Advertisement

Amino Acid Sequence Evidence on the Phylogeny of Primates and Other Eutherians

  • Morris Goodman
  • Alejo E. Romero-Herrera
  • Howard Dene
  • John Czelusniak
  • Richard E. Tashian
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

The biomolecular approach to systematic and evolutionary biology is in a state of transition. Laboratories that had been determining the amino acid sequences of proteins are now caught up by the excitement of the new recombinant DNA gene cloning and sequencing technology. The possibilities for advancing knowledge in systematic and evolutionary biology by application of this new technology seem almost boundless. It is obvious that knowing the actual nucleotide sequences of genes, rather than having to infer them from the amino acid sequences of encoded proteins, allows more accurate data to be used in figuring out the genealogic relationships of organisms (see Hewett-Emmett et al., this volume, Chapter 9; also Scott and Smith, this volume, Chapter 8). During the transition, while laboratories engaged in studying molecular evolution are retooling in order to engage in nucleotide sequencing, it is worth preparing for the impending flood of these gene sequence data by taking stock of what has already been learned about phylogeny from the substantial body of amino acid sequence data. With that objective in mind, this chapter focuses attention on the phylogeny of the order Primates, both on the subbranching within the order and on the genealogic position of Primates within the subclass Eutheria as well as on the broader pattern of vertebrate branching. We will concentrate on these groups because more species are represented in them by amino acid sequence data than in any other eukaryotic branch.

Keywords

Maximum Parsimony Tree Shrew Gene Phylogeny Ancestral Node Genealogic Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnone. A., and Perutz. M. F.. 1974, Structure of inositol hexaphosphate—human deoxyhaemoglobin complex, Nature 249: 34–36.PubMedCrossRefGoogle Scholar
  2. Baba. M. L.. Darga, L. L., Goodman, M., and Czelusniak, J., 1981, Evolution of cytochrome c investigated by the maximum parsimony method, J. Mol. Erol. 17: 197–213.Google Scholar
  3. Barnabas, J., Goodman, M., and Moore, G. W., 1972. Descent of mammalian alpha globin chain sequences investigated by the maximum parsimony method, J. Mol. Biol. 69:249–278.Google Scholar
  4. Benveniste, R. E.. and Todaro, G. J., 1976, Evolution of type C viral genes: Evidence for an Asian origin of man. Nature 261: 101–108.PubMedCrossRefGoogle Scholar
  5. Blake, C. C. F., 1979, Exons and the structure, function and evolution of haemoglobin. Nature 291: 616.CrossRefGoogle Scholar
  6. Boyer, S. H., Noyes, A. N., Timmons. C. F.. and Young, R. A.. 1972, Primate hemoglobins: Polymorphisms and evolutionary patterns, J. Hum. Erol. 1: 515–543.Google Scholar
  7. Braunitzer. G., and Fujuki. H., 1969, Zur evolution der vertebraten die konstitution und tertiärstruktur des hämoglobins des flussneunauges, Naturii’issenschaften 56: 322–323.CrossRefGoogle Scholar
  8. Ciochon, R. L., and Chiarelli, A. B. (eds.), 1981, Evolutionary Biology of the New World Monkeys and Continental Drift. Plenum Press, New York.Google Scholar
  9. Czelusniak, J., Goodman, M., and Moore. G. W., 1978. On investigating the statistical properties of the populous path algorithm by computer simulation. J. Mol. Erol. 11: 75–85.Google Scholar
  10. Czelusniak, J., Goodman, M., Hewett-Emmett. D.. Weiss, M. L., Venta, P. J., and Tashian. R. E.. 1982. Phylogenetic origins and adaptive evolution of avian and mammalian haemoglobin genes, Nature,in press.Google Scholar
  11. Dayhoff. M. O.. 1978, Atlas of Protein Sequence and Structure, Volume 5. National Biomedical Research Foundation. Washington, D.C.Google Scholar
  12. De Jong, W. W., and Goodman, M., 1981, Mammalian phylogeny studied by sequence analysis of eye lens protein u-crystallin, Z. Sauugetierkd.,in press.Google Scholar
  13. Dene. H., Goodman, M., Walz. D.. and Romero-Herrera. A. E.. 1982. The phylogenetic position of aardvark (Orvcteropus afer) as suggested by its myoglobin, in preparation.Google Scholar
  14. Dickerson, R. E.. and Geis. I.. 1981, Hemoglobin: Structure, Function. Evolution, and Pathology. Benjamin Cummings. Menlo Park.Google Scholar
  15. Dutrillaux. B., 1975, Sur lar nature el l’origine des chromosomes humains, Monogr. Ann. Génét. Expansion Sci. Fr. 1975: 41–71.Google Scholar
  16. Dwulet, J. A.. Dwulet, F. E., and Gurd, F. R. N.. 1980. Complete amino acid sequence of the major component myoglobin from Hubb’s beaked whale. Mesoplodon car/huhbsi, Biochim. Biophys. Acta 624: 121–129.Google Scholar
  17. Farris, J. S.. 1972, Estimating phylogenetic trees from distance matrices. Am. Nat. 106: 645–668.CrossRefGoogle Scholar
  18. Fermi, G., 1975, Three-dimensional fourier synthesis of human deoxyhaemoglobin at 2.5 A resolution refinement of the atomic model, J. Mol. Biol. 97: 237–256.PubMedCrossRefGoogle Scholar
  19. Fitch, W. M., 1970, Distinguishing homologous and analogous proteins, Svst. Zool. 19: 99–113.CrossRefGoogle Scholar
  20. Fitch. W. M., and Langley, C. H., 1976, Evolutionary rates in proteins: Neutral mutations and the molecular clock, Molecular Anthropology (M. Goodman and R. E. Tashian, eds.), pp. 197–219, Plenum Press, New York.Google Scholar
  21. Fitch, W. M., and Margoliash, E., 1967, The construction of phylogenetic trees—A generally applicable method utilizing estimates of the mutation distance obtained from cytochrome c sequences, Science 155: 279–284.PubMedCrossRefGoogle Scholar
  22. Frier, J. A., and Perutz, M. F., 1977, Structure of human foetal deoxyhaemoglobin, J. Mol. Biol. 112: 97–112.PubMedCrossRefGoogle Scholar
  23. Gilbert, W., 1978, Why genes in pieces?, Nature 271: 501.PubMedCrossRefGoogle Scholar
  24. Goodman, M., 1963, Man’s place in the phylogeny of the primates as reflected in serum proteins, in: Classification and Human Evolution (S. L. Washburn, ed.), Aldine, Chicago, pp. 204–234.Google Scholar
  25. Goodman, M., 1976, Towards a genealogical description of the Primates, in: Molecular Anthropology ( M. Goodman and R. E. Tashian. eds.). Plenum Press. New York, pp. 321–353.Google Scholar
  26. Goodman, M., 1980, Molecular evolution of the calmodulin family, in: Calcium-Binding Proteins: Structure and Function ( F. L. Siegel, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and R. H. Wasserman, eds.), Elsevier/North-Holland. New York, pp. 347–354.Google Scholar
  27. Goodman, M., 1981a, Decoding the pattern of protein evolution, Progr. Biophys. Mol. Biol. 37: 105–164.CrossRefGoogle Scholar
  28. Goodman, M., 1981b, Globin evolution was apparently very rapid in early vertebrates: A reasonable case against the rate-constancy hypothesis, J. Mol. Evol. 17: 114–120.PubMedCrossRefGoogle Scholar
  29. Goodman, M., and Beeber, J. E., 1982, Molecular evolution above the species level: CIadogenesis and anagenesis revisited. Proceedings of C.N.R.S. International Colloquium on “Les Modalites, Rythmes Et Mecanismes De L’Evolution: Gradualisme Phyletique On Equilibres Ponctues?” Dijon, France, May 9–14, 1982.Google Scholar
  30. Goodman, M., and Moore, G. W., 1971, Immunodiffusion systematics of the Primates. I. The Catarrhini, Syst. Zool. 20: 19–62.CrossRefGoogle Scholar
  31. Goodman, M., Moore, G. W., Barnabas, J., and Matsuda. G., 1974. The phylogeny of human globin genes investigated by the maximum parsimony method, J. Mol. Evol. 3: 1–48.PubMedCrossRefGoogle Scholar
  32. Goodman, M., Moore, G. W., and Matsuda, G., 1975, Darwinian evolution in the genealogy of haemoglobin, Nature 253: 603–608.PubMedCrossRefGoogle Scholar
  33. Goodman, M., Czelusniak, J., Moore, G. W., Romero-Herrera, A. E., and Matsuda, G.. 1979a, Fitting the gene lineage into its species lineage, A parsimony strategy illustrated by cladograms constructed from globin sequences, Svst. Zool. 28: 132–163.CrossRefGoogle Scholar
  34. Goodman, M., Pechere, J.-F., Haiech, J., and Demaille, J. G., 19796, Evolutionary diversification of structure and function in the family of intracellular calcium-binding proteins, J. Mol. Evol. 13:331–352.Google Scholar
  35. Goodman, M., Weiss, M. L., and Czelusniak, J., 1982. Molecular evolution above the species level: branching pattern. rates, and mechanisms, Svst. Zool.,in press.Google Scholar
  36. Hall, G. E., and Schraer, R., 1979, Purification and partial characterization of high and low activity carbonic anhydrase isoenzymes from Malaclemvs terrapin contrata. Comp. Biochem. Phvsiol. 63B: 561–567.Google Scholar
  37. Hewett-Emmett, D., Cook, C. N., and Barnicot, N. A., 1976, Old World monkey hemoglobins: Deciphering phylogeny from complex patterns of molecular evolution, in: Molecular Anthropology ( M. Goodman and R. E. Tashian, eds.), pp. 257–275, Plenum Press, New York.Google Scholar
  38. Hewett-Emmett, D., Czelusniak, J., Goodman. M., Venta, P. J., and Tashian, R. E., 1981, Evolution of nucleotide sequences coding for hemoglobin chains, Fed. Proc. 40: 1591.Google Scholar
  39. Hill, W. C. O., 1953, Primates—Comparative Anatomy and Taxonomy, Volume I: Strepsirhini, University Press, Edinburgh.Google Scholar
  40. Hill, W. C. O., 1955, Primates—Comparative Anatomy and Taxonomy, Volume II: Haplorhini: Tarsioidea, University Press, Edinburgh.Google Scholar
  41. Huxley, J. S., 1942, Evolution, the Modern Synthesis, Allen and Unwin, London. Jamieson, G. A., Hayes, A., Blum, J. J., and Vanaman, T. C., 1980, Structure and function relationships among calmodulins from divergent eukaryotic organisms, in: CalciumBinding Proteins: Structure and Function (F. L. Siegel, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and R. H. Wasserman, eds.), Elsevier/North-Holland, New York, pp. 165–172.Google Scholar
  42. Johanson, D. C., and White, T. D., 1979, A systematic assessment of early African hominids, Science 203: 321–330.PubMedCrossRefGoogle Scholar
  43. Kimura, M., 1968, Evolutionary rate at the molecular level, Nature 217: 624–626.PubMedCrossRefGoogle Scholar
  44. Kimura, M., 1969, The rate of molecular evolution considered from the standpoint of population genetics, Proc. Natl. Acad. Sci. USA 63: 1181–1188.PubMedCrossRefGoogle Scholar
  45. Kimura, M., 1979, The neutral theory of molecular evolution, Sci. Am. 241 (5): 94–104.CrossRefGoogle Scholar
  46. Kimura, M., 1981, Was globin evolution very rapid in the early stages? A dubious case against the rate constancy hypothesis, J. Mol. Evol. 17: 110–113.PubMedCrossRefGoogle Scholar
  47. Klee, C. B., Crouch, T. H., and Richman, P. G., 1980, Calmodulin, Annu. Rev. Biochem. 49: 489–515.PubMedCrossRefGoogle Scholar
  48. Kretsinger, R. H., 1977, Evolution of the informational role of calcium in eukaryotes, in: Calcium-Binding Proteins and Calcium Function ( R. H. Wasserman, R. A. Corradino, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and F. L. Siegel, eds.), North-Holland, New York, pp. 63–72.Google Scholar
  49. Kretsinger, R. H., 1980, Structure and evolution of calcium-modulated proteins, CRC Crit. Rev. Biochem. 1980: 119–174.CrossRefGoogle Scholar
  50. Ladner, R. L., Heidner, E. J., and Perutz, M. F., 1977, The structure of horse methaemoglobin at 2.0 A resolution, J. Mol. Biol. 114: 385–414.PubMedCrossRefGoogle Scholar
  51. Leclercq, F., Schnek, A. G., Braunitzer, G., Stangl, A., and Schrank, B., 1981, Direct reciprocal allosteric interaction of oxygen and hydrogen carbonate sequence of the haemoglobins of the caiman (Caiman crocodylus), the Nile crocodile (Crocodylus niloticus) and the Mississippi crocodile (Alligator mississippiensis), Hoppe-Seyler’s Z. Physiol. Chem. 362: 1151–1158.PubMedCrossRefGoogle Scholar
  52. Le Gros Clark, W. E., 1959, The Antecedents of Man, Edinburgh University Press, Edinburgh.Google Scholar
  53. Lehman, L. D., Jones, B. N., Dwulet, F. E., Bogardt, R. A., and Gurd, F. R. N., 1980, Complete amino acid sequence of the major component myoglobin from the goose-beaked whale, Ziphius cavirostris, Biochim. Biophys. Acta 625: 221–229.PubMedGoogle Scholar
  54. Li, S. L., and Riggs, A., 1970, The amino acid sequence of hemoglobin V from the lamprey Petromyzon marinus, J. Biol. Chem. 245: 6149–6169.PubMedGoogle Scholar
  55. Liljeqvist, G., Braunitzer, G., and Paléus, S., 1979, Hämoglobine, XXVII Die sequenz der monomeren hämoglobine III von Myxine glutinosa L: ein neurer hämkomplex: E7 glutamin, Ell isoleucin, Hoppe-Seyler’s Z. Physiol. Chem. 360: 125–135.PubMedCrossRefGoogle Scholar
  56. Lovejoy, L. O., 1981, The origin of man. Science 211: 341–350.PubMedCrossRefGoogle Scholar
  57. L¢vtrup, S., 1977, The Phvlogenv of Ver•tebraia, Wiley, New York.Google Scholar
  58. Margoliash, E., 1980, Evolutionary adaptation of mitochondria) cytochrome c to its functional milieu, in: The Evolution of Protein Structure and Function ( D. S. Sigman and M. Brazier, eds.), Academic Press, New York, pp. 299–321.Google Scholar
  59. Martin, S. L., Zimmer, E. A.. Kan, Y. W., and Wilson. A. C., 1980, Silent -globin gene in old world monkeys, Proc. Natl. Acad. Sci. USA 77: 3563–3566.Google Scholar
  60. McHenry, H. M., and Corruccini, R. S., 1980. Late tertiary hominoids and human origins. Nature 285: 397–398.CrossRefGoogle Scholar
  61. McKenna, M. C.. 1969, The origin and early differentiation of therian mammals. Ann. N.Y. Acad. Sci. 167 (1): 217–240.CrossRefGoogle Scholar
  62. Moore, G. W., 1976, Proof for the maximum parsimony (“red king”) algorithm, in: MoIecular Anthropologv ( M. Goodman and R. E. Tashian, eds.), Plenum Press, New York. pp. 117–137.Google Scholar
  63. Moore, G. W., 1977, Proof of the populous path algorithm for missing mutations in parsimony trees, J. Theor. Biol. 66: 95–106.PubMedCrossRefGoogle Scholar
  64. Moore, G. W., Barnabas, J., and Goodman, M., 1973, A method for constructing maximum parsimony ancestral amino acid sequences on a given network, J. Theor. Biol. 38:459–485.Google Scholar
  65. Moore, G. W., Goodman, M., Callahan, C., Holmquist, R., and Moise, H., 1976, Stochastic versus augmented maximum parsimony method for estimating superimposed mutations in the divergent evolution of protein sequences. Methods tested on cytochrome c amino acid sequences, J. Mol. Biol. 105: 15–37.PubMedCrossRefGoogle Scholar
  66. Perutz, M. F., Bauer, C.. Gros, G.. Leclercq, F., Vandecasserie, C., Schnek, A. G., Braunitzer, G., Friday, A. E., and Joysey, K. A.. 1981, Allosteric regulation of erocodillian haemoglobin, Nature 291: 682–684.Google Scholar
  67. Pilbeam, D., 1979, Recent finds and interpretations of Miocene hominoids. Anna. Rev. Anthropol. 8: 333–352.CrossRefGoogle Scholar
  68. Rensch, B., 1959, Evolution above the Species Level, Columbia University Press. New York.Google Scholar
  69. Romer, A. S., 1966, Vertebrate Paleontology. University of Chicago Press, Chicago. Romero-Herrera, A. E., Lehmann. H.. Joysey, K. A., and Friday. A. E., 1973, Molecular evolution of myoglobin and the fossil record: A phylogenetic synthesis. Nature 246: 389–395.Google Scholar
  70. Romero-Herrera, A. E., Lehmann, H., Joysey. K. A., and Friday. A. E.. 1978. On the evolution of myoglobin. Phil. Trans. R. Soc. Lond. B 283: 61–163.Google Scholar
  71. Romero-Herrera, A. E., Lieska, N., and Nasser. S., 1979. Characterization of the myoglobine Petromvzon marinas, J. Mol. Evol. 14: 259–266.PubMedCrossRefGoogle Scholar
  72. Shoshani, J., Goodman, M., Barnhart, M.. Prychodko, W., Vereshchagin, N. K.. and Mikhelson, V. M., 1981, Blood cells and proteins in the Magadan mammoth calf: Immunodiffusion comparisons of Mammuthus to extant paenungulates and tissue ultrastructure, in: The Magadan Mammoth ( N. K. Vereshchagin, ed.), Nauka, Leningrad.Google Scholar
  73. Simons, E., 1976, The fossil record of primate phylogeny. in: Molecular Anthropology ( M. Goodman and R. E. Tashian, eds.), Plenum Press, New York, pp. 35–62.Google Scholar
  74. Simpson, G. G., 1945, The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85: 1–350.Google Scholar
  75. Sokal, R. R., and Michener, C. D., 1958, A statistical method for evaluating systematic relationships, Univ. Kans. Sci. Bull. 38: 1409–1438.Google Scholar
  76. Szalay, F. S., and Delson, E., 1979. Evolutionary History of the Primates. Academic Press. New York.Google Scholar
  77. Takagi, T., Nemoto, T., and Konishi, K., 1980, The amino acid sequence of the calmodulin obtained from sea anemone (Metridium senile) muscle, Biochem. Biophvs. Res. Commun. 96: 377–381.CrossRefGoogle Scholar
  78. Takano, T., 1977, Structure of myoglobin refined at 2.0 A resolution. J. Mol. Biol. 110:537–584.Google Scholar
  79. Tashian, R. E., Hewett-Emmett, D., Stroup, S. K., Goodman, M.. and Yu, Y.-S. L., I980a. Evolution of structure and function in the carbonic anhydrase isozymes of mammals. in: Biophysics and Physiology of Carbon Dioxide (C. Bauer. G. Gros. and H. Bartels. eds.), Springer-Verlag, Berlin, pp. 165–176.Google Scholar
  80. Tashian, R. E.. Hewett-Emmett. D., and Goodman, M.. 1980b, Evolutionary diversity in the structure and activity of carbonic anhydrase, in: Protides of the Biological Fluids (H. Peeters, ed.), Volume 28, Pergamon Press, Oxford. pp. 153–156.Google Scholar
  81. Tashian, R. E., Stroup, S. K., and Hall, G. E., 1981, Primary sequence of turtle low-activity red cell carbonic anhydrase: Homology with mammalian low-activity CA 1 isozymes, Fed. Proc. 40: 1677.Google Scholar
  82. Van Valen, L., 1966, Deltatheridae, A new order of mammals, Bull. Am. Mus. Nut. Dist. 132: 1–126.Google Scholar
  83. Walker, A., 1976, Splitting times among hominoids deduced from the fossil record, in: Molecular Anthropology ( M. Goodman and R. E. Tashian, eds.), Plenum Press, New York, pp. 63–77.Google Scholar
  84. Wicken, J. S., 1980, A thermodynamic theory of evolution, J. Theor. Biol. 87: 9–23.PubMedCrossRefGoogle Scholar
  85. Wilson, A. C., Carlson, S. S., and White, T. J., 1977, Biochemical evolution. Anna. Rev. Biochem. 46: 573–639.CrossRefGoogle Scholar
  86. Yunis, J. J., and Prakash, Om., 1982, The origin of man: A chromosomal pictorial legacy. Science 215: 1525–1530.PubMedCrossRefGoogle Scholar
  87. Zuckerkandl, E.. 1976, Programs of gene action and progressive evolution, in: Molecular Anthropology ( M. Goodman and R. E. Tashian. eds.), Plenum Press. New York. pp. 387–447.Google Scholar
  88. Zuckerkandl, E.. and Pauling, L.. 1962. Molecular disease, evolution, and genetic heterogeneity, in: Horizons in Biochemistry ( M. Kasha and N. Pullman. eds.). Academic Press, New York, pp. 189–225.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Morris Goodman
    • 1
  • Alejo E. Romero-Herrera
    • 1
  • Howard Dene
    • 1
  • John Czelusniak
    • 2
  • Richard E. Tashian
    • 3
  1. 1.Department of AnatomyWayne State University School of MedicineDetroitUSA
  2. 2.Departments of Biology and AnatomyWayne State UniversityDetroitUSA
  3. 3.Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations