation of the Evolution of Macromolecular Sequences by Random Fixation of Allowed Codons

  • Michael Coates
  • Simon Stone
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

One approach to the study of the evolution of macromolecular sequences (proteins, DNA, RNA) is computer simulation. In this chapter we describe simulation studies on the evolution of five proteins: fibrinopeptides A and B, hemoglobin α and β chains, and cytochromes c. The first requisite of a simulation, if it is to conform to the pattern observed in the real evolution of these proteins, is that it begin with an “ancestral,” or starting, sequence and through a series of duplications followed by divergence end with a set of “contemporary,” or final, sequences. This process will follow a phylogeny, or genealogy, in which the duplication events are the nodes, or branch points, and divergence occurs along the branches.

Keywords

Selectional Constraint Amino Acid Difference Neutral Mutation Random Fixation Real Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Air, G. M., and Thompson, E. P. O., 1971, Studies on marsupial proteins. IV. Amino acid sequence of myoglobin from the red kangaroo Megaleia rufa, Aust. J. Biol. Sci. 24 (1): 75–95PubMedGoogle Scholar
  2. Anfinsen, C. B., 1959, The Molecular Basis of Evolution, Wiley, New York.Google Scholar
  3. Barnard, E. A.. Cohen, M. S., Gold., M. H., and Kim, J.-K., 1972, Evolution of ribonuclease in relation to polypeptide folding mechanisms, Nature 240 (5381): 395–398.PubMedCrossRefGoogle Scholar
  4. Coates, M., and Stone, S., 1981, Simulation of protein evolution by random fixation of allowed codons, J. Mol. Evol. 17 (6): 311–328.PubMedCrossRefGoogle Scholar
  5. Crow, F., and Kimura, M., 1970, An Introduction to Population Genetics Theory, Harper and Row, New York.Google Scholar
  6. Dayhoff, M. O. (ed.), 1972, Atlas of Protein Sequence and Structure, Volume 5. National Biomedical Research Foundation, Washington, D. C.Google Scholar
  7. Dayhoff, M. O. (ed.). 1973. Atlas of Protein Sequence and Structure, Volume 5, Supplement I, National Biomedical Research Foundation, Washington, D. C.Google Scholar
  8. Dayhoff, M. O. (ed.), 1976, Atlas of Protein Sequence and Structure, Volume 5, Supplement 2. National Biomedical Research Foundation, Washington, D. C.Google Scholar
  9. Dayhoff, M. O. (ed.), 1978, Atlas of Protein Sequence and Structure, Volume 5. Supplement 3, National Biomedical Research Foundation, Washington, D. C.Google Scholar
  10. Dickerson, R. E., 1971, The structure of cytochrome c and rates of molecular evolution, J. Mol. Evol. 1 (1): 26–45.PubMedCrossRefGoogle Scholar
  11. Dobzhansky, T., 1970, Genetics of the Evolutionary Process, Columbia University Press, New York.Google Scholar
  12. Fitch, W. M., 1970, Distinguishing homologous from analogous proteins, Syst. Zool. 19 (2): 99–113.PubMedCrossRefGoogle Scholar
  13. Fitch, W. M.. 1971, Rate of change of concomitantly variable codons, J. Mol. Evol. 1 (1): 84–96PubMedCrossRefGoogle Scholar
  14. Fitch, W. M., and Langley, C. H., 1978, Protein evolution and the molecular clock, in: Evolution of Protein Molecules (M. Hirosha, and T. Yamanaka, eds.), Japan Scientific Societies Press, Tokyo, pp. 45–60.Google Scholar
  15. Fitch. W. M., and Markowitz, E., 1970. An improved method for determining codon variability in a gene and its application to the rate of fixations of mutations in evolution, Biochem. Genet. 4 (4): 579–593.Google Scholar
  16. Goodman, M., 1978, Substitutional trends and non-random changes in rates during protein evolution, in: Evolution of Protein Molecules (H. Matsubara and T. Yamanako, eds.), Japan Scientific Societies Press, Tokyo, pp. 17–32.Google Scholar
  17. Goodman, M., Moore, G. W., Barnabas, J., and Matsuda, G.. 1974, The phylogeny of human globin genes investigated by the maximum parsimony method, J. Mol. Evol. 3 (1): 1–48.PubMedCrossRefGoogle Scholar
  18. Goodman, M., Moore, G. W., and Matsuda, G., 1975, Darwinian evolution in the geneology of haemoglobin, Nature 253 (5493): 603–608.PubMedCrossRefGoogle Scholar
  19. Grantham, R., 1974, Amino acid difference formula to help explain protein evolution. Science 185 (4154): 862–864.PubMedCrossRefGoogle Scholar
  20. Hennig, W., 1966, Phvlogenetic Systematics, University of Illinois Press, Urbana. Illinois.Google Scholar
  21. Holmquist, R., 1972, Theoretical foundations of paleogenetics. in: Proceedings of the Sixth Berkeley Symposium on Mathematical Stutitistics und Probability: Darwinian, Neo-Darwinian, and Non-Darwinian Evolution, Volume 5 ( L. LeCam, J. Neyman. and E. Scott, eds.), University of California Press, Berkeley. California, pp. 315–350.Google Scholar
  22. Holmquist, R., 1976, Random and nonrandom processes in the molecular evolution of higher organisms, in: Molecular Anthropology ( M. Goodman, and R. E. Tashian, eds.). Plenum Press, New York, pp. 89–116.Google Scholar
  23. Holmquist, R., 1978, The REH theory of protein and nucleic acid divergence? A retrospective update, J. Mol. Evol. 11 (4): 361–374.PubMedCrossRefGoogle Scholar
  24. Holmquist, R., 1980, Evolutionary analysis of a and ß hemoglobin genes by REH theory under the assumption of the equiprobability of genetic events, J. Mol. Evol. 15 (2): 149–159.PubMedCrossRefGoogle Scholar
  25. Holmquist, R., and Pearl, D., 1980, Theoretical foundations of quantitative paleogenetics Part III: The molecular divergence of nucleic acids and proteins for the case of genetic events of unequal probability, J. Mol. Evol. 16 (4): 211–267.PubMedCrossRefGoogle Scholar
  26. Holmquist, R., Cantor, C., and Jukes, T. H., 1972. Improved procedures for comparing homologous sequences in molecules of proteins and nucleic acids, J. Mol. Biol. 64 (1): 145–161.PubMedCrossRefGoogle Scholar
  27. Holmquist, R., Jukes, T. H., Moise, H., Goodman, M.. and Moore. W. G.. 1976. The evolution of the globin family genes: Concordance of stochastic and augmented maximum parsimony genetic distances for a hemoglobin. /3 hemoglobin and myoglobin phylogenies, J. Mol. Biol. 105 (1): 39–74.PubMedCrossRefGoogle Scholar
  28. Hufford, T. L., 1978, Botany:Basic Concepts in Plant Biology, Harper & Row, New York.Google Scholar
  29. Karon, J. M., 1979, The covarion model for the evolution of proteins: Parameter estimates and comparison with Holmquist. Cantor and Jukes’ stochastic model. J. Mol. Evol. 12 (3): 197–218.PubMedCrossRefGoogle Scholar
  30. Kimura, M., 1968, Evolutionary rate at the molecular level, Nature 217 (5129): 624–626.PubMedCrossRefGoogle Scholar
  31. Kimura, M., 1969, The rate of molecular evolution considered from the standpoint of population genetics, Proc. Natl. Acad. Sci. USA 63(6):l 181–1188.Google Scholar
  32. Kimura, M., 1979, The neutral theory of molecular evolution, Sci. Am. 24 (5): 98–126.CrossRefGoogle Scholar
  33. Kimura, M., and Ohta, T., 1973, Mutation and evolution at the molecular level, Genet. Supp. 73: 19–35.Google Scholar
  34. Kimura, M., and Ohta, T., 1974, On some principles governing molecular evolution, Proc. Natl. Acad. Sci. USA 71 (7): 2848–2852.PubMedCrossRefGoogle Scholar
  35. King, J. L., and Jukes, T. H., 1969, Non-Darwinian evolution. Science 164 (3881): 788–798.PubMedCrossRefGoogle Scholar
  36. Langley, C. H.. and Fitch, W. M., 1973, The constancy of evolution: A statistical analysis of the a and)3 hemoglobins, cytochrome C, and fibrinopeotide A, in: Genetic Structure of Populations ( N. E. Morton, ed.), University Press of Hawaii, Honolulu, pp. 246–262.Google Scholar
  37. Langley, C. H., and Fitch, W. M., 1974, An examination of the constancy of the rate of molecular evolution, J. Mol. Evol. 3 (3): 161–177.PubMedCrossRefGoogle Scholar
  38. Maniatis, T., Fritsch, E. F., Lauer, J., and Lawn, R. M.. 1980. The molecular genetics of human hemoglobins, Anno. Rev. Genet. 14: 145–178.CrossRefGoogle Scholar
  39. Maruyama, T., Watt, K. W. K., and Riggs, A., 1980, Hemoglobins of the tadpole of the bullfrog, Rana catesbeiana. Amino acid sequence of the a chain of a major component, J. Biol. Chem. 255 (8): 3285–3293.PubMedGoogle Scholar
  40. Matsuda, G., 1978, Molecular evolution of hemoglobins. in: Evolution of Protein Molecules (H. Matsubara, and T. Yamanaka, eds.). Japan Scientific Societies Press, Tokyo. pp 175–186.Google Scholar
  41. Moore, W. G., Goodman, M., Callahan, C., Holmquist, R., and Moise, H., 1976, Stochastic versus augmented maximum parsimony method for estimating superimposed mutations in the divergent evolution of protein sequences. Methods tested on cytochrome C amino acid sequences, J. Mol. Biol. 105 (1): 15–37.PubMedCrossRefGoogle Scholar
  42. Nishioka, Y., and Leder, P., 1979, The complete sequence of a chromosomal mouse aglobin gene reveals elements conserved throughout vertebrate evolution, Cell 18: 875–882.PubMedCrossRefGoogle Scholar
  43. Romer, A. S., 1966, Vertebrate Paleontology, 3rd ed.. University of Chicago Press, Chicago.Google Scholar
  44. Spuhler, J. N., and Jorde, L. B., 1975, Primate phylogeny, ecology, and social behavior, J. Anthropal. Res. 31: 376–405.Google Scholar
  45. Van Eysinga, F. W. B., 1975, Geological Time Table, 3rd ed.. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  46. Van Valen, L., 1974, Molecular evolution as predicted by natural selection, J. Mol. Evol. 3 (2): 89–101.PubMedCrossRefGoogle Scholar
  47. Vogel, F., and Kopun, M., 1977. Higher frequencies of transition among point mutations, J. Mol. Evol. 9 (2): 159–180.PubMedCrossRefGoogle Scholar
  48. Watt, K. W. K.. Maruyama, T., and Riggs, A., 1980. Hemoglobins of the tadpole of the bull frog, Rana catesbeiana. Amino acid sequence of the ß chain of a major component, J. Biol. Chem. 255 (8): 3294–3301.Google Scholar
  49. Wilson, A. C., Carlson, S. S.. and White, T. J., 1977, Biochemical evolution, Anno. Rev. Biochem. 46: 573–639.CrossRefGoogle Scholar
  50. Yockey, H. P.. 1977a, A prescription which predicts functionally equivalent residues at given sites in protein sequences, J. Theor. Biol. 67 (3): 337–343.PubMedCrossRefGoogle Scholar
  51. Yockey, H. P., I977b, On the information content of cytochrome C. J. Theor. Biol. 67(3):345–376.Google Scholar
  52. Yockey, H. P., 1977e. A calculation of the probability of spontaneous biogenesis by information theory, J. Theor Biol. 67 (3): 377–398.PubMedCrossRefGoogle Scholar
  53. Young, J. Z., 1962, The Life of Vertebrates, 2nd ed., Oxford University Press, Oxford.Google Scholar
  54. Zuckerkandl, E., 1976, Evolutionary processes and evolutionary noise at the molecular level. II. A selectionist model for random fixations in proteins, J. Mol. Evol. 7 (4): 269–311.PubMedCrossRefGoogle Scholar
  55. Zuckerkandl, E.. 1978, Multilocus enzymes, gene regulation, and genetic sufficiency. J. Mol. Evol. 12 (1): 57–89.PubMedCrossRefGoogle Scholar
  56. Zuckerkandl, E.. and Pauling. L., 1965. Evolutionary divergence and convergence in proteins, in: Evolving Genes and Proteins ( V. Bryson, and H. J. Vogel, eds.), Academic Press, New York, pp. 97–166.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Michael Coates
    • 1
  • Simon Stone
    • 2
  1. 1.School of Australian Environmental StudiesGriffith UniversityNathanAustralia
  2. 2.Department of BotanyUniversity of AdelaideAdelaideAustralia

Personalised recommendations