Advertisement

Investigations on Renal Prostaglandins by Gas Chromatography—Mass Spectrometry

  • Ingrid W. Reimann
  • Christine Fischer
  • Bernd Rosenkranz
  • Jürgen C. Frölich

Abstract

The large number of arachidonic acid metabolites present in the mammalian kidney and urine require highly sensitive and specific analytical methods for the determination of very small amounts of chemically closely related prostanoids. Gas chromatography—mass spectrometry (GCMS) combines a high degree of specificity and sensitivity, especially if preceded by high-performance liquid chromatographic (HPLC) purification and preseparation of biological samples. A further improvement of sensitivity is added by using glass capillary columns instead of the “classical,” standard packed columns. Elucidation of the role of arachidonic acid metabolites in renal physiology and pathophysiology necessitates both a highly sophisticated analytical method as well as special marker prostaglandins (PGs) to serve as indicators for the different renal functions.

Keywords

Nephrogenic Diabetes Insipidus Renin Release Arachidonic Acid Metabolite Central Diabetes Insipidus Renal Prostaglandin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crowshaw K, Szlyk JZ: Distribution of prostaglandins in rabbit kidney. Biochem J 116: 421–424, 1970.PubMedGoogle Scholar
  2. 2.
    Whorton AR, Smigel M, Oates JA, et al: Regional differences in prostacyclin formation by the kidneyProstacyclin is a major prostaglandin of renal cortex. Biochim Biophys Acta 529: 176–180, 1978.PubMedGoogle Scholar
  3. 3.
    Morrison AR, Thornton F, Blumberg A, et al: Thromboxane A2 is the major arachidonic acid metabolite of human cortical hydronephrotic tissue. Prostaglandins 21: 471–481, 1981.PubMedCrossRefGoogle Scholar
  4. 4.
    Granström E: On the metabolism of prostaglandin E1 in man. Prostaglandins and related factors. Prog Biochem Pharmacol 3: 89–93, 1967.Google Scholar
  5. 5.
    Hamberg M, Samuelsson B: On the metabolism of prostaglandins E1 and E2 in man. J Biol Chem 246: 6713–6721, 1971.Google Scholar
  6. 6.
    Frölich JC, Wilson TW, Sweetman BJ, et al: Urinary prostaglandins—Identification and origin. J Clin Invest 55: 763–770, 1975.PubMedCrossRefGoogle Scholar
  7. 7.
    Williams WM, Frölich JC, Nies AS, et al: Urinary prostaglandins: Site of entry into renal tubular fluid. Kidney Im 11: 256–260, 1977.CrossRefGoogle Scholar
  8. 8.
    Hamberg M: Inhibition of prostaglandin synthesis in man. Biochem Biophys Res Commun 49: 720–726, 1972.PubMedCrossRefGoogle Scholar
  9. 9.
    Seyberth HW, Sweetman BJ, Frölich JC, et al: Quantification of the major urinary metabolite of the E prostaglandins by mass spectrometry: Evaluation of the method’s application to clinical studies. Prostaglandins 11: 381–397, 1976.PubMedCrossRefGoogle Scholar
  10. 10.
    Orloff J, Handler JS, Bergstrom S: Effect of PGE1 on permeability response of toad bladder to vasopressin, theophylline and adenosine 3’,5’-monophosphate Nature 205: 397–398, 1965.PubMedCrossRefGoogle Scholar
  11. 11.
    Grantham JJ, Orloff J: Effect of PGE1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3’,5’-monophosphate and theophylline. J Clin Invest 47: 1154–1161, 1968.PubMedCrossRefGoogle Scholar
  12. 12.
    Anderson RJ, Berl T, McDonald KM, et al: Evidence for an in vivo antagonism between vasopressin and prostaglandin in the mammalian kidney. J Clin Invest 56: 420–426, 1975.PubMedCrossRefGoogle Scholar
  13. 13.
    Valtin H, Sawyer WH, Sokol HW: Neurohypophyseal principles in rats homozygous and heterozygous for hypothalamic diabetes insipidus. Endocrinology 77: 701–706, 1965.PubMedCrossRefGoogle Scholar
  14. 14.
    Walker LA, Whorton AR, Smigel M, et al: Antidiuretic hormone increases renal prostaglandin synthesis in vivo. Am J Physiol 235: F180 - F185, 1978.PubMedGoogle Scholar
  15. 15.
    Fejes-Toth G, Filep J, Mann V: The effect of antidiuretic hormone on urinary prostaglandin excretion in the conscious dog, in Internal Symposium on Arachidonic Acid Metabolites and the Kidney, Rome, June 4–5, 1981. Google Scholar
  16. 16.
    Düsing R, Overlack A, Kramer HJ: The effect of polydipsia on renal function and urinary prostaglandin and kallikrein excretion. Kidney Im 16: 871, 1979.Google Scholar
  17. 17.
    Düsing R, Herrmann R, Kramer HJ: The renal prostaglandin system in central diabetes insipidus: Effects of desamino-arginine vasopressin. Adv Prost Thromb Res 7: 1111–1113, 1980.Google Scholar
  18. 18.
    Fichman F, Zia P, Zipser R: Contribution of urine volume to the elevated prostaglandin E in Banter’s syndrome and central and nephrogenic diabetes insipidus. Adv Prost Thromb Res 7: 1193–1197, 1980.Google Scholar
  19. 19.
    Krakoff LR, DeGuia D, Vlachakis N, et al: Effect of sodium balance on arterial blood pressure and renal responses to PGA, in man. Circ Res 33: 539–546, 1973.PubMedGoogle Scholar
  20. 20.
    Frölich JC, Sweetman BJ, Carr K, et al: Prostaglandin synthesis in rabbit renal medulla. Life Sci 17: 1105–1112, 1975.PubMedCrossRefGoogle Scholar
  21. 21.
    Data JL, Gerber JG, Crump WJ, et al: The prostaglandin system: A role in baro-receptor control of renin release. Circ Res 42: 454–458, 1978.PubMedGoogle Scholar
  22. 22.
    Whorton AR, Misano K, Hollifield J, et al: Prostaglandins and renin release: II. Stimulation of renin release from rabbit renal cortical slices by PGI2. Prostaglandins 14: 1095–1104, 1978.CrossRefGoogle Scholar
  23. 23.
    Frölich JC, Whorton AR, Walker L, et al: Renal prostaglandins: Regional differences in synthesis and role in renin release and ADH action, in Proceedings of the Seventh International Congress of Nephrology, Montreal, Basel, S. Karger, 1978, pp 107–114.Google Scholar
  24. 24.
    Green K, Hamberg M, Samuelsson B, et al: Measurement of prostaglandins, thromboxanes, prostacyclin and their metabolites by gas liquid chromatography-mass spectrometry, in Frölich JC (ed): Methods in Prostaglandin Research. New York, Raven Press, 1978, pp 39–94.Google Scholar
  25. 25.
    Rosenkranz B, Fischer C, Weimer KE, et al: Metabolism of prostacyclin and 6-keto-prostaglandin Fla in man. J Biol Chem 255: 10194–10198, 1980.PubMedGoogle Scholar
  26. 26.
    Rosenblatt SG, Patak RV, Lifschitz MD: Organic acid secretory pathway and urinary excretion of prostaglandin E in the dog. Am J Physiol 235: F473 - F479, 1978.Google Scholar
  27. 27.
    Kitajima W, Rosenkranz B, Frölich JC: Renal excretion of 6-keto-PGFI,. Annual Meeting of the German Nephrological Society, Würzburg, 1980.Google Scholar
  28. 28.
    Rosenkranz B, Kitajima W, Frölich JC: Relevance of urinary 6-keto-prostaglandin Fla determination. Kidney Int 19: 755–759, 1981.PubMedCrossRefGoogle Scholar
  29. 29.
    Folkert VW, Schlondorf D: Prostaglandin synthesis in isolated glomeruli. Prostaglandins 17: 79–86, 1979.PubMedCrossRefGoogle Scholar
  30. 30.
    Hassid A, Konieczkowski M, Dunn MJ: Prostaglandin synthesis in isolated rat kidney glomeruli. Proc Natl Acad Sci USA 76: 1155–1159, 1979.PubMedCrossRefGoogle Scholar
  31. 31.
    Grenier FC, Smith WC: Formation of 6-keto-PGF1a by collecting tubule cells isolated from rabbit renal papillae. Prostaglandins 16: 759–772, 1978.CrossRefGoogle Scholar
  32. 32.
    Fischer C, Rosenkranz B, Frölich JC: Analysis of prostanoids and their metabolites by gas chromatography-mass spectrometry, in Boeynaems JM, Herman AG (ed): Prostaglandins, Prostacyclin and Thromboxanes Measurement. The Hague, Martinus Nijhoff, 1980, pp 82–101.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Ingrid W. Reimann
    • 1
  • Christine Fischer
    • 1
  • Bernd Rosenkranz
    • 1
  • Jürgen C. Frölich
    • 1
  1. 1.Dr. Margarete Fischer-Bosch-Institut für Klinische PharmakologieStuttgartFederal Republic of Germany

Personalised recommendations