Skip to main content

Eye Lens Proteins and Vertebrate Phylogeny

  • Chapter

Part of the book series: Monographs in Evolutionary Biology ((MEBI))

Abstract

The vertebrate eye lens has many unique properties which make it an attractive object for a variety of molecular biologic studies (Bloemendal, 1981). In fact the eye lens was one of the earliest targets of comparative immunologic and electrophoretic studies, and a wealth of data has been collected (Clayton, 1974; De Jong, 1981). By studying and comparing the lenses of present-day vertebrates we can hope to obtain information about the evolutionary changes that have taken place in structure and composition of the lens. This will extend our knowledge of protein evolutionary processes, and at the same time provides data that can be used to infer phylogenetic relationships between the compared species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhat, S. P., Jones, R. E., Sullivan, M. A., and Piatigorsky, J., 1980. Chicken lens crystalline DNA sequences show at least two 5-crystallin genes. Nature 284: 234–238.

    Article  PubMed  CAS  Google Scholar 

  • Bloemendal, H. (ed.), 1981, Molecular and Cellular Biology of the Eye Lens, Wiley-Interscience, New York.

    Google Scholar 

  • Blundell, T., Lindley, P., Miller, L., Moss, D., Slingsby, C., Tickle, I., Turnell, B., and Wistow, G., 1981, The molecular structure and stability of the eye lens: X-ray analysis of y-crystallin II, Nature 289: 771–777.

    Article  PubMed  CAS  Google Scholar 

  • Bours, J., 1976, Lsoelectric focusing in free solution, In: Lsoelectric Focusing (N. Catsimpoolas, ed.), Academic Press, New York, pp. 209–228.

    Google Scholar 

  • Bours, J., 1977, The crystallins of the aging lens from five species studied by various methods of thin-layer isoelectric focusing, In: Electiofocusing and lsotachophoresis ( B. J. Radola, and D. Graesslin, eds.), De Gruyter, Berlin, pp. 303–312.

    Google Scholar 

  • Brahma, S. K., 1978, Ontogeny of lens crystallins in marine cephalopods, J. Embrvol. Exp. Morphol. 46: 111–118.

    CAS  Google Scholar 

  • Butler, P. M., 1972, The problem of insectivore classification, In: Studies in Vertebrate Evolution ( K. A. Joysey and T. R. Kemps, eds.). Oliver and Boyd, Edinburgh, pp. 253–265.

    Google Scholar 

  • Clayton, R. M., 1970, Problems of differentiation in the vertebrate lens, In: Current Topics of Developmental Biology, Volume 5 ( A. A. Moscona and A. Monroy, eds.), Academic Press, New York, pp. 115–180.

    Google Scholar 

  • Clayton, R. M., 1974, Comparative aspects of lens proteins, In: The Eve, Volume 5 (H. Dayson and L. T. Graham, eds.), Academic Press, New York, pp. 399–494.

    Google Scholar 

  • Day, T. H., and Clayton, R. M., 1973. Intraspecific variation in lens proteins, Biochem. Genet. 8: 187–203.

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff, M. O. (ed.), 1978, Atlas of Protein Sequence and Structure, Volume 5, Supplement 3, National Biomedical Research Foundation, Washington. D.C.

    Google Scholar 

  • De Jong, W. W., 1981, Evolution of lens and crystallins, In: Molecular and Cellular Biology of the Eye Lens ( H. Bloemendal, ed.). Wiley-Interscience, New York. pp. 221–278.

    Google Scholar 

  • De Jong, W. W., and Goodman, M., 1982, Mammalian phylogeny studied by sequence analysis of eye lens protein a-crystallin, Z. Saugetierk.,in press.

    Google Scholar 

  • De Jong, W. W., and Terwindt, E. C., 1976. The amino acid sequences of the a-crystallin A chains of red kangaroo and Virginia opossum, Emu. J. Biochem. 67: 503–510.

    Article  Google Scholar 

  • De Jong, W. W., Terwindt, E. C., and Groenewoud, G., 1976, Subunit compositions of vertebrate a-crystallins, Comp. Biochem. Physiol. 55B: 49–56.

    Google Scholar 

  • De Jong, W. W., Gleaves, J. T., and Boulter, D., 1977, Evolutionary changes of a-crystallin and the phylogeny of mammalian orders, J. Mol. Evol. 10: 123–135.

    Article  Google Scholar 

  • De Jong, W. W., Zweers, A., and Goodman, M. 1980. Trends in the molecular evolution of a-crystallin, In: Protides of the Biological Fluids, Volume 28 ( H. Peeters, ed.), Pergamon Press, Oxford, pp. 161–164.

    Google Scholar 

  • De Jong, W. W., Leunissen, J. A. M., and Cuijpers, H. T., 1981. Primary structure of the major ß-chain of armadillo (Dasvpus novemcinctus) haemoglobin, Biochint. Biophvs. Acta 668: 57–62.

    Google Scholar 

  • De Jong, W. W., Zweers, A., Joysey, K. A., Gleaves, J. T., and Boulter, D., 1982, Protein sequence analysis applied to xenarthran and pholidote phylogeny. In: The Evolution and Ecology of Sloths, Anteaters, and Armadillos ( G. G. Montgomery, ed.), Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Dene, H., Goodman, M., and Romero-Herrera, A. E. 1980a. The amino acid sequence of elephant (Elephas maximus) myoglobin and the phylogeny of Proboscidea, Proc. R. Soc. Lond. B 207: 111–127.

    Article  PubMed  CAS  Google Scholar 

  • Dene, H., Sazy, J., Goodman, M., and Romero-Herrera, A. E., 1980b. The amino acid sequence of alligator (Alligator mississippiensis) myoglobin. Biochim. Biophys. Acta 624: 397–408.

    PubMed  CAS  Google Scholar 

  • Driessen, H. P. C., Herbrink, P., Bloemendal, H., and De Jong, W. W., 1980, The f3crystallin Bp chain is internally duplicated and homologous with y-crystallin. Exp. Ere Res. 31: 243–246.

    Article  CAS  Google Scholar 

  • Duke-Elder, S., 1958, System of Ophthalmology, Volume 1, The Eve in Evolution. H. Krimpton, London.

    Google Scholar 

  • Fitch, W. M., 1971, Rate of change of concomitantly variable codons. J. Mol. Evol. 1: 84–96.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W. M., 1979, Cautionary remarks on using gene expression events in parsimony procedures, Syst. Zool. 28: 375–379.

    Article  Google Scholar 

  • Foulds, L. R., Penny, D., and Hendy, M. D., 1979. A general approach to proving the minimality of phylogenetic trees illustrated by an example with a set of 23 vertebrates, J. Mol. Evol. 13: 151–166.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner, B. G., Janvier, P., Patterson, C., Forey, P. L., Greenwood, P. H., Miles, R. S., and Jefferies, R. P. S., 1979, The salmon, the lungfish and the cow: A reply. Nature 277: 175–176.

    Article  Google Scholar 

  • Goodman, M., and Moore, G. W., 1977. Use of Chou–Fasman amino acid conformational parameters to analyze the organization of the genetic code, J. Mol. Evol. 10: 7–47.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M., Czelusniak, J., Moore, G. W., Romero-Herrera, A. E., and Matsuda, G., 1979. Fitting the gene lineage into its species lineage, A parsimony strategy illustrated by cladograms constructed from globin sequences, Syst. Zool. 28: 132–163.

    Article  CAS  Google Scholar 

  • Harding, J. J., and Dilley, K. J., 1976, Structural proteins of the mammalian lens: A review. Exp. Eye Res. 22: 1–73.

    Article  PubMed  CAS  Google Scholar 

  • Hoenders, H. J., and Bloemendal, H., 1981, Ageing of lens proteins, In: Molecular and Cellular Biology of the Eye Lens ( H. Bloemendal, ed.), Wiley-lnterscience, New York, pp. 279–326.

    Google Scholar 

  • Holmquist, R., 1978, A measure of the denseness of a phylogenetic network. J. Mol. Evol. 11: 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Kramps, J. A., De Man, B. M., and De Jong, W. W., 1977. The primary structure of the B2 chain of human a-crystallin. FEBS Lett. 74: 82–84.

    Article  PubMed  CAS  Google Scholar 

  • Kuck, J. F. R., East, E. J., and Yu, N. T., 1976. Prevalence of a-helical form in avian lens proteins, Exp. Evc’ Res. 23: 9–14.

    Article  CAS  Google Scholar 

  • Manski, W., and Halbert, S. P., 1965, Immunochemistry of the lens with special reference to phylogeny. Invest. Ophthalmol. 4: 539–559.

    PubMed  CAS  Google Scholar 

  • Manski, W., and Malinowski, K., 1978, The evolutionary sequence and quantities of different antigenic determinants of calf lens a-crystallin, Immunochemistry 15: 781–786.

    Article  PubMed  CAS  Google Scholar 

  • Manski. W., and Malinowski, K., 1980, Molecular evolution and subunit structure of cattle lens a-crystallin, J. Mol. Evol. 15: 219–230.

    Article  Google Scholar 

  • McDevitt, D. S., 1972, Presence of lateral eye lens crystalline in the median eye of the American chameleon, Science 175: 763–764.

    Article  PubMed  CAS  Google Scholar 

  • McKenna, M. C., 1975, Toward a phylogenetic classification of the Mammalia, In: Phylogeny of the Primates ( W. P. Luckett and F. S. Szalay, eds.). Plenum Press, New York. pp. 21–46.

    Chapter  Google Scholar 

  • Montgomery, G. G. (ed.). 1982, The Evolution and Ecology of Sloths, Anteaters, and Armadillos. Smithsonian Institution Press. Washington. D.C.

    Google Scholar 

  • Moore, G. W., Goodman, M., Callahan, C., Holmquist, R., and Moise, H., 1976. Stochastic versus augmented maximum parsimony method for estimating superimposed mutations. J. Mol. Biol. 105: 15–38.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, B., 1978. Pholidota and Tubulidentata. In: Evolution of African Mammals ( V. J. Maglio and H. B. S. Cooke. eds.). Harvard University Press, Cambridge. Massachusetts, pp. 268–278.

    Google Scholar 

  • Peacock, D., and Boulter, D., 1975, Use of amino acid sequence data in phylogeny and evaluation of methods using computer simulation, J. Mol. Biol. 95: 513–527.

    Article  PubMed  CAS  Google Scholar 

  • Polyak, S., 1957. The Vertebrate Visual System. University of Chicago Press, Chicago.

    Google Scholar 

  • Prager, E. M., and Wilson, A. C., 1978, Construction of phylogenetic trees for proteins and nucleic acids: Empirical evaluation of alternative matrix methods, J. Mol. Evol. 11: 129–142.

    Article  PubMed  CAS  Google Scholar 

  • Reddan, J. R., 1975, Molecular embryology of the lens, In: Cataract and Abnormalities of the Lens ( J. G. Bellows, ed.). Grune & Stratton. New York. pp. 29–42.

    Google Scholar 

  • Romer, A. S., 1966, Vertebrate Paleontology, 3rd ed, University of Chicago Press, Chicago. Romer, A. S., 1971, Unorthodoxies in reptilian phylogeny, Evolution 25: 103–112.

    Google Scholar 

  • Romero-Herrera, A. E., Lehmann, H., Joysey, K. A., and Friday, A. E., 1978. On the evolution of myoglobin, Phil. Trans. R. Soc. B 283: 61–163.

    Article  Google Scholar 

  • Shoshani, J., Goodman, M., and Prychodko, W., 1978, Cladistic analysis of Paenungulata by computer (Abstract), Am. Zool. 18: 601.

    Google Scholar 

  • Siezen, R. J., and Hoenders, H. J., 1979. The quaternary structure of bovine a-crystallin. Eur. J. Biochem. 96: 431–440.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, G. G., 1945, Principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85: 1–350.

    Google Scholar 

  • Simpson, G. G., 1975, Recent advances in methods of phylogenetic inference. In: Phvlogenv of the Primates ( W. P. Luckett and F. S. Szalay, eds.). Plenum Press, New York. pp. 3–20.

    Chapter  Google Scholar 

  • Szalay, F. S., 1977, Phylogenetic relationships and a classification of eutherian mammals, In: Major Patterns in Vertebrate Evolution ( M. K. Hecht, P. C. Goody, and B. Hecht, eds.), Plenum Press. New York, pp. 315–374.

    Google Scholar 

  • Tedford, R. H., 1976, Relationship of pinnipeds to other carnivores (Mammalia). Syst. Zool. 25: 363–374.

    Article  Google Scholar 

  • Thenius, E., 1969. Phylogenie der Mammalia. De Gruyter. Berlin.

    Google Scholar 

  • Van der Ouderaa, F. J., De Jong, W. W., and Bloemendal, H., 1973. The amino acid sequence of the aA, chain of bovine a-crystallin, Eur. J. Biochem. 39: 207–222.

    Article  PubMed  Google Scholar 

  • Van der Ouderaa, F. J., De Jong, W. W., Hilderink, A., and Bloemendal, H., 1974. The amino acid sequence of the aB, chain of bovine a-crystallin. Eur. J. Biochem. 25: 157–168.

    Article  Google Scholar 

  • Van Druten, H. A. M., Peer, N. G. M., Bos. F.A.B.H., and De Jong, W. W., 1978, Reciprocal amino acid substitutions in the evolution of homologous peptides, J. Theor. Biol. 73: 549–561.

    Google Scholar 

  • Van Valen, L., 1971. Adaptive zones and the orders of mammals, Evolution 25: 420–428.

    Article  Google Scholar 

  • Walls, G. L., 1963. The Vertebrate Eye and its Adaptive Radiation. Hafner. New York.

    Google Scholar 

  • Williams, L. A., and Piatigorsky, J., 1979. Comparative and evolutionary aspects of Scrystallin in the vertebrate lens. Eur. J. Biochem. 100: 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Wright, C. A. (ed.). 1974, Biochemical and Immunological Taxonomy of Animals. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

De Jong, W.W. (1982). Eye Lens Proteins and Vertebrate Phylogeny. In: Goodman, M. (eds) Macromolecular Sequences in Systematic and Evolutionary Biology. Monographs in Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4283-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4283-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4285-4

  • Online ISBN: 978-1-4684-4283-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics