Evolution of Chromosomal Proteins

  • Lois T. Hunt
  • Margaret O. Dayhoff
Part of the Monographs in Evolutionary Biology book series (MEBI)


We use the term “chromosomal” proteins to include various kinds of proteins closely associated with the chromosomal DNA. In eukaryotes these would be: histones, including nuclear protein A24; sperm histones, including protamines; and nonhistone chromosomal proteins. Some of the eukaryote proteins have the most highly conserved sequences known, which should be an indication of their functional importance. In prokaryotes the type so far characterized from several species is called DNA-binding protein.


High Mobility Group Chromosomal Protein Complete Amino Acid Sequence Nucleosome Core Histone Octamer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken, A., and Rouvière-Yaniv, J., 1979, Amino and carboxy terminal sequences of the DNA-binding protein Hu from the cyanobacterium Synechocystis PCC 6701 (ATCC 27170), Biochem. Biophys. Res. Commun. 91: 461–467.PubMedGoogle Scholar
  2. Albright, S. C., Wiseman, J. M., Lange, R. A., and Garrard, W. T.. 1980. Subunit structures of different electrophoretic forms of nucleosomes, J. Biol. Chem. 255: 3673–3684.PubMedGoogle Scholar
  3. Andersen, M. W., Ballai, N. R., Goldknopf, 1. L., Wilson, G.. and Busch. H., 1980, Protein A24 lyase: A specific protease that hydrolyzes protein A24 to histone 2A and ubiquitin. J. Cell Biol. 87:CH41a (Abstract CH307).Google Scholar
  4. Ando, T., and Watanabe, S., 1969, A new method for fractionation of protamines and the amino acid sequences of one component of salmine and three components of iridine, Int. J. Protein Res. 1: 221–224.PubMedGoogle Scholar
  5. Arens, M., Yamashita, T., Padmanabhan, R., Tsuruo, T., and Green, M., 1977, Adenovirus deoxyribonucleic acid replication: Characterization of the enzyme activities of a soluble replication system, J. Biol. Chem. 252: 7947–7954.PubMedGoogle Scholar
  6. Bailey, G. S., and Dixon, G. H., 1973, Histone Ilbl from rainbow trout: Comparison in amino acid sequence with calf thymus IIBI, J. Biol. Chem. 248: 5463–5472.PubMedGoogle Scholar
  7. Bellard, M., Oudet, P., Germond, J.-E., and Chambon, P.. 1976, Subunit structure of simianvirus-40 minichromosome, Eur. J. Biochem. 70: 543–553.PubMedGoogle Scholar
  8. Black, J. A., and Dixon, G. H., 1967, Evolution of protamine: A further example of partial gene duplication, Nature 216: 152–154.PubMedGoogle Scholar
  9. Blankstein, L. A., Stollar, B. D., Franklin, S. G., Zweidler, A., and Levy, S. B., 1977. Biochemical and immunological characterization of two distinct variants of histone H2A in Friend leukemia, Biochemistry 16: 4557–4562.PubMedGoogle Scholar
  10. Boffa, L. C., Sterner, R., Vidali, G., and Allfrey, V. G., 1979, Post-synthetic modifications of nuclear proteins: High mobility group proteins are methylated, Biochem. Biophys. Res. Commun. 89: 1322–1327.PubMedGoogle Scholar
  11. Bohm, L., Crane-Robinson, C., and Sautière, P., 1980, Proteolytic digestion studies of chromatin core-histone structure: Identification of a limit peptide of histone H2A, Eur. J. Biochem. 106: 525–530.PubMedGoogle Scholar
  12. Boulikas, T., Wiseman, J. M., and Garrard, W. T., 1980, Points of contact between histone HI and the histone octamer, Proc. Natl. Acad. Sci. USA 77: 127–131.PubMedGoogle Scholar
  13. Brandt, W. F., and von Holt, C., 1974, The determination of the primary structure of histone F3 from chicken erythrocytes by automatic Edman degradation. 2. Sequence analysis of histone F3, Eur. J. Biochem. 46: 419–429.PubMedGoogle Scholar
  14. Brandt, W. F., Strickland, W. N., Morgan. M., and von Holt, C., 1974a, Comparison of the N-terminal amino acid sequences of histone F3 from a mammal, a bird, a shark, an echinoderm, a mollusc and a plant, FEBS Lett. 40: 167–172.Google Scholar
  15. Brandt, W. F., Strickland, W. N., and von Holt, C., 19746, The primary structure of histone F3 from shark erythrocytes. FEBS Lett. 40: 349–352.Google Scholar
  16. Brandt, W. F., Strickland, W. N., Strickland, M., Carlisle, L., Woods, D., and von Holt, C., 1979, A histone programme during the life cycle of the sea urchin, Eur. J. Biochem. 94: 1–10.PubMedGoogle Scholar
  17. Bretzel, G., 1972, Über Thynnin, das Protamin des Thunfisches: Die vollständige Aminosäuressequenz von Thynnin Y2, Hoppe-Sevler’s Z. Phvsiol. Chem. 353: 933–943.Google Scholar
  18. Bretzel, G., I973a, Über Thynnin, das Protamin des Thunfisches: Die Aminosäuresequenz von Thynnin Z1, Hoppe-Sevler’s Z. Phvsiol. Chem. 354: 312–320.Google Scholar
  19. Bretzel, G., 1973b, Über Thynnin, das Protamin des Thunfisches: Die Aminosäuresequenz von Thynnin Z2, Hoppe-Seyler’s Z. Phvsiol. Chem. 354: 543–549.Google Scholar
  20. Briand, G., Kmiecik, D., Sautière, P., Wouters, D., Borie-Loy, O., Biserte, G., Mazen, A., and Champagne, M., 1980, Chicken erythrocyte histone H5. IV. Sequence of the carboxy-terminal half of the molecule (96 residues) and complete sequence, FEBS Lett. 112: 147–151.PubMedGoogle Scholar
  21. Busslinger, M., Portmann, R., Irminger, J. C., and Birnstiel, M. L., 1980, Ubiquitous and gene-specific regulatory 5’ sequences in a sea urchin histone DNA clone coding for histone protein variants, Nucl. Acids Res. 8: 957–977.PubMedGoogle Scholar
  22. Camerini-Otero, R. D., and Felsenfeld, G., 1977, Histone H3 disulfide dimers and nucleo-some structure, Proc. Natl. Acad. Sci. USA 74: 5519–5523.PubMedGoogle Scholar
  23. Ciechanover, A., Elias, S., Heller, H., Ferber, S., and Hershko, A., 1980, Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes, J. Biol. Chem. 255: 7525–7528.PubMedGoogle Scholar
  24. Coelingh, J. P., and Rozijn, T. H., 1975, Comparative studies on the basic nuclear proteins of mammalian and other spermatozoa, Biol. J. Linn. Soc. 7 (Suppl. 1): 245–256.Google Scholar
  25. Cole, R. D., 1977, Special features of the structures of HI histones. in: The Molecular Biology of the Mammalian Genetic Apparatus, Volume I ( P. O. P. Ts’o, ed.), North-Holland, Amsterdam, pp. 93–104.Google Scholar
  26. Corden, J., Engelking, H. M., and Pearson, G. D., 1976, Chromatin-like organization of the adenovirus chromosome, Proc. Natl. Acad. Sci. USA 73: 401–404.PubMedGoogle Scholar
  27. Cunningham, B. A., Hemperly, J. J., Hopp, T. P.. and Edelman, G. M., 1979, Favin versus concanavalin A: Circularly permuted amino acid sequences, Proc. Natl. Acad. Sci. USA 76: 3218–3222.PubMedGoogle Scholar
  28. D’Anna, J. A., Jr., and Isenberg, I., 1974, Interactions of histone LAK (f2a2) with histones KAS (f2b) and GRK (f2a1), Biochemistry 13: 2098–2104.PubMedGoogle Scholar
  29. Dayhoff, M. O., 1973, Survey of new material, in: Atlas of Protein Sequence and Structure, Volume 5, Supplement 1 ( M. O. Dayhoff, ed.), National Biomedical Research Foundation, Washington, D.C., pp. S1 - S8.Google Scholar
  30. Dayhoff, M. O., 1976a, The origin and evolution of protein superfamilies, Fed. Proc. 35: 2132–2138.PubMedGoogle Scholar
  31. Dayhoff, M. O. (ed.), 1976b, Atlas of Protein Sequence and Structre. Volume 5. Supplement 2, 1976, National Biomedical Research Foundation, Washington. D.C.Google Scholar
  32. Dayhoff, M. O. (ed.), 1979, Atlas of Protein Sequence Structure, Volume 5, Supplement 3, 1978, National Biomedical Research Foundation, Washington. D.C.Google Scholar
  33. Dayhoff, M. O., McLaughlin, P. J., Barker, W. C., and Hunt, L. T.. 1975. Evolution of sequences within protein superfamilies, Nuturuissenschoften 62: 154–161.Google Scholar
  34. DeLange, R. J., Fambrough, D. M., Smith, E. L., and Bonner, J., 1969, Calf and pea histone IV. III. Complete amino acid sequence of pea seedling histone IV; comparison with the homologous calf thymus histone, J. Biol. Chem. 244: 5669–5679.PubMedGoogle Scholar
  35. DeLange, R. J., Hooper, J. A., and Smith, E. L., 1973, Histone III. 111. Sequence studies on the cyanogen bromide peptides; Complete amino acid sequence of calf thymus histone III. J. Biol. Chem. 248: 3261–3274.PubMedGoogle Scholar
  36. DeLange, R. J., Williams, L. C., and Searcy, D. G., 1981. A histone-like protein (HTa) from Thermoplasma acidophilum. Il. Complete amino acid sequence. J. Biol. Chem. 256: 905–911.PubMedGoogle Scholar
  37. Elgin, S. C. R., Schilling, J., and Hood, L. E., 1979, Sequence of histone 2B of Drosophila melanogaster, Biochetistry 18: 5679–5685.Google Scholar
  38. Eshaghpour, H., Dieterich, A. E., Cantor, C. R., and Crothers, D. M.. 1980, Singlet—singlet energy transfer studies of the internal organization of nucleosomes, Biochemistry 19: 1797–1805.PubMedGoogle Scholar
  39. Fedor, M. J., and Daniell, E., 1980, Acetylation of histone-like proteins of adenovirus type 5, J. Virol. 35: 637–643.PubMedGoogle Scholar
  40. Felsenfeld, G., 1978, Chromatin, Nature 271: 115–122.PubMedGoogle Scholar
  41. Finch, J. T., and Klug, A., 1978, X-ray and electron microscope analyses of crystals of nucleosome cores, Cold Spring Harbor Symp. Quant. Biol. 42: 1–9.PubMedGoogle Scholar
  42. Finch, J. T., Lutter, L. C., Rhodes, D., Brown, R. S., Rushton, B.. Levitt, M., and Klug, A., 1977, Structure of nucleosome core particles of chromatin, Nature 269: 29–36.Google Scholar
  43. Fitch, W. M., 1966, An improved method of testing for evolutionary homology, J. Mol. Biol. 16: 9–16.PubMedGoogle Scholar
  44. Fitch, W. M., 1971, Evolution of clupeine Z, a probable crossover product, Nature New Biol. 229: 245–247;PubMedGoogle Scholar
  45. Fitch, W. M., 1971, Evolution of clupeine Z, a probable crossover product, Nature New Biol. 231: 256.Google Scholar
  46. Fitch, W. M., and Margoliash, E.. 1967, Construction of phylogenetic trees, Science 155: 279–284.PubMedGoogle Scholar
  47. Franklin, S. G., and Zweidler, A., 1977, Non-allelic variants of histones 2a, 2b, and 3 in mammals, Nature 266: 273–275.PubMedGoogle Scholar
  48. Garel, A., Mazen, A., Champagne, M., Sautière, P., Kmiecik. D., Loy. O.. and Biserte. G., 1975, Chicken erythrocyte histone Hs; 1. Amino terminal sequence (70 residues), FEBS Lett. 50: 195–199.Google Scholar
  49. Garrad, W. T., Nobis, P., and Hancock, R., 1977, Histone H3 disulfide reactions in interphase, mitotic, and native chromatin, J. Biol. Chem. 252: 4962–4967.Google Scholar
  50. Gazit, B., Panet, A., and Cedar, H., 1980, Reconstitution of a deoxyribonuclease I-sensitive structure on active genes, Proc. Natl. Acad. Sci. USA 77: 1787–1790.PubMedGoogle Scholar
  51. Glover, C. V. C., and Gorovsky, M. A., 1979, Amino-acid sequence of Tel histone H4 differs from that of higher eukaryotes, Proc. Natl. Acad. Sci. USA 76: 585–589.PubMedGoogle Scholar
  52. Goldberg, M. L., 1979, Sequence analysis of Drosophila histone genes, Ph.D. thesis. Stanford University.Google Scholar
  53. Goldknopf, I. L., and Busch, H., 1977, lsopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc. Natl. Acad. Sci. USA 74: 864–868.Google Scholar
  54. Goldknopf, I. L., and Busch, H., 1980, N-Bromosuccinimide fragments of protein A24 (uH2A): An implication that ubiquitin is the precursor of conjugation in vivo, Biochem. Biophys. Res. Commun. 96: 1724–1731.PubMedGoogle Scholar
  55. Goldknopf, I., Olson, M., James, T., Mays, J., and Guetzow, K., 1976, Partial sequence analysis of the protein A24, a conjugate of the 2A histone, Fed. Proc. 35: 1722 (Abstract 1854).Google Scholar
  56. Goldknopf, I. L., French, M. F., Musso, R., and Busch, H., 1977, Presence of protein A24 in rat liver nucleosomes, Proc. Natl. Acad. Sci. USA 74: 5492–5495.PubMedGoogle Scholar
  57. Goldknopf, I. L., French, M. F., Daskal, Y., and Busch. H., 1978, A reciprocal relationship between contents of free ubiquitin and protein A24, its conjugate with histone 2A, in chromatin fractions obtained by the DNase Il, Mg’ procedure, Biochem. Biophys. Res. Commun. 84: 786–793.PubMedGoogle Scholar
  58. Goldknopf, I. L., Rosenbaum, F., Sterner, R., Vidali, G., Allfrey, V. G., and Busch, H., 1979, Phosphorylation and acetylation of chromatin conjugate protein A24, Biochem. Biophys. Res. Commun. 90: 269–277.PubMedGoogle Scholar
  59. Goldknopf, I. L., Sudhakar, S., Rosenbaum, F., and Busch, H., 1980, Timing of ubiquitin synthesis and conjugation into protein A24 during the HeLa cell cycle, Biochem. Biophv.s. Res. Commun. 95: 1253–1260.Google Scholar
  60. Goldstein, G.. Scheid, M., Hammerling, U., Boyse. E. A., Schlesinger, D. FI., and Niall, H. D., 1975, Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells, Proc. Natl. Acad. Sci. USA 72: 11–15.Google Scholar
  61. Goodwin, G. H., Woodhead, L., and Johns, E. W., 1977, The presence of high mobility group non-histone chromatin proteins in isolated nucleosomes, FEBS Lett. 73: 85–88.PubMedGoogle Scholar
  62. Goodwin, G. H., Walker. J. M., and Johns, E. W., 1978, The high mobility group (HMG) nonhistone chromosomal proteins, in: The Cell Nucleus, Volume VI, Chromatin, Part C (H. Busch, ed.), Academic Press, New York, pp. 181–219.Google Scholar
  63. Gorovsky, M. A., Glover, C., Johmann, C. A., Keevert, J. B., Mathis, D. J., and Samuelson, M., 1978. Histones and chromatin structure in Tetrahvtnena macro- and micronuclei, Cold Spring Harbor Svmp. Quant. Biol. 42: 493–503.Google Scholar
  64. Green, M., Wold, W. S. M., Brackmann, K., and Carras. M. A., 1980, Studies on early proteins and transformation proteins of human adenoviruses. Cold Spring Harbor Svcnp. Quant. Biol. 44: 457–469.Google Scholar
  65. Griffith, J. D., 1975, Chromatin structure: Deduced from a minichromosome, Science 187: 1202–1203.PubMedGoogle Scholar
  66. Hamilton, J. W., and Rouse. J. B., 1980, The biosynthesis of ubiquitin by parathyroid gland. Biochem. Biophys. Res. Commun. 96: 114–120.PubMedGoogle Scholar
  67. Hemperly, J. J., Hopp. T. P., Becker. J. W., and Cunningham, B. A., 1979, The chemical characterization of favin, a lectin isolated from Vicia faha, J. Biol. Chem. 254: 6803–6810.PubMedGoogle Scholar
  68. Hieter, P. A., Hendricks, M. B., Hemminki, K., and Weinberg, E. S.. 1979. Histone gene switch in the sea urchin embryo. Identification of late embryonic histone messenger ribonucleic acids and the control of their synthesis, Biochemistry 18: 2707–2716.PubMedGoogle Scholar
  69. Hohmann, P., Tobey. R. A., and Gurley, L. R., 1976. Phosphorylation of distinct regions of fl histone: Relationships to the cell cycle. J. Biol. Chem. 251: 3685–3692.Google Scholar
  70. Hooper, J. A., Smith, E. L., Sommer. K. R., and Chalkley, R., 1973, Histone III. 1V. Amino acid sequence of histone III of the testes of the carp, Ictiohus hubalus, J. Biol. Chem. 248: 3275–3279.Google Scholar
  71. Horwitz, M. S.. 1978, Temperature-sensitive replication of H5ts125 adenovirus DNA in vitro, Proc. Natl. Acad. Sci. USA 75: 4291–4295.PubMedGoogle Scholar
  72. Hunt, L. T., and Dayhoff. M. O.. 1977. Amino-terminal sequence identity of ubiquitin and the nonhistone component of nuclear protein A24, Biochem. Biophys. Res. Common. 74: 650–655.Google Scholar
  73. Huntley, G. H., and Dixon, G. H., 1972, The primary structure of the NH2-terminal region of histone T. J. Biol. Chem. 247: 4916–4919.Google Scholar
  74. Inoue, A., Tei, Y., Hasuma, T., Yukioka, M.. and Morisawa, S., 1980. Phosphorylation of HMG17 by protein kinase NII from rat liver cell nuclei. FEBS Lett. 117: 68–72.PubMedGoogle Scholar
  75. Isenberg, I., 1979, Histones, Anna. Rev. Biochem. 48: 159–191.Google Scholar
  76. Iwai, K., Nakahara, C., and Ando, T., 1971, Studies on prolamines. XV. The complete amino acid sequence of the Z component of clupeine. Application of N-.O acyl rearrangement and selective hydrolysis in sequence determination, J. Biochem. 69: 493–509.PubMedGoogle Scholar
  77. Iwai, K., Hayashi, H., and Ishikawa, K., 1972, Calf thymus lysine-and serine-rich histone. Ill. Complete amino acid sequence and its implication for interactions of histones with DNA, J. Biochem. 72: 357–367.PubMedGoogle Scholar
  78. Iwasa, Y., Takai, Y., Kikkawa, U.. and Nishizuka. Y., 1980, Phosphorylation of calf thymus HI histone by calcium-activated, phospholipid-dependent protein kinase. Biochem. Biophys. Res. Commun. 96: 180–187.PubMedGoogle Scholar
  79. Kitamura, N., Adler, C. J., Rothberg, P. G., Martinko, J., Nathenson, S. G., and Wimmer, E., 1980, The genome-linked protein of picornaviruses. VII. Genetic mapping of polio-virus VPg by protein and RNA sequence studies, Cell 21: 295–302.PubMedGoogle Scholar
  80. Klug, A., Rhodes. D., Smith. J.. Finch, J. T., and Thomas, J. O.. 1980. A low resolution structure for the histone core of the nucleosome. Nature 287: 509–516.Google Scholar
  81. Kootstra, A., and Bailey, G. S., 1978, Primary structure of histone H2B from trout (Salmo trutta) testes, Biochemistry 17: 2504–2510.PubMedGoogle Scholar
  82. Kornberg, R., 1977, Structure of chromatin, Anno. Rev. Biochem. 46: 931–954.Google Scholar
  83. Kuehl, L., 1979, Synthesis of high mobility group proteins in regenerating rat liver, J. Biol. Chem. 254: 7276–7281.PubMedGoogle Scholar
  84. Kuehl, L., Lyness, T., Dixon, G. H., and Levy-Wilson, B., 1980, Distribution of high mobility group proteins among domains of trout testis chromatin differing in their susceptibility to micrococcal nuclease, J. Biol. Chem. 255: 1090–1095.PubMedGoogle Scholar
  85. Laine, B., Sautière, P., and Biserte. G., 1976. Primary structure and microheterogeneities of rat chloroleukemia histone H2A (histone ALK, 11, or F22). Biochemistry 15: 1640–1645.PubMedGoogle Scholar
  86. Laine, B., Kmiecik, D., Sautière, P., and Biserte, G., 1978. Primary structure of chicken erythrocyte histone H2A, Biochimie 60: 147 - I50.PubMedGoogle Scholar
  87. Langan, T. A.. Rall, S. C., and Cole, R. D.. 1971, Variation in primary structure at a phosphorylation site in lysine-rich histones, J. Biol. Chem. 246: 1942–1944.Google Scholar
  88. Lathe, R., Buc, H., Lecocq, J.-P., and Bautz, E. K. F.. 1980. Prokaryotic histone-like protein interacting with RNA polynerase, Proc. Natl. Acad. Sci. USA 77: 3548–3552.PubMedGoogle Scholar
  89. Levy-Wilson, B., Kuehl, L., and Dixon, G., 1980, The release of high mobility group protein H6 and protamine gene sequences upon selective DNase I degradation of trout testis chromatin, Nucl. Acids Res. 8: 2859–2869.PubMedGoogle Scholar
  90. Lilley, D. M. J., and Pardon, J. F.. 1979, Structure and function of chromatin, Anno. Rev. Genet. 13: 197–233.Google Scholar
  91. Lischwe, M. A., and Sung, M. T., 1977, A histone-like protein from adenovirus chromatin, Nature 267: 552–554.PubMedGoogle Scholar
  92. Low, T. L. K., and Goldstein, A. L., 1979. The chemistry and biology of thymosin. II. Amino acid sequence analysis of thymosin a, and polypeptide /3, J. Biol. Chem. 254: 987–995.PubMedGoogle Scholar
  93. MacLeod, A. R., Wong, N. C. W., and Dixon, G. H.. 1977. The amino-acid sequence of trout-testis histone HI, Ear. J. Biochem. 78: 281–291.Google Scholar
  94. Mamrack, M. D., Olson, M. O. J., and Busch, H., 1979. Amino acid sequence and sites of phosphorylation in a highly acidic region of nucleolar nonhistone protein C23, Biochemistry 18: 3381–3386.PubMedGoogle Scholar
  95. Mardian, J. K. W., Paton, A. E., Bunick, G. J., and Olins, D. E., 1980, Nucleosome cores have two specific binding sites for nonhistone chromosomal proteins HMG I4 and HMG 17. Science 209: 1534–1536.PubMedGoogle Scholar
  96. Mathew, C. G. P., Goodwin, G. H., and Johns, E. W., 1979, Studies on the association of the high mobility group non-histone chromatin proteins with isolated nucleosomes, Noel. Acids Res. 6: 167–179.Google Scholar
  97. Matsui, S., Seon, B. K., and Sandberg. A. A., 1979, Disappearance of a structural chromatin protein A24 in mitosis: Implications for molecular basis of chromatin condensation, Proc. Natl. Acad. Sci. USA 76: 6386–6390.PubMedGoogle Scholar
  98. McGhee, J. D., and Felsenfeld, G., 1980, Nucleosome structure. Anno. Rev. Biochem. 49: 1115–1156.Google Scholar
  99. Mende, L., Timm, B., and Subramanian, A. R., 1978, Primary structures of two homologous ribosome-associated DNA-binding proteins of Escherichia coli, FEBS Lett. 96: 395–398.PubMedGoogle Scholar
  100. Mirzabekov, A. D., Shick, V. V.. Belyaysky, A. V., and Bavykin, S. G., 1978. Primary organization of nucleosome core particle of chromatin: Sequence of histone arrangement along DNA, Proc. Natl. Acad. Sci. USA 75: 4184–4188.Google Scholar
  101. Mirzabekov, A. D., Belyaysky. A. V.. Bavykin, S. G.. and Shick, V. V., 1980, Primary organization of nucleosomes and its functional implications, Biosystems 12: 265–271.Google Scholar
  102. Needleman, S. B.. and Wunsch, C. D.. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins, J. Mol. Biol. 48: 443–453.PubMedGoogle Scholar
  103. Ogata, N., Ueda, K., and Hayaishi, O., 1980, ADP-ribosylation of histone H2B: Identification of glutamic acid residue 2 as the modification site, J. Biol. Chem. 255: 7610–7615.PubMedGoogle Scholar
  104. Ogawa, Y., Quagliarotti, G., Jordan, J., Taylor, C. W.. Starbuck, W. C., and Busch, H., 1969, Structural analysis of the glycine-rich, arginine-rich histone. III. Sequence of the amino-terminal half of the molecule containing the modified lysine residues and the total sequence, J. Biol. Chem. 244: 4387–4392.Google Scholar
  105. Ohe, Y., Hayashi. H., and Iwai, K., 1979. Human spleen histone H2B: Isolation and amino acid sequence, J. Biochem. 85: 615–624.Google Scholar
  106. Okayama, H., and Hayaishi, O., 1978, ADP-ribosylation of nuclear protein A24, Biochem. Bioplrys. Res. Commun. 84: 755–762.Google Scholar
  107. Olson, M. O. J., Goldknopf, I. L.. Guetzow, K. A.. James, G. T.. Hawkins, T. C.. MaysRothberg, C. J., and Busch, H., 1976, The NH,- and COOH-terminal amino acid sequence of nuclear protein A24, J. Biol. Chem. 251: 5901–5903.Google Scholar
  108. Palau, J., Mozo, A., and Querol, E.. 1980. On the interactions of histone H4 and H4 peptides with DNA. Electrooptical, hydrodynamic and electron microscopy studies, Biochimie 62: 241–249.PubMedGoogle Scholar
  109. Patthy, L., and Smith, E. L., 1975. Histone III. VI. Two forms of calf thymus histone 111, J. Biol. Chem. 250: 1919–1920.PubMedGoogle Scholar
  110. Patthy, L., Smith, E. L., and Johnson, J., 1973, Histone III. V. The amino acid sequence of pea embryo histone III, J. Biol. Chem. 248: 6834–6840.PubMedGoogle Scholar
  111. Rall, S. C., and Cole. R. D., 1971, Amino acid sequence and sequence variability of the amino-terminal regions of lysine-rich histones, J. Biol. litem. 246: 7175–7190.Google Scholar
  112. Reeck, G. R., Swanson, E.. and Teller, D. C.. 1978. The evolution of histones. J. Mol. Evol. 10: 309–317.PubMedGoogle Scholar
  113. Reeves, R., and Candido, E. P. M., 1980, Partial inhibition of histone deacetylase in active chromatin by HMG14 and HMG17, Nucl. Acids Res. 8: 1947–1963.PubMedGoogle Scholar
  114. Reudelhuber, T. L., Boulikas, T., and Garrard, W. T., 1980, A nonamer of histones in chromatin, J. Biol. Chem. 255: 4511–4515.PubMedGoogle Scholar
  115. Rouvière-Yaniv, J., and Kjeldgaard, N. O., 1979. Native Escherichia coli Hu protein is a heterotypic dimer, FEBS Lett. 106: 297–300.Google Scholar
  116. Saffer, J. D., and Glazer, R. I., 1980, The phosphorylation of high mobility group proteins 14 and 17 from Ehrlich ascites and L1210 in vitro. Biochem. Biophys. Res. Commun. 93: 1280–1285.Google Scholar
  117. Sakai, M., Fujii-Kuriyama, Y., and Muramatsu, M., 1978, Number and frequency of protamine genes in rainbow trout testis, Biochemistry 17: 5510–5515.PubMedGoogle Scholar
  118. Salas, M., and Vinuela, E., 1980, Proteins covalently linked to viral nucleic acids, Trends Biochem. Sci. 5: 191–193.Google Scholar
  119. Sautière, P., Tyrou, D., Moschetto, Y., and Biserte, G., 1971a, Primary structure of the glycine and arginine-rich histone isolated from chloro-leucemic tumor in the rat, Biochimie 53: 479–483.PubMedGoogle Scholar
  120. Sautière, P., Lambelin-Breynaert, M.-D., Moschetto, Y., and Biserte, G., 1971b. A glycine and arginine-rich histone from hog thymus: Study of the cryptic peptides and complete sequence, Biochimie 53: 711–715.PubMedGoogle Scholar
  121. Sautière, P., Tyrou, D., Laine, B., Mizon, J., Ruffin, P., and Biserte. G., 1974, Covalent structure of calf-thymus ALK-histone, Ear. J. Biochem. 41: 563–576.Google Scholar
  122. Sautière, P., Kmiecik, D., Loy, 0., Briand, G., Biserte, G.. Garel, A., and Champagne. M., 1975, Chicken erythrocyte histone Hs: I1. Amino acid sequence adjacent to the phenylalanine residue, FEBS Lett. 50: 200–203.Google Scholar
  123. Schaffhausen, B. S., and Benjamin, T. L., 1976, Deficiency in histone acetylation in non-transforming host range mutants of polyoma virus, Proc. Natl. Acad. Sci. USA 73: 1092–1096.PubMedGoogle Scholar
  124. Schaffner, W., Kunz, G., Daetwyler, H., Telford, J., Smith, H. O., and Birnstiel, M. L., 1978, Genes and spacers of cloned sea urchin histone DNA analyzed by sequencing, Cell 14: 655–671.PubMedGoogle Scholar
  125. Schechter, N. M., Davies, W.. and Anderson, C. W., 1980, Adenovirus coded deoxyribonucleic acid binding protein. Isolation, physical properties, and effects of proteolytic digestion, Biochemistry 19: 2802–2810.PubMedGoogle Scholar
  126. Schlesinger, D. H., and Goldstein, G., 1975, Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man, Nature 255: 423–424.PubMedGoogle Scholar
  127. Schlesinger, D. H., Goldstein, G.. and Niall, H. D., 1975. The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells, Biochemistry 14: 2214–2218.PubMedGoogle Scholar
  128. Searcy, D. G., and DeLange, R. J., 1980, Thermoplasma acidophilum histone-like protein: Partial amino acid sequence suggestive of homology to eukaryote histones. Biochem. Biophys. Acta 609: 197–200.Google Scholar
  129. Searcy, D. G., and Stein, D. B., 1980, Nucleoprotein subunit structure in an unusual prokaryotic organism: Thermoplasma acidophilum. Biochem. Biophys. Acta 609: 180–195.Google Scholar
  130. Seidah, N. G., Crine, P., Benjannet, S., Scherrer, H., and Chrètien, M., 1978. Isolation and partial characterization of a biosynthetic N-terminal methionyl peptide of bovine pars intermedia: Relationship to ubiquitin, Biochem. Biophys. Res. Commun. 80: 600–608.PubMedGoogle Scholar
  131. Sergeant, A., Tigges, M. A., and Raskas, H. J.. 1979, Nucleosome-like structural subunits of intranuclear parental adenovirus type 2 DNA, J. Virol. 29: 888–898.PubMedGoogle Scholar
  132. Seyedin, S. M., and Kistler, W. S., 1980, Isolation and characterization of rat testis HIt: An HI histone variant associated with spermatogenesis, J. Biol. Chem. 255: 5949–5954.PubMedGoogle Scholar
  133. Spiker, S., Mardian, J. K. W., and Isenberg, I., 1978. Chromosomal HMG proteins occur in three eukaryotic kingdoms, Biochem. Biophvs. Res. Commun. 82: 129–135.Google Scholar
  134. Stein, D. B., and Searcy, D. G., 1978, Physiologically important stabilization of DNA by a prokaryotic histone-like protein, Science 202: 219–221.PubMedGoogle Scholar
  135. Strickland, M., Strickland, W. N., Brandt, W. F., and von Holt, C., 1977, The complete amino-acid sequence of histone H2B,,, from sperm of the sea urchin Parechinus angulosus, Eur. J. Biochem. 77: 263–275.PubMedGoogle Scholar
  136. Strickland, M., Strickland, W. N., Brandt, W. F., von Holt, C., Wittmann-Liebold, B., and Lehmann, A., 1978, The complete amino-acid sequence of histone H2B, from sperm of the sea urchin Parechinus angulosus, Eur. J. Biochem. 89: 443–452.PubMedGoogle Scholar
  137. Strickland, W. N., Schaller, H., Strickland, M., and von Holt, C., 1976, Partial amino acid sequence of histone HI from sperm of the sea urchin, Parechinus angulosus, FEBS Lett. 66: 322–327.PubMedGoogle Scholar
  138. Strickland, W. N., Strickland, M., Brandt, W. F., and von Holt, C., 1977, The complete amino-acid sequence of histone H2B2, from sperm of the sea urchin Parechinus angulosus, Eur. J. Biochem. 77: 277–286.PubMedGoogle Scholar
  139. Strickland, W. N., Strickland. M., Brandt, W. F., von Holt, C., Lehmann, A., and Wittmann-Liebold, B., unpublished results (1978), cited by von Holt, C., Strickland, W. N., Brandt. W. F., and Strickland, M. S., 1979, More histone structures, FEBS Lett. 100: 201–218.Google Scholar
  140. Suau, P., Bradbury, E. M., and Baldwin, J. P.. 1979, Higher-order structures of chromatin in solution. Eue. J. Biochem. 97: 593–602.Google Scholar
  141. Sung, M. T.. Lischwe, M. A., Richards, J. C., and Hosokawa, K., 1977, Adenovirus chromatin. I. Isolation and characterization of the major core protein VII and precursor pro-VII, J. Biol. Chem. 252: 4981–4987.Google Scholar
  142. Sures, I.. Lowry, J., and Kedes. L. H., 1978, The DNA sequence of sea urchin (S. purpuratus) H2A. H2B, and H3 histone coding and spacer regions, Cell 15: 1033–1044.Google Scholar
  143. Suzuki, K., and Ando, T., I972a, Studies on protamines. XVI. The complete amino acid sequence of clupeine Yll, J. Biochem. 72: 1419–1432.Google Scholar
  144. Suzuki, K., and Ando, T., 1972b, Studies on protamines. XVII. The complete amino acid sequence of clupeine Yl, J. Biochem. 72: 1433–1445.PubMedGoogle Scholar
  145. Temussi, P. A., 1975, Automatic comparison of the sequences of calf thymus histones, J. Theoret. Biol. 50: 25–33.Google Scholar
  146. Thoma, F., Koller, T., and Klug, A.. 1979. Involvement of histone HI in the organization of the nucleosome and of the salt-dependent super structures of chromatin, J. Cell Biol. 83: 403–427.PubMedGoogle Scholar
  147. Toniolo, C., 1980, Secondary structure prediction of fish protamines, Biochim. Biophys. Acta 624: 420–427.PubMedGoogle Scholar
  148. Trifonov, E., 1978, The helical model of the nucleosome core, Nucl. Acids Res. 5: 1371–1380.PubMedGoogle Scholar
  149. Urban, M. K., Franklin, S. G., and Zweidler, A.. 1979. Isolation and characterization of the histone variants in chicken erythrocytes, Biochemistry 18: 3952–3960.PubMedGoogle Scholar
  150. van der Vliet, P. C., Keegstra. W.. and Jansz. H. S., 1978. Complex formation between the adenovirus type 5 DNA-binding protein and single-stranded DNA, Eur. J. Biochem. 86: 389–398.PubMedGoogle Scholar
  151. van Helden, P., Strickland, W. N., Brandt. W. F.. and von Holt. C., 1978. Histone H2B variants from the erythrocytes of an amphibian, a reptile and a bird, Biochim. Biophvs. Acta 533: 278–281.Google Scholar
  152. van Helden. P. D., Strickland, W. N., Brandt, W. F., and von Holt, C., 1979. The complete amino-acid sequence of histone H2B from the mollusc Patella granatina. Eur. J. Biochem. 93: 71–78.Google Scholar
  153. Varshaysky, A. J., Bakayev, V. V., Chumackov, P. M., and Georgiev, G. P., 1976, Mini-chromosome of simian virus 40: Presence of histone HI. Nucl. Acids Res. 3: 2101–2113.Google Scholar
  154. Varshaysky, A. J.. Bakayev, V. V.. Nedospasov, S. A., and Georgiev, G. P.. 1978. On the structure of eukaryotic, prokaryotic, and viral chromatin, Cold Spring Harbor Swnp. Quant. Biol. 42: 457–473.Google Scholar
  155. Vartapetian, A. B., Drygin, Y. F., Chumakov, K. M., and Bogdanov, A. A.. 1980, The structure of the covalent linkage between proteins and RNA in encephalomyocarditis virus, Nucl. Acids Res. 8: 3729–3742.PubMedGoogle Scholar
  156. von Holt, C., Strickland, W. N., Brandt, W. F., and Strickland, M. S.. 1979. More histone structures, FEBS Lett. 100: 201–218.Google Scholar
  157. Walker, J. M., and Johns, E. W., 1980, The isolation, characterization and partial sequences of the chicken erythrocyte non-histone chromosomal proteins HMG14 and HMG17: Comparison with the homologous calf thymus proteins. Biocliem. J. 185: 383–386.Google Scholar
  158. Walker, J. M., Goodwin, G. H., and Johns, E. W., 1976a, The similarity between the primary structures of two non-histone chromosomal proteins, Eur. J. Mechem. 62: 461–469.Google Scholar
  159. Walker, J. M.. Hastings, J. R. B., Johns, E. W., and Gaastra. W., 19766, The partial amino acid sequence of a non-histone chromosomal protein, Biocliem. Biophys. Res. Commun. 73: 72–78.Google Scholar
  160. Walker, J. M., Goodwin, G. H., Johns, E. W., Wietzes, P., and Gaastra, W.. 1977a, Comparison of the amino-terminal sequences of two calf-thymus chromatin non-histone proteins, Int. J. Pept. Protein Res. 9: 220–223.PubMedGoogle Scholar
  161. Walker, J. M., Hastings, J. R. B., and Johns. E. W.. 19776. The primary structure of a non-histone chromosomal protein. Eur. J. Biocliem. 76: 461–468.Google Scholar
  162. Walker, J. M., Goodwin. G. H., and Johns. E. W.. 1978a, Chromosomal proteins: The amino terminal sequence of high mobility group non-histone chromosomal protein HMG 14, showing sequence homologies with two other chromosomal proteins, Int. J. Pept. Protein Res. 11: 301–304.Google Scholar
  163. Walker, J. M., Goodwin, G. H., and Johns. E. W.. 19786, The isolation and identification of ubiquitin from the high mobility (HMG) non-histone protein fraction. FEBS Lett. 90: 327–330.Google Scholar
  164. Walker, J. M., Hastings, J. R. B.. and Johns, E. W., 1978c, A novel continuous sequence of 41 aspartic and glutamic residues in a non-histone chromosomal protein. Nature 271: 281–282.PubMedGoogle Scholar
  165. Walker, J. M., Gooderham, K., and Johns, E. W., 1979a, The isolation, characterization and partial sequence of a peptide rich in glutamic acid and aspartic acid (HGA-2 peptide) from calf thymus non-histone chromosomal protein HMG 2: Comparison with a similar peptide (HGA-1 peptide) from calf thymus non-histone chromosomal protein HMG 1. Biochem. J. 179: 253–255.PubMedGoogle Scholar
  166. Walker, J. M., Gooderham, K., and Johns, E. W., 1979b, The isolation and partial sequence of peptides produced by cyanogen bromide cleavage of calf thymus non-histone chromosomal high-mobility-group protein 2: Sequence homology with non-histone chromosomal high-mobility-group protein 1. Biocheni. J. 181: 659–659.Google Scholar
  167. Walker, J. M., Goodwin, G. H., and Johns, E. W., 1979c, The primary structure of the nucleosome-associated chromosomal protein HMG-14. FEBS Lett. 100: 394–398.PubMedGoogle Scholar
  168. Walker, J. M., Stearn, C.. and Johns, E. W., 1980, The primary structure of non-histone chromosomal protein HMG17 from chicken erythrocyte nuclei. FEBS Lett. 112: 207–210.PubMedGoogle Scholar
  169. Warrant, R. W., and Kim, S.-H.. 1978, a-Helix—double helix interaction shown in the structure of a prolamine—transfer RNA complex and a nucleoprotamine model, Nature 271: 130–135.Google Scholar
  170. Watson, D. C., Peters, E. H., and Dixon, G. H., 1977, The purification, characterization and partial sequence determination of a trout testis non-histone protein, HMG-T, Ear. J. Biochem. 74: 53–60.Google Scholar
  171. Watson, D. C., Levy-Wilson, B., and Dixon, G. H., 1978, Free ubiquitin is a non-histone protein of trout testis chromatin, Nature 276: 196–198.PubMedGoogle Scholar
  172. Watson, D. C., Wong, N. C. W., and Dixon, G. H., 1979, The complete amino-acid sequence of a trout-testis non-histone protein, H6, localized in a subset of nucleosomes and its similarity to calf-thymus non-histone proteins HMG-14 and HMG-17. Ear. J. Biochem. 95: 193–202.Google Scholar
  173. Weber, S., and Isenberg, I., 1980, High mobility group proteins of Saccharomyces cerenisiae, Biochemistry 19: 2236–2240.Google Scholar
  174. Weisbrod, S., Groudine, M., and Weintraub, H., 1980, Interaction of HMG 14 and 17 with actively transcribed genes. Cell 19: 289–301.PubMedGoogle Scholar
  175. Wilkinson, K. D., Urban, M. K., and Haas, A. L., 1980, Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes, J. Biol. Chem. 255: 7529–7532.PubMedGoogle Scholar
  176. Wong, N. C. W., Poirier, G. C.. and Dixon, G. H., 1977, Adenosine diphosphoribosylation of certain basic chromosomal proteins in isolated trout testis nuclei, Eur. J. Biochem. 77: 11–21.PubMedGoogle Scholar
  177. Worcel, A., and Benyajati, C., 1977, Higher order coiling of DNA in chromatin. Cell 12: 83–100.PubMedGoogle Scholar
  178. Wouters, D., Sautière, P., and Biserte, G., 1978, Primary structure of histone H2A from gonad of the sea urchin Psammechinus miliaris, Eur. J. Biochem. 90: 231–239.Google Scholar
  179. Wouters-Tyrou, D., Sautière, P., and Biserte, G., 1976, Covalent structure of the sea urchin histone H4. FEBS Lett. 65: 225–228.PubMedGoogle Scholar
  180. Yaguchi, M., Roy, C., and Seligy, V. L., 1979, Complete amino acid sequence of goose erythrocyte H5 histone and the homology between HI and H5 histones, Biochem. Biophys. Res. Commun. 90: 1400–1406.PubMedGoogle Scholar
  181. Yeoman, L. C., Olson, M. O. J., Sugano, N., Jordan, J. J., Taylor, C. W., Starbuck, W. C., and Busch, H., 1972, Amino acid sequence of the center of the arginine-lysine-rich histone from calf thymus: The total sequence, J. Biol. Chem. 247: 6018–6023.PubMedGoogle Scholar
  182. Yulikova, E. P., Evseenko, L. K., Baratova, L. A., Belyanova, L. P., Rybin, V. K., and Silaev, A. B., 1976, The primary structure of sturine B, a protamine from Caspian sturgeon, Bioorg. Khim. 2: 1613–1617.Google Scholar
  183. Yulikova, E. P., Rybin, V. K., and Silaev, A. B., 1979, The primary structure of stellin A, Bioorg. Khim. 5: 5–10.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Lois T. Hunt
    • 1
  • Margaret O. Dayhoff
    • 1
  1. 1.National Biomedical Research FoundationGeorgetown University Medical CenterUSA

Personalised recommendations