Genetic Analysis of Hybrid Cells Using Isozyme Markers as Monitors of Chromosome Segregation

  • Stephen J. O’Brien
  • Janice M. Simonson
  • Mary Eichelberger


The construction of somatic cell hybrids between different mammalian species has provided an important technique for the development of genetic maps of a variety of biologic species. The human genetic map has been derived almost exclusively from genetic analysis of rodent × human cells (Ruddle and Creagan, 1975; McKusick and Ruddle, 1977). The murine genetic map originally progressed largely through sexual genetic analysis between inbred strains homozygous for different alleles at various loci (Miller and Miller, 1972; Davisson and Roderick, 1980). However, the addition to the map of numerous biochemical loci which did not vary between inbred strains has more recently been provided by analysis of mouse × hamster cell hybrids which preferentially segregate murine chromosomes (Lalley et al., 1978a,b; Francke and Taggart, 1980; Womack, 1980). In addition, fairly extensive biochemical genetic maps of chimpanzee, gorilla, orangutan, and the domestic cat have been prepared using similar technologies (Pearson et al., 1979, 1981; O’Brien and Nash, 1982).


Adenosine Deaminase Malic Enzyme Somatic Cell Hybrid Hybrid Clone Homologous Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnstable, C. J., Bodmer, W. F., Brown, G., Galfre, G., Milstein, C., Williams, A. F., and Ziegler, A., 1978, Production of monoclonal antibodies to group A erythrocytes, HLA and other cell surface antigens — New tools for genetic analysis, Cell 14:9–20.PubMedCrossRefGoogle Scholar
  2. Brewer, G. J., 1970, An introduction to isozyme techniques, Academic Press, New York.Google Scholar
  3. Davisson, M. T., and Roderick, T. H., 1980, Linkage map of the mouse (Mus musculus), Genetic Maps 1:225–233.Google Scholar
  4. Francke, U., and Taggart, R. T., 1980, Comparative gene mapping: Order of loci on the X chromosome is different in mice and humans, Proc. Natl. Acad. Sci. USA 77:3595–3599.PubMedCrossRefGoogle Scholar
  5. Gillin, F. D., Roufa, D. J., Beaudet, A. L., and Caskey, C. T., 1972, 8-Azaguanine resistance in mammalian cells, I. Hypoxanthine-guanine phosphoribosyl transferase, Genetics 72:239 252.PubMedGoogle Scholar
  6. Harris, H., and Hopkinson, D. A., 1976, Handbook of Enzyme Electrophoresis in Human Genetics, North-Holland, Amsterdam.Google Scholar
  7. Hopkinson, D. A., Edwards, Y. H., and Harris, H., 1976, The distribution of subunit numbers and subunit sizes of enzymes: A study of the products of 100 human gene loci, Ann. Hum. Genet. Lond. 39:383–410.CrossRefGoogle Scholar
  8. Klebe, R. J., Chen, T., and Ruddle, F. H., 1970, Controlled production of proliferating somatic cell hybrids, J. Cell Biol. 45:74–82.PubMedCrossRefGoogle Scholar
  9. Lalley, P. A., Francke, U., and Minna, J. D., 1978a, Homologous genes for enolase, phosphogluconate dehydrogenase, phosphoglucomutase, and adenylate kinase are syntenic on mouse chromosome 4 and human chromosome 1p, Proc. Natl. Acad. Sci. USA 75:2382–2386.PubMedCrossRefGoogle Scholar
  10. Lalley, P. A., Minna, J. D., and Francke, U., 1978b, Conservation of autosomal gene synteny groups in mouse and man, Nature 274:160–163.PubMedCrossRefGoogle Scholar
  11. Lemons, R. S., O’Brien, S. J., and Sherr, C. J., 1977, A new genetic locus, BEVI, on human chromosome six which controls the replication of baboon type C virus in human cells, Cell 12:251–262.PubMedCrossRefGoogle Scholar
  12. Lemons, R. S., Nash, W. G., O’Brien, S. J., Benveniste, R. E., and Sherr, C. J., 1978, A gene (Bevi) on human chromosome 6 is an integration site for baboon type C DNA provirus in human cells, Cell 14:995–1005.PubMedCrossRefGoogle Scholar
  13. McKusick, V. A., and Ruddle, F. H., 1977, The status of the gene map of human chromosomes, Science 196:390–405.PubMedCrossRefGoogle Scholar
  14. Miller, D. A., and Miller, O. J., 1972, Chromosome mapping in the mouse, Science 178:949–955.PubMedCrossRefGoogle Scholar
  15. Nichols, E. A., and Ruddle, F. H., 1973, A review of enzyme polymorphism, linkage and electrophoretic conditions of mouse and somatic cell hybrids in starch gels, J. Histochem. Cytochem. 21:1066–1081.PubMedCrossRefGoogle Scholar
  16. Nichols, E. A., and Ruddle, F. H., 1979, A review of enzyme polymorphism, linkage and electrophoretic conditions for mouse and somatic cell hybrids in starch gels, J. Histochem. Cytochem. 21:1066–1081.CrossRefGoogle Scholar
  17. O’Brien, S. J., 1980, The extent and character of biochemical genetic variation in the domestic cat, J. Hered. 71:2–8.Google Scholar
  18. O’Brien, S. J., and Barile, M. F., 1982, Isozyme resolution in mycoplasmas, in: Methods in MycopIasmoJogy (S. Razin and J. G. Tully, eds.), in press.Google Scholar
  19. O’Brien, S. J., and Maclntyre, R. J., 1977, Genetics and biochemistry of enzymes and specific proteins of Drosophila, in: Genetics and Biology of Drosophila, Volume IIa (T. R. F. Wright and M. Ashburner, eds.), Academic Press, New York, pp. 395–551.Google Scholar
  20. O’Brien, S. J., and Nash, W. G., 1982, Genetic mapping in mammals: chromosome map of the domestic cat, Science 216:257–265.PubMedCrossRefGoogle Scholar
  21. O’Brien, S. J., Nash, W. G., Simonson, J. M., and Berman, E. J., 1980, Establishment of a biochemical genetic map of the domestic cat (Felis catus), in: Feline Leukemia Virus (W. D. Hardy, M. Essex, and A. J. MacClelland, eds.). Elsevier, North-Holland, New York.Google Scholar
  22. O’Brien, S. J., Shannon, J. E., and Gail, M. F., 1980, A molecular approach to the identification and individualization of human and animal cell cultures: Isozyme and allozyme genetic signatures, In Vitro 16:119–135.PubMedCrossRefGoogle Scholar
  23. Pearson, P. L., Roderick, T. H., Davisson, M. T., Garver, J. J., Warburton, D., Lalley, P. A., and O’Brien, S. J., 1979, Comparative mapping. Report of the International Committee, Cytogenet. Cell. Genet. 25:82–95.PubMedCrossRefGoogle Scholar
  24. Pearson, P. L., Roderick, T. H., Davisson, M. T., Lalley, P. A., and O’Brien, S. J., 1981, Comparative mapping: Report of the International Committee, Cytogenet. Cell Genet., in press.Google Scholar
  25. Ruddle, F. H., Chapman, V. M., Ricciuti, F., Murnane, M., Klebe, R., and Meera-Khan, P., 1971, Linkage relationships of seventeen human gene loci as determined by man-mouse somatic cell hybrids, Nature New Biol. 232:69–73.PubMedGoogle Scholar
  26. Ruddle, F. H., and Creagan, R. P., 1975, Parasexual approaches to the genetics of man, Ann. Rev. Genet. 9:407–486.PubMedCrossRefGoogle Scholar
  27. Shows, T. B., 1977, Genetic and structural dissection of human enzymes and enzyme defects using somatic cell hybrids, in: Isozymes, Current Topics in Biological and Medical Research, Volume 2 (M. C. Ratazzi, J. G. Scandalios, and G. S. Whitt, eds.), Alan R. Liss, Inc., New York.Google Scholar
  28. Shows, T. B., et al., 1979, International systems for human gene nomenclature, Cytongenet. Cell Genet. 25:96–116.CrossRefGoogle Scholar
  29. Siciliano, M. J., and Shaw, C. R., 1976, Separation and localization of enzymes in gels, in: Chromatographic and Electrophoretic Techniques, Volume 2, 4th ed. (I. Smith, ed.), W. Heinemann Medical Books Publ. Inc., Chicago, Illinois, pp. 185–209.Google Scholar
  30. Skolnick, M. H., and Francke, U., 1981, Report of the committee on human gene mapping by recombinant DNA techniques, Cytogenet. Cell Genet, (in press).Google Scholar
  31. Womack, J. E., 1980, Biochemical loci of the mouse, Mus musculus, Genetic Maps 1:218–224 (in press).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Stephen J. O’Brien
    • 1
  • Janice M. Simonson
    • 1
  • Mary Eichelberger
    • 1
  1. 1.Section of Genetics, Laboratory of Viral CarcinogenesisNational Cancer InstituteFrederickUSA

Personalised recommendations