Advertisement

Evolution of Mammalian Pancreatic Ribonucleases

  • Jaap J. Beintema
  • Johannes A. Lenstra
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

Pancreatic ribonucleases form a group of homologous proteins found in considerable quantities in the pancreas of a number of mammalian taxa and a few reptiles (Barnard, 1969; Beintema et al.,1973). The ribonuclease activity varies greatly in different species. Large quantities are found in ruminants and species that have a ruminant-like digestion, and in a number of species with cecal digestion (Fig. 1). Barnard (1969) proposed that an elevated level of pancreatic ribonuclease is the response to the necessity of digesting large amounts of ribonucleic acid derived from the microflora of the stomach of ruminants. This explanation agrees with the observation of Dobson and Wilson (1980) that the level of stomach lysozyme is also elevated in several ruminants and species that have a ruminant-like digestion.

Keywords

Parsimonious Tree Fallow Deer Whalebone Whale Pancreatic Ribonuclease River Buffalo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnard, E. A.. 1969, Biological function of pancreatic ribonuclease, Nature 221: 340–344.PubMedCrossRefGoogle Scholar
  2. Beintema, J. J., 1980, Primary structures of pancreatic ribonucleases from Bovidae: Impala, Thomson’s gazelle, nilgai and water buffalo, Biochim. Biophys. Acta 621: 89–103.PubMedGoogle Scholar
  3. Beintema, J. J., and Lenstra, J. A., 1980, Nuclear magnetic resonance study of a hybrid of bovine and rat ribonuclease, Int. J. Pe pt. Protein Res. 15: 455–458.CrossRefGoogle Scholar
  4. Beintema, J. J., Scheffer, A. J., van Dijk, H., Welling, G. W., and Zwiers, H., 1973, Pancreatic ribonuclease: Distribution and comparisons in mammals, Nature New Biol. 241: 76–78.PubMedGoogle Scholar
  5. Beintema, J. J., Gaastra, W., Scheffer, A. J., and Welling, G. W., 1976, Carbohydrate in pancreatic ribonucleases, Eur. J. Biochem. 63: 441–448.PubMedCrossRefGoogle Scholar
  6. Beintema, J. J., Gaastra, W., Lenstra, J. A., Welling, G. W., and Fitch, W. M., 1977, The molecular evolution of pancreatic ribonuclease, J. Mol. Evol. 10: 49–71.PubMedCrossRefGoogle Scholar
  7. Beintema, J. J., Gaastra. W., and Munniksma, J., 1979, Primary structure of pronghorn pancreatic ribonuclease: close relationship between giraffe and pronghorn, J. Mol. Evol. 13: 305–316.PubMedCrossRefGoogle Scholar
  8. Beintema, J. J., Knol, G., and Martena, B., 1982. The primary structures of pancreatic ribonucleases from African porcupine and casiragua, two hystricomorph rodent species, Biochim. Biophys. Acta,in press.Google Scholar
  9. Blackburn, P., and Gavilanes. J. G., 1980, The role of lysine-41 of ribonuclease A in the interaction with RNase inhibitor from human placenta, J. Biol. Chun. 255: 10959–10965.Google Scholar
  10. Blackburn, P., and Jailkhani, B. L., 1979, Ribonuclease inhibitor from human placenta: Interaction with derivatives of ribonuclease A, J. Biol. Chem. 254: 12488–12493.PubMedGoogle Scholar
  11. Carsana, A., Furia, A., Gallo, A., Beintema, J. J., and Libonati. M., 1981, Degradation of double-stranded RNA by glycosylated ribonucleases, Biochim. Biophys. Acta 654: 77–85.PubMedGoogle Scholar
  12. Dayhoff, M. O., Eck, R. V., and Park, C. M., 1972, A model of evolutionary change in proteins, in: Atlas of Protein Sequence and Structure. Volume V (M. O. Dayhoff. ed.). National Biomedical Research Foundation, Washington. D.C. pp. 89–99.Google Scholar
  13. Dickerson, R. E., and Geis, I., 1969, The Structure and Action of Proteins. Benjamin, Menlo Park, California.Google Scholar
  14. Dobson, D. E., and Wilson, A. C., 1980, Lysozyme regulation and the origin of the ruminant lifestyle, In: Abstracts 2nd International Congress of Systematic and Evolutionary Biology, Vancouver, Canada, p. 183.Google Scholar
  15. Fitch, W. M., 1976, The molecular evolution of cytochrome c in eukaryotes, J. Mol. Evol. 8: 13–40.PubMedCrossRefGoogle Scholar
  16. Fitch, W. M., 1977, The phyletic interpretation of macromolecular sequence information: Simple methods, In: Major Patterns in Vertebrate Evolution ( M. K. Hecht, P. C. Goody, and B. M. Hecht, eds.), Plenum Press, New York, pp. 169–204.Google Scholar
  17. Gaastra, W., Groen, G., Welling, G. W., and Beintema, J. J., 1974, The primary structure of giraffe pancreatic ribonuclease, FEBS Lett. 41: 227–232.PubMedCrossRefGoogle Scholar
  18. Gaastra, W., Welling, G. W., and Beintema, J. J., 1978, The amino acid sequence of kangaroo pancreatic ribonuclease, Erin. J. Biochem. 86: 209–217.CrossRefGoogle Scholar
  19. Goodman, M., 1981, Decoding the pattern of protein evolution. Prog. Biophvs. Mol. Biol. 37: 105–164.CrossRefGoogle Scholar
  20. Havinga, J., and Beintema, J. J., 1980, Pancreatic ribonucleases of mammals with ruminant-like digestion: Amino-acid sequences of hippopotamus and sloth ribonucleases. Ear. J. Biochem. 110: 131–142.CrossRefGoogle Scholar
  21. Hofmann, R. R., 1973, The Ruminant Stomach-Stomach Structure and Feeding Habits of East African Game Ruminants (T. R. Odhiambo, ed.), East African Literature Bureau, Nairobi.Google Scholar
  22. Hofmann, R. R., 1976, Zur adaptiven Differenzierung der Wiederkäuer; Untersuchungsergebnisse auf der Basis der vergleichenden funktionellen Anatomie des Verdauungstrakts, Prakt. Tierartz 6: 351–358.Google Scholar
  23. Hofmann, R. R., Geiger, G., and König. R., 1976, Vergleichend-anatomische Untersuchungen an der Vormagen-schleimhaut von Rehwild und Rotwild. Z. Soeugetierk. 41: 167–193.Google Scholar
  24. Janis, C., 1976, The evolutionary strategy of the Equidae and the origins of rumen and cecal digestion, Evolution 30: 757–774.CrossRefGoogle Scholar
  25. Jekel, P. A., Sips, H. J., Lenstra, J. A., and Beintema, J. J., 1979, The amino acid sequence of hamster pancreatic ribonuclease, Biochimie 61: 827–839.PubMedCrossRefGoogle Scholar
  26. Langer, P., 1974, Stomach evolution in the Artiodactyla, Mammalia 38: 295–314.CrossRefGoogle Scholar
  27. Langley, C. H., and Fitch, W. M., 1974, An examination of the constancy of the rate of molecular evolution, J. Mol. Evol. 3: 161–177.PubMedCrossRefGoogle Scholar
  28. Lenstra, J. A., and Beintema, J. J., 1979, The amino acid sequence of mouse pancreatic ribonuclease; Extremely rapid evolutionary rates of the myomorph rodent ribonucleases, Eur. J. Biochem. 98: 399–408.PubMedCrossRefGoogle Scholar
  29. Lenstra, J. A., Hofsteenge, J., and Beintema, J. J., 1977. Invariant features of the structure of pancreatic ribonuclease: A test of different predictive methods, J. Mol. Biol. 109: 185–193.PubMedCrossRefGoogle Scholar
  30. Libonati, M., Furia, A., and Beintema, J. J., 1976, Basic charges on mammalian ribonuclease molecules and the ability to attack double-stranded RNA, Eur. J. Biochem. 69: 445–451.CrossRefGoogle Scholar
  31. Lim, V., 1974, Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure, J. Mol. Biol. 88: 857–872PubMedCrossRefGoogle Scholar
  32. Lim, V., 1974, Algorithms for prediction of a-helical and β-structural regions in globular proteins, J. Mol. Biol. 88: 873–894.CrossRefGoogle Scholar
  33. Migchelsen, C.. and Beintema, J. J., 1973, Protein nuclear magnetic resonance studies of histidine residues in rat and other rodent pancreatic ribonucleases. Effects of pH and inhibitors, J. Mol. Biol. 79: 25–38.PubMedCrossRefGoogle Scholar
  34. Moir, R. J., 1968, Ruminant digestion and evolution, In: Handbook of Physiology-Section 6: Alimentary Canal, Volume V ( C. F. Code, ed.), American Physiological Society, Washington, D.C.. pp. 2673–2694.Google Scholar
  35. Morris, D., 1965, The Mammals, Hodder and Stoughton, London.Google Scholar
  36. Richards, F. M., and Wyckoff, H. W., 1971, Bovine pancreatic ribonuclease. In: The Enzymes, 3rd ed., Volume 4 ( P. D. Boyer, ed.), Academic Press, New York and London, pp. 647–807.Google Scholar
  37. Romer, A. S., 1966, Vertebrate Paleontology. 3rd ed., The University of Chicago Press, Chicago, pp. 285, 309.Google Scholar
  38. Romer, A. S., 1968, Notes and Comments on Vertebrate Paleontology. The University of Chicago Press, Chicago.Google Scholar
  39. Ronda, G. J., Gaastra, W., and Beintema. J. J., 1976, Steady-state enzyme kinetics of the pancreatic ribonucleases from five mammalian species, Biochim. Biophys. Acta 429: 853–859.PubMedGoogle Scholar
  40. Simpson, G. G., 1945, Bull. Am. Mus. Nat. Hist. 85: 1–350.Google Scholar
  41. Van de Veen, H. E., 1979, Food selection and habitat use in the red deer (Cervus Elaphus L.), Thesis, Groningen.Google Scholar
  42. Viret, J., 1961, Traité de Paléontologie. Part VI, Volume I, p. 1002.Google Scholar
  43. Vorontsov, N. N., 1960, The ways of food specialization and evolution of the alimentary system in Muzoidea, presented at the Symposium Theriologicum in Brünn, In: Proceedings of the International Symposium on Methods in Mammalian Investigations, Prague, pp. 360–377.Google Scholar
  44. Welling, G. W., Lenstra, J. A., and Beintema, J. J., 1976, Activity and antigenicity of ribonuclease hybrids, FEBS Lett. 63: 89–94.PubMedCrossRefGoogle Scholar
  45. Zwiers, H., Scheffer, A. J., and Beintema, J. J., 1973, Amino-acid sequences of red-deer and roe-deer pancreatic ribonucleases, Eur. J. Biochem. 36: 569–574.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Jaap J. Beintema
    • 1
  • Johannes A. Lenstra
    • 1
  1. 1.Biochemisch LaboratoriumGroningenThe Netherlands

Personalised recommendations