Advertisement

Eye Lens Proteins and Vertebrate Phylogeny

  • Wilfried W. De Jong
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

The vertebrate eye lens has many unique properties which make it an attractive object for a variety of molecular biologic studies (Bloemendal, 1981). In fact the eye lens was one of the earliest targets of comparative immunologic and electrophoretic studies, and a wealth of data has been collected (Clayton, 1974; De Jong, 1981). By studying and comparing the lenses of present-day vertebrates we can hope to obtain information about the evolutionary changes that have taken place in structure and composition of the lens. This will extend our knowledge of protein evolutionary processes, and at the same time provides data that can be used to infer phylogenetic relationships between the compared species.

Keywords

Tree Shrew Minke Whale Lens Protein Spiny Dogfish Back Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhat, S. P., Jones, R. E., Sullivan, M. A., and Piatigorsky, J., 1980. Chicken lens crystalline DNA sequences show at least two 5-crystallin genes. Nature 284: 234–238.PubMedCrossRefGoogle Scholar
  2. Bloemendal, H. (ed.), 1981, Molecular and Cellular Biology of the Eye Lens, Wiley-Interscience, New York.Google Scholar
  3. Blundell, T., Lindley, P., Miller, L., Moss, D., Slingsby, C., Tickle, I., Turnell, B., and Wistow, G., 1981, The molecular structure and stability of the eye lens: X-ray analysis of y-crystallin II, Nature 289: 771–777.PubMedCrossRefGoogle Scholar
  4. Bours, J., 1976, Lsoelectric focusing in free solution, In: Lsoelectric Focusing (N. Catsimpoolas, ed.), Academic Press, New York, pp. 209–228.Google Scholar
  5. Bours, J., 1977, The crystallins of the aging lens from five species studied by various methods of thin-layer isoelectric focusing, In: Electiofocusing and lsotachophoresis ( B. J. Radola, and D. Graesslin, eds.), De Gruyter, Berlin, pp. 303–312.Google Scholar
  6. Brahma, S. K., 1978, Ontogeny of lens crystallins in marine cephalopods, J. Embrvol. Exp. Morphol. 46: 111–118.Google Scholar
  7. Butler, P. M., 1972, The problem of insectivore classification, In: Studies in Vertebrate Evolution ( K. A. Joysey and T. R. Kemps, eds.). Oliver and Boyd, Edinburgh, pp. 253–265.Google Scholar
  8. Clayton, R. M., 1970, Problems of differentiation in the vertebrate lens, In: Current Topics of Developmental Biology, Volume 5 ( A. A. Moscona and A. Monroy, eds.), Academic Press, New York, pp. 115–180.Google Scholar
  9. Clayton, R. M., 1974, Comparative aspects of lens proteins, In: The Eve, Volume 5 (H. Dayson and L. T. Graham, eds.), Academic Press, New York, pp. 399–494.Google Scholar
  10. Day, T. H., and Clayton, R. M., 1973. Intraspecific variation in lens proteins, Biochem. Genet. 8: 187–203.PubMedCrossRefGoogle Scholar
  11. Dayhoff, M. O. (ed.), 1978, Atlas of Protein Sequence and Structure, Volume 5, Supplement 3, National Biomedical Research Foundation, Washington. D.C.Google Scholar
  12. De Jong, W. W., 1981, Evolution of lens and crystallins, In: Molecular and Cellular Biology of the Eye Lens ( H. Bloemendal, ed.). Wiley-Interscience, New York. pp. 221–278.Google Scholar
  13. De Jong, W. W., and Goodman, M., 1982, Mammalian phylogeny studied by sequence analysis of eye lens protein a-crystallin, Z. Saugetierk.,in press.Google Scholar
  14. De Jong, W. W., and Terwindt, E. C., 1976. The amino acid sequences of the a-crystallin A chains of red kangaroo and Virginia opossum, Emu. J. Biochem. 67: 503–510.CrossRefGoogle Scholar
  15. De Jong, W. W., Terwindt, E. C., and Groenewoud, G., 1976, Subunit compositions of vertebrate a-crystallins, Comp. Biochem. Physiol. 55B: 49–56.Google Scholar
  16. De Jong, W. W., Gleaves, J. T., and Boulter, D., 1977, Evolutionary changes of a-crystallin and the phylogeny of mammalian orders, J. Mol. Evol. 10: 123–135.CrossRefGoogle Scholar
  17. De Jong, W. W., Zweers, A., and Goodman, M. 1980. Trends in the molecular evolution of a-crystallin, In: Protides of the Biological Fluids, Volume 28 ( H. Peeters, ed.), Pergamon Press, Oxford, pp. 161–164.Google Scholar
  18. De Jong, W. W., Leunissen, J. A. M., and Cuijpers, H. T., 1981. Primary structure of the major ß-chain of armadillo (Dasvpus novemcinctus) haemoglobin, Biochint. Biophvs. Acta 668: 57–62.Google Scholar
  19. De Jong, W. W., Zweers, A., Joysey, K. A., Gleaves, J. T., and Boulter, D., 1982, Protein sequence analysis applied to xenarthran and pholidote phylogeny. In: The Evolution and Ecology of Sloths, Anteaters, and Armadillos ( G. G. Montgomery, ed.), Smithsonian Institution Press, Washington, D.C.Google Scholar
  20. Dene, H., Goodman, M., and Romero-Herrera, A. E. 1980a. The amino acid sequence of elephant (Elephas maximus) myoglobin and the phylogeny of Proboscidea, Proc. R. Soc. Lond. B 207: 111–127.PubMedCrossRefGoogle Scholar
  21. Dene, H., Sazy, J., Goodman, M., and Romero-Herrera, A. E., 1980b. The amino acid sequence of alligator (Alligator mississippiensis) myoglobin. Biochim. Biophys. Acta 624: 397–408.PubMedGoogle Scholar
  22. Driessen, H. P. C., Herbrink, P., Bloemendal, H., and De Jong, W. W., 1980, The f3crystallin Bp chain is internally duplicated and homologous with y-crystallin. Exp. Ere Res. 31: 243–246.CrossRefGoogle Scholar
  23. Duke-Elder, S., 1958, System of Ophthalmology, Volume 1, The Eve in Evolution. H. Krimpton, London.Google Scholar
  24. Fitch, W. M., 1971, Rate of change of concomitantly variable codons. J. Mol. Evol. 1: 84–96.PubMedCrossRefGoogle Scholar
  25. Fitch, W. M., 1979, Cautionary remarks on using gene expression events in parsimony procedures, Syst. Zool. 28: 375–379.CrossRefGoogle Scholar
  26. Foulds, L. R., Penny, D., and Hendy, M. D., 1979. A general approach to proving the minimality of phylogenetic trees illustrated by an example with a set of 23 vertebrates, J. Mol. Evol. 13: 151–166.PubMedCrossRefGoogle Scholar
  27. Gardiner, B. G., Janvier, P., Patterson, C., Forey, P. L., Greenwood, P. H., Miles, R. S., and Jefferies, R. P. S., 1979, The salmon, the lungfish and the cow: A reply. Nature 277: 175–176.CrossRefGoogle Scholar
  28. Goodman, M., and Moore, G. W., 1977. Use of Chou–Fasman amino acid conformational parameters to analyze the organization of the genetic code, J. Mol. Evol. 10: 7–47.PubMedCrossRefGoogle Scholar
  29. Goodman, M., Czelusniak, J., Moore, G. W., Romero-Herrera, A. E., and Matsuda, G., 1979. Fitting the gene lineage into its species lineage, A parsimony strategy illustrated by cladograms constructed from globin sequences, Syst. Zool. 28: 132–163.CrossRefGoogle Scholar
  30. Harding, J. J., and Dilley, K. J., 1976, Structural proteins of the mammalian lens: A review. Exp. Eye Res. 22: 1–73.PubMedCrossRefGoogle Scholar
  31. Hoenders, H. J., and Bloemendal, H., 1981, Ageing of lens proteins, In: Molecular and Cellular Biology of the Eye Lens ( H. Bloemendal, ed.), Wiley-lnterscience, New York, pp. 279–326.Google Scholar
  32. Holmquist, R., 1978, A measure of the denseness of a phylogenetic network. J. Mol. Evol. 11: 225–231.PubMedCrossRefGoogle Scholar
  33. Kramps, J. A., De Man, B. M., and De Jong, W. W., 1977. The primary structure of the B2 chain of human a-crystallin. FEBS Lett. 74: 82–84.PubMedCrossRefGoogle Scholar
  34. Kuck, J. F. R., East, E. J., and Yu, N. T., 1976. Prevalence of a-helical form in avian lens proteins, Exp. Evc’ Res. 23: 9–14.CrossRefGoogle Scholar
  35. Manski, W., and Halbert, S. P., 1965, Immunochemistry of the lens with special reference to phylogeny. Invest. Ophthalmol. 4: 539–559.PubMedGoogle Scholar
  36. Manski, W., and Malinowski, K., 1978, The evolutionary sequence and quantities of different antigenic determinants of calf lens a-crystallin, Immunochemistry 15: 781–786.PubMedCrossRefGoogle Scholar
  37. Manski. W., and Malinowski, K., 1980, Molecular evolution and subunit structure of cattle lens a-crystallin, J. Mol. Evol. 15: 219–230.CrossRefGoogle Scholar
  38. McDevitt, D. S., 1972, Presence of lateral eye lens crystalline in the median eye of the American chameleon, Science 175: 763–764.PubMedCrossRefGoogle Scholar
  39. McKenna, M. C., 1975, Toward a phylogenetic classification of the Mammalia, In: Phylogeny of the Primates ( W. P. Luckett and F. S. Szalay, eds.). Plenum Press, New York. pp. 21–46.CrossRefGoogle Scholar
  40. Montgomery, G. G. (ed.). 1982, The Evolution and Ecology of Sloths, Anteaters, and Armadillos. Smithsonian Institution Press. Washington. D.C.Google Scholar
  41. Moore, G. W., Goodman, M., Callahan, C., Holmquist, R., and Moise, H., 1976. Stochastic versus augmented maximum parsimony method for estimating superimposed mutations. J. Mol. Biol. 105: 15–38.PubMedCrossRefGoogle Scholar
  42. Patterson, B., 1978. Pholidota and Tubulidentata. In: Evolution of African Mammals ( V. J. Maglio and H. B. S. Cooke. eds.). Harvard University Press, Cambridge. Massachusetts, pp. 268–278.Google Scholar
  43. Peacock, D., and Boulter, D., 1975, Use of amino acid sequence data in phylogeny and evaluation of methods using computer simulation, J. Mol. Biol. 95: 513–527.PubMedCrossRefGoogle Scholar
  44. Polyak, S., 1957. The Vertebrate Visual System. University of Chicago Press, Chicago.Google Scholar
  45. Prager, E. M., and Wilson, A. C., 1978, Construction of phylogenetic trees for proteins and nucleic acids: Empirical evaluation of alternative matrix methods, J. Mol. Evol. 11: 129–142.PubMedCrossRefGoogle Scholar
  46. Reddan, J. R., 1975, Molecular embryology of the lens, In: Cataract and Abnormalities of the Lens ( J. G. Bellows, ed.). Grune & Stratton. New York. pp. 29–42.Google Scholar
  47. Romer, A. S., 1966, Vertebrate Paleontology, 3rd ed, University of Chicago Press, Chicago. Romer, A. S., 1971, Unorthodoxies in reptilian phylogeny, Evolution 25: 103–112.Google Scholar
  48. Romero-Herrera, A. E., Lehmann, H., Joysey, K. A., and Friday, A. E., 1978. On the evolution of myoglobin, Phil. Trans. R. Soc. B 283: 61–163.CrossRefGoogle Scholar
  49. Shoshani, J., Goodman, M., and Prychodko, W., 1978, Cladistic analysis of Paenungulata by computer (Abstract), Am. Zool. 18: 601.Google Scholar
  50. Siezen, R. J., and Hoenders, H. J., 1979. The quaternary structure of bovine a-crystallin. Eur. J. Biochem. 96: 431–440.PubMedCrossRefGoogle Scholar
  51. Simpson, G. G., 1945, Principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85: 1–350.Google Scholar
  52. Simpson, G. G., 1975, Recent advances in methods of phylogenetic inference. In: Phvlogenv of the Primates ( W. P. Luckett and F. S. Szalay, eds.). Plenum Press, New York. pp. 3–20.CrossRefGoogle Scholar
  53. Szalay, F. S., 1977, Phylogenetic relationships and a classification of eutherian mammals, In: Major Patterns in Vertebrate Evolution ( M. K. Hecht, P. C. Goody, and B. Hecht, eds.), Plenum Press. New York, pp. 315–374.Google Scholar
  54. Tedford, R. H., 1976, Relationship of pinnipeds to other carnivores (Mammalia). Syst. Zool. 25: 363–374.CrossRefGoogle Scholar
  55. Thenius, E., 1969. Phylogenie der Mammalia. De Gruyter. Berlin.Google Scholar
  56. Van der Ouderaa, F. J., De Jong, W. W., and Bloemendal, H., 1973. The amino acid sequence of the aA, chain of bovine a-crystallin, Eur. J. Biochem. 39: 207–222.PubMedCrossRefGoogle Scholar
  57. Van der Ouderaa, F. J., De Jong, W. W., Hilderink, A., and Bloemendal, H., 1974. The amino acid sequence of the aB, chain of bovine a-crystallin. Eur. J. Biochem. 25: 157–168.CrossRefGoogle Scholar
  58. Van Druten, H. A. M., Peer, N. G. M., Bos. F.A.B.H., and De Jong, W. W., 1978, Reciprocal amino acid substitutions in the evolution of homologous peptides, J. Theor. Biol. 73: 549–561.Google Scholar
  59. Van Valen, L., 1971. Adaptive zones and the orders of mammals, Evolution 25: 420–428.CrossRefGoogle Scholar
  60. Walls, G. L., 1963. The Vertebrate Eye and its Adaptive Radiation. Hafner. New York.Google Scholar
  61. Williams, L. A., and Piatigorsky, J., 1979. Comparative and evolutionary aspects of Scrystallin in the vertebrate lens. Eur. J. Biochem. 100: 349–357.PubMedCrossRefGoogle Scholar
  62. Wright, C. A. (ed.). 1974, Biochemical and Immunological Taxonomy of Animals. Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Wilfried W. De Jong
    • 1
  1. 1.Department of BiochemistryUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations