A Possible Role of Arachidonic Acid Metabolites in Essential Hypertension

  • P. C. Weber
  • W. Siess
  • R. Lorenz
  • H. Witzgall
  • B. Scherer


The level of arterial blood pressure is set by complex interactions of several mechanisms which influence both blood flow in and resistance of the vascular system. An imbalance which favors those that elevate vascular resistance or extracellular volume will result in hypertension. Such alterations may include increased activity of the adrenergic nervous system or the rennin—angiotensin system or excessive secretion of mineralocorticoids. Of equal importance may be a reduced activity of blood pressure-lowering factors, such as prostaglandins and the kallikrein—kinin system. A deficiency of the vasodepressor systems may lead to hypertension, even without an increase in the activity of the blood pressure-elevating systems. The contribution of prostaglandins for the development of hypertension and hypertensive vascular disease may be based on an inherent abnormality of the prostaglandin system, as well as on the effects of major risk factors such as dietary intake of sodium and fat on prostaglandin formation.


Essential Hypertension Renin Release Arachidonic Acid Metabolite Renin Secretion Prostaglandin Endoperoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lake CR, Ziegler MG, Coleman MD, et al: Age-adjusted plasma norepinephrine levels are similar in normotensive and hypertensive subjects. N Engl J Med 296: 208–209, 1977.PubMedCrossRefGoogle Scholar
  2. 2.
    Philipp T, Distler A, Cordes U: Sympathetic nervous system and blood pressure control in essential hypertension. Lancet 2: 959–963, 1978.PubMedCrossRefGoogle Scholar
  3. 3.
    Schalekamp MADH, Schalekamp-Kuyken MPA, Birkenhäger WH: Abnormal renal haemodynamics and renin suppression in hypertensive patients. Clin Sci 38: 101–110, 1970.PubMedGoogle Scholar
  4. 4.
    Case DB, Casarella WJ, Laragh JH, et al: Renal cortical blood flow and angiography in low-and normal-renin essential hypertension. Kidney 1nt 13: 236–244, 1978.CrossRefGoogle Scholar
  5. 5.
    Moncada S, Vane JR: The role of prostacyclin in vascular tissue. Fed Proc 38: 66–71, 1979.PubMedGoogle Scholar
  6. 6.
    Nasjletti A, Malik KU: Relationships between the kallikrein—kinin and prostaglandin systems. Life Sci 25: 99–110, 1979.PubMedCrossRefGoogle Scholar
  7. 7.
    Hamberg M, Svensson J, Samuelsson B: Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Nat Acad Sci USA 72: 2994–2998, 1975.PubMedCrossRefGoogle Scholar
  8. 8.
    Oelz O, Oelz R, Knapp HR, et al: Biosynthesis of prostaglandin D2: Formation by human platelets. Prostaglandins 13: 225–234, 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Dunn MJ, Hood VL: Prostaglandins and the kidney. Am J Physiol 233: F169 - F184, 1977.Google Scholar
  10. 10.
    Weber PC, Scherer B, Siess W, et al: Formation and action of prostaglandins in the kidney. Klin Wochenschr 57: 1021–1029, 1979.PubMedCrossRefGoogle Scholar
  11. 11.
    Samuelsson B, Goldyne M, Granström M, et al: Prostaglandins and thromboxane. Ann Rev Biochem 47: 997–1029, 1978.PubMedCrossRefGoogle Scholar
  12. 12.
    Weber PC, Siess W, Scherer B: Prostaglandins in cardiovascular and renal function: Biochemical, physiological and clinical findings. Klin Wochenschr 57: 425–144, 1979.PubMedCrossRefGoogle Scholar
  13. 13.
    McGiff JC, Crowshaw K, Terragno NA et al: Release of a prostaglandin-like substance into renal venous blood in response to angiotensin II. Circ Res 26 and 27, Suppl I: 121–130, 1970.Google Scholar
  14. 14.
    Levine L, Moskowitz MA: a-and 3-adrenergic stimulation of arachidonic acid metabolism in cells in culture. Proc Nat Acad Sci USA 76: 6632–6636, 1979.PubMedCrossRefGoogle Scholar
  15. 15.
    Zusman RM, Keiser HR: Prostaglandin E2 biosynthesis by rabbit renomedullary interstitial cells in tissue culture. J Biol Chem 252: 2069–2071, 1977.PubMedGoogle Scholar
  16. 16.
    Dunn MJ, Liard JF, Dray F: Basal and stimulated rates of renal secretion and excretion of prostaglandin E2, Fa, and 13,14-dihydro-15-keto Fa in the dog. Kidney 1nt 13: 136–143, 1978.CrossRefGoogle Scholar
  17. 17.
    Bills TK, Smith JB, Silver MJ: Metabolism of 14C arachidonic acid by human platelets. Biochim Biophys Acta 424: 303–314, 1976.PubMedGoogle Scholar
  18. 18.
    Vane JR, McGiff JC: Possible contributions of endogenous prostaglandins to the control of blood pressure. Circ Res 36 and 37, Suppl. 1: I68 - I75, 1975.Google Scholar
  19. 19.
    Hedquist P: Prostaglandin action on transmitter release at adrenergic neuroeffector junctions, in Samuelsson B, Paoletti R (eds): Advances in Prostaglandin and Thromboxane Research. New York, Raven Press, 1976, vol. 1, pp 357–363.Google Scholar
  20. 20.
    Schnermann J, Weber PC: A role of renal cortical prostaglandins in the control of glomerular filtration rate in rat kidneys, in Samuelsson B, Ramwell PW, Paoletti R, (eds.) Advances in Prostaglandin and Thromboxane Research. New York, Raven Press, 1980, Vol. 7, pp. 1047–1052.Google Scholar
  21. 21.
    Weber PC, Larsson C, Änggard E, et al: Stimulation of renin release from rabbit renal cortex by arachidonic acid and prostaglandin endoperoxides. Circ Res 39: 868–874, 1976.Google Scholar
  22. 22.
    Whorton AR, Misono K, Hollifield J, et al: Stimulation of renin release from rabbit renal cortical slices by PGI2. Prostaglandins 14: 1095–1104, 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Weber PC, Larsson C, Scherer B: Prostaglandin E2–9-keto-reductase as a mediator of salt intake-related prostaglandin—renin interaction. Nature 266: 65–66, 1977.CrossRefGoogle Scholar
  24. 24.
    Davila D, Davila T, Oliw E, et al: The influence of dietary sodium on urinary prostaglandin excretion. Acta Physiol Scand 103: 100–106, 1977.CrossRefGoogle Scholar
  25. 25.
    Abe K, Yasujima M, Irokawa N, et al: The role of intrarenal vasoactive substances in the pathogenesis of essential hypertension. Clin Sci Mol Med 55: 363s - 366s, 1978.Google Scholar
  26. 26.
    Tan SY, Sweet P, Mulrow PJ: Impaired renal production of prostaglandin E2: A newly identified lesion in human essential hypertension. Prostaglandins 15: 139–149, 1978.PubMedCrossRefGoogle Scholar
  27. 27.
    Weber PC, Scherer B, Held E, et al: Urinary prostaglandins and kallikrein in essential hypertension. Cli Sci 57: 259s - 261s, 1979.Google Scholar
  28. 28.
    Grose JH, Lebel M, Gbeassor FM: Diminished urinary prostacyclin metabolite in essential hypertension. Clin Sci 59: 121s - 123s, 1980.PubMedGoogle Scholar
  29. 29.
    Fujita T, Henry WL, Banter FC, et al: Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med 69: 334–344, 1980.PubMedCrossRefGoogle Scholar
  30. 30.
    Scherer B, Weber PC: Time-dependent changes in prostaglandin excretion in response to frusemide in man. Clin Sci 56: 77–81, 1978.Google Scholar
  31. 31.
    Weber PC, Scherer B, Larsson C: Increase of free arachidonic acid by furoeemide in man as the cause of prostaglandin and reran release. Eur J Pharmacol 41: 329–332, 1977.PubMedCrossRefGoogle Scholar
  32. 32.
    Ciabattoni G, Pugliese F, Cinotti GA, et al: Characterization of furosemide-induced activation of the renal prostaglandin system. Eur J Pharmacol 60: 181–187, 1979.PubMedCrossRefGoogle Scholar
  33. 33.
    Gerber JG, Nies AS: Interaction between furosemide-induced renal vasodilatation and the prostaglandin system. Prost Med 6: 135–145, 1981.CrossRefGoogle Scholar
  34. 34.
    Lukacsko P, Messina EJ, Kaley G: Reduced hypotensive action of arachidonic acid in the spontaneously hypertensive rat. Hypertension 2: 657–663, 1980.PubMedGoogle Scholar
  35. 35.
    Colina-Chourio J, McGiff J, Nasjletti A: Effect of indomethacin on blood pressure in the normotensive unanaesthetized rabbit: Possible relation to prostaglandin synthesis inhibition. Clin Sci 57: 359–365, 1979.PubMedGoogle Scholar
  36. 36.
    Wennmalm A: Influence of indomethacin on the systemic and pulmonary vascular resistance in man. Clin Sci Mol Med 54: 141–145, 1978.Google Scholar
  37. 37.
    Negus P, Tannen RL, Dunn MJ: Indomethacin potentiates the vasoconstrictor actions of angiotensin II. Prostaglandins 12: 175–180, 1976.PubMedCrossRefGoogle Scholar
  38. 38.
    Lorenz R, Spengler U, Siess W, et al: Einfluß veränderter Prostaglandin-Bildung auf die sympathoadrenerge Aktivität und die Blutdruckregulation. Verh Dtsch Ges Inn Med 86: 692–694, 1980.Google Scholar
  39. 39.
    Ylitalo P, Pitkäjärvi T, Metsä-Ketelä T, et al: The effect of inhibition of prostaglandin synthesis on plasma renin activity and blood pressure in essential hypertension. Prost Med 1: 479–488, 1978.CrossRefGoogle Scholar
  40. 40.
    O’Brien PMS, Broughton-Pipkin F: The effects of deprivation of prostaglandin precursors on vascular sensitivity to angiotensin II and on the kidney in the pregnant rabbit. Br J Pharmacol 65: 29–34, 1979.PubMedGoogle Scholar
  41. 41.
    Rosenthal J, Simone PG, Silbergleit A: Effects of prostaglandin deficiency on natriuresis, diuresis, and blood pressure. Prostaglandins 5: 435–440, 1974.PubMedCrossRefGoogle Scholar
  42. 42.
    Schoene NW, Reeves VB, Ferretti A: Effects of dietary linoleic acid on the biosynthesis of PGE2 and PGF20, in kidney medullae in spontaneously hypertensive rats, in Samuelsson B, Ramwell PW, Paoletti R (eds): Advances in Prostaglandin and Thromboxane Research. New York, Raven Press, 1980, vol 8, pp 1790–1792.Google Scholar
  43. 43.
    Comberg HU, Heyden S, Hames CG, et al: Hypotensive effect of dietary prostaglandin precursor in hypertensive man. Prostaglandins 15: 193–197, 1978.CrossRefGoogle Scholar
  44. 44.
    Ahnfelt-R$nne I, Arrigoni-Martelli E: Increased PGF2a, synthesis in renal papilla of spontaneously hypertensive rats. Biochem Pharmacol 27: 2363–2367, 1978.Google Scholar
  45. 45.
    Shibouta Y, Inada Y, Terashita Z, et al: Angiotensin-Il-stimulated release of thromboxane A2 and prostacyclin (PGI2) in isolated, perfused kidneys of spontaneously hypertensive rats. Biochem Pharmacol 28: 3601–3609, 1979.PubMedCrossRefGoogle Scholar
  46. 46.
    Chrysant SG, Townsend SM, Morgan PR: The effects of salt and meclofenamate administration on the hypertension of spontaneously hypertensive rats. Clin Hypertens 1 (3): 381–391, 1978.CrossRefGoogle Scholar
  47. 47.
    Nekrasova AA, Sokolova RN, Levitskaya Y, et al: Prostaglandins of blood vessels and vessel reactivity in rats receiving sodium chloride and indomethacin, in Samuelsson B, Paoletti R, (eds): Advances in Prostaglandin and Thromboxane Research. New York, Raven Press, 1980, vol. 7, pp 1139–1143.Google Scholar
  48. 48.
    Mullane KM, Moncada S: Prostacyclin mediates the potentiated hypotensive effect of bradykiniri following captopril treatment. Eur J Pharmacol 66: 355–365, 1980.CrossRefGoogle Scholar
  49. 49.
    Moore TJ, Crantz FR, Hollenberg NK, et al: Contribution of prostaglandins to the antihypertensive action of captopril in essential hypertension. Hypertension 3 (2): 168–173, 1981.PubMedGoogle Scholar
  50. 50.
    Watkins J, Abbott EC, Hensby CN, et al: Attenuation of hypotensive effect of propranolol and thiazide diuretics by indomethacin. Br Med J 281: 702–705, 1980.PubMedCrossRefGoogle Scholar
  51. 51.
    Swartz SL, Williams GH: Angiotensin converting enzyme inhibition and prostaglandins. Am J Cardiol 49: 1405–1409, 1982.PubMedCrossRefGoogle Scholar
  52. 52.
    Witzgall H, Hirsch F, Scherer B et al: Acute hemodynamic and hormonal effects of captopril are diminished by indomethacin, Clin Sci 62: 611–615, 1982.PubMedGoogle Scholar
  53. 53.
    Webster J, Dollery CT, Hensby CN: Circulating prostacyclin concentrations may be increased by bendrofluazide in patients with essential hypertension. Clin Sci 59: 125s - 128s, 1980.PubMedGoogle Scholar
  54. 54.
    Luderer JR, Demers LM, Janson RW, et al: The effect of hydralazine on arachidonic acid metabolism in isolated, washed human platelets. Res Commun Chem Pathol Pharmacol 28 (1): 43–52, 1980.PubMedGoogle Scholar
  55. 55.
    Smith-Barbaro PA, Quinn MR, Fisher H, et al: Pressor effects of fat and salt in rats (40972). Proc Soc Exp Biol Med 165: 283–290, 1980.Google Scholar
  56. 56.
    Hollander W: Role of hypertension in atherosclerosis and cardiovascular disease. Am J Cardiol 38: 786–800, 1976.PubMedCrossRefGoogle Scholar
  57. 57.
    Dyerberg J, Bang HO, Stoffersen E, et al: Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet 2: 117–119, 1978.PubMedCrossRefGoogle Scholar
  58. 58.
    Siess W, Roth P, Scherer B, et al: Platelet-membrane fatty acids, platelet aggregation, and thromboxane formation during a mackerel diet. Lancet 1: 441–444, 1980.PubMedCrossRefGoogle Scholar
  59. 59.
    Kernoff PBA, Willis AL, Stone KJ, et al: Antithrombotic potential of dihomo-gamma-linolenic acid in man. Br Med J 2: 1441–1444, 1977.PubMedCrossRefGoogle Scholar
  60. 60.
    Needleman P, Whitaker MO, Wyche A, et al: Manipulation of platelet aggregation by prostaglandins and their fatty acid precursors: Pharmacological basis for a therapeutic approach. Prostaglandins 19: 165–181, 1980.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • P. C. Weber
    • 1
  • W. Siess
    • 1
  • R. Lorenz
    • 1
  • H. Witzgall
    • 1
  • B. Scherer
    • 1
  1. 1.Medizinische Klinik Innenstadt der UniversitätMunichFederal Republic of Germany

Personalised recommendations