Techniques of DNA-Mediated Gene Transfer for Eukaryotic Cells

  • Arthur P. Bollon
  • Saul J. Silverstein


DNA transformation in bacteria has permitted detailed genetic analysis as well as the implementation of recombinant DNA technology. The utility of manipulation and cloning of genes in bacteria is well recognized. This chapter will concern the manipulation and cloning of genes in eukaryotic systems ranging from yeast to animal systems. Gene manipulation utilizing eukaryotic cloning systems permits the analysis of regulation of eukaryotic genes in their native environment and offers certain advantages for the production of foreign gene products which may require post-transcriptional modifications which are indigenous to eukaryotic organisms.


Transformation Efficiency Recipient Cell Cloning System Thymidine Kinase Gene Autonomous Replicate Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beggs, J. D., 1978, Transformation of yeast by a replicating hybrid plasmid, Nature 275:104–109.PubMedCrossRefGoogle Scholar
  2. Bolivar, F., Rodriquez, R., Green, P., Betlach, M., Heyneka, H., and Boyer, H., 1977, Construction and characterization of new cloning vehicles II. A multipurpose cloning system, Gene 2:95–113.PubMedCrossRefGoogle Scholar
  3. Bollon, A. P., and Stauver, M., 1980, DNA transformation efficiency of various bacterial and yeast host-vector systems, J. Clin. Hematol Oncol. 10:39–48.Google Scholar
  4. Broach, J. R., Strathern, J. N., and Hicks, J. B., 1979, Transformation in yeast: Development of a hybrid cloning vector and isolation of the CAN 1 gene, Gene 8:121–133.PubMedCrossRefGoogle Scholar
  5. Flintoff, W. F., Davidson, S. V., and Siminovitch, L., 1976, Isolation and partial characterization of three methotrexate-resistant phenotypes from Chinese hamster ovary cells, Somat. Cell Genet. 2:245–261.PubMedCrossRefGoogle Scholar
  6. Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., and Ruddle, F. H., 1980, Genetic transformation of mouse embryos by microinjection of purified DNA, Proc. Natl. Acad. Sci. USA 77:7380–7384.PubMedCrossRefGoogle Scholar
  7. Graham, F. L., Abrahams, P. J., Mulder, C., Heijneker, H. L., Warnaar, S. O., de Vries, F. A. J., Fiers, W., and van der Eb, A. J., 1974, Studies on in vitro transformation by DNA and DNA fragments of human adenoviruses and Simian Virus 40, Cold Spring Harbor Symp. Quant. Biol. 39:637–650.CrossRefGoogle Scholar
  8. Hinnen, A., Hicks, J. B., and Fink, G. R., 1978, Transformation of yeast, Proc. Natl. Acad. Sci. USA 75:1929–1933.PubMedCrossRefGoogle Scholar
  9. Hitzeman, R. A., Hagie, F. E., Levine, H. L., Goeddel, D., Ammerer, G., and Hall, B. D., 1981, Expression of human gene for Interferon in yeast, Nature 293:717–722.PubMedCrossRefGoogle Scholar
  10. Hohn, B., and Hinnen, A., 1980, Cloning with cosmids in E. coli and yeast, in: Genetic Engineering, Volume 2 (J. K. Setlow and A. Hollaender, eds.), Plenum Press, New York, pp. 169–183.Google Scholar
  11. Ilgen, C., Farabaugh, P. J., Hinnen, A., Walsh, J. A., and Fink, G. R., 1979, Transformation of yeast, in: Genetic Engineering, Volume 1 (J. K. Setlow and A. Hollaender, eds.), Plenum Press, New York, pp. 117–132.CrossRefGoogle Scholar
  12. Lowy, I., Pellicer, A., Jackson, J. F., Sim, G. K., Silverstein, S., and Axel, R., 1980, Isolation of transforming DNA: Cloning the hamster aprt gene, Cell 22:817–823.PubMedCrossRefGoogle Scholar
  13. McCutchan, J. H., and Pagano, J. S., 1968, Enhancement of infection of Simian Virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran, J. Natl. Cancer Inst. 41:351–356.PubMedGoogle Scholar
  14. Mulligan, R. C., and Berg, P., 1980, Expression of a bacterial gene in mammalian cells, Science 209:1422–1427.PubMedCrossRefGoogle Scholar
  15. Perucho, M., Hanahan, D., Lipsick, L., and Wigler, M., 1980, Isolation of the chicken thymidine kinase gene by plasmid rescue, Nature 285:207–210.PubMedCrossRefGoogle Scholar
  16. Ratzkin, B., and Carbon, J., 1977, Functional expression of cloned yeast DNA in Escherichia coli, Proc. Natl. Acad. Sci. USA 74:487–491.PubMedCrossRefGoogle Scholar
  17. Robins, D., Ripley, S., Henderson, A., and Axel, R., 1981, Transforming DNA integrates into the host chromosome, Cell 23:29–39.PubMedCrossRefGoogle Scholar
  18. Scherer, S., and Davis, R. W., 1979, Replacement of chromosomal segments with altered DNA sequences constructed in vitro, Proc. Natl. Acad. Sci. USA 76:4951–4955.PubMedCrossRefGoogle Scholar
  19. Simm, G. K., and Augustin, A., 1981, Transfection of L-cells with cloned H-2 genes leads to expression of corresponding alloantigens, Nature (in press).Google Scholar
  20. Stinchcomb, D. T., Struhl, K., and Davis, R. W., 1979, Isolation and characterization of a yeast chromosomal replicator, Nature 282:39–43.PubMedCrossRefGoogle Scholar
  21. Struhl, K., Cameron, J. R., and Davis, R. W., 1976, Functional genetic expression of eukaryotic DNA in Escherichia coli, Proc. Natl. Acad. Sci. USA 73:1471–1475.PubMedCrossRefGoogle Scholar
  22. Struhl, K., Stinchcomb, D. T., Scherer, S., and Davis, R. W., 1979, High frequency transformation of yeast: Autonomous replication of hybrid DNA molecules, Proc. Natl. Acad. Sci. USA 76:1035–1039.PubMedCrossRefGoogle Scholar
  23. Sweet, R., Jackson, J., Lowy, I., Ostrander, M., Pellicer, A., Roberts, J., Robins, D., Sim, G.-K., Wold, B., Axel, R., and Silverstein, S., 1981, The expression, arrangement, and rearrangement of genes in DNA-transformed cells, in: Genes Chromosomes and Neoplasia (F. E. Arrighi, P. N. Rao and E. Stubblefield, eds.), Raven Press, New York, pp. 205–219.Google Scholar
  24. Szybalska, E. H., and Szybalski, W., 1962, Genetics of human cell lines IV. DNA-mediated heritable transformation of a biochemical trait, Proc. Natl. Acad. Sci. USA 48:2026–2034.PubMedCrossRefGoogle Scholar
  25. Wagner, E. F., Stewart, T. A., and Mintz, B., 1981, The human β-globin gene and a functional viral thymidine kinase gene in developing mice, Proc. Natl. Acad. Sci. USA 78:5016–5020.PubMedCrossRefGoogle Scholar
  26. Whelan, W. L., Gocke, E., and Manney, T. R., 1979, The CAN 1 locus of Sacchromyces cerevisiae: Fine structure analysis and forward mutation rates, Genetics 91:35–51.PubMedGoogle Scholar
  27. Wigler, M., Sweet, R., Sim, G.-K., Wold, B., Pellicer, A., Lacy, E., Maniatis, T., Silverstein, S., and Axel, R., 1979, Transformation of mammalian cells with genes from prokaryotes and eukaryotes, Cell 16:777–785.PubMedCrossRefGoogle Scholar
  28. Wigler, M., Perucho, M., Kurtz, D., Dana, S., Pellicer, A., Axel, R., and Silverstein, S., 1980, Transformation of mammalian cells with an amplifiable dominant acting gene, Proc. Natl. Acad. Sci. USA 77:3567–3570.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Arthur P. Bollon
    • 1
  • Saul J. Silverstein
    • 2
  1. 1.Department of Molecular GeneticsWadley Institutes of Molecular MedicineDallasUSA
  2. 2.Department of MicrobiologyColumbia UniversityNew YorkUSA

Personalised recommendations