Liposome-Mediated DNA Transfer

  • Robert M. Straubinger
  • Demetrios Papahadjopoulos


The DNA-mediated transfer of genes has been used extensively as a tool for genetic study of both prokaryotic and eukaryotic cells. For those cells for which DNA transformation systems have been developed, gene transfer has yielded a wealth of detail for bacterial (Avery et al., 1944), yeast (Hinnen et al., 1978), and animal cell (McBride and Athwall, 1977; Wigler et al., 1977) molecular biology. A variety of techniques have been used to effect the introduction of relatively unpurified nucleic acids into eukaryotic cells, including cell: cell fusion (Ringertz and Savage, 1976) and uptake of isolated nuclei, microcells (Fournier and Ruddle, 1977), bacterial protoplasts (Schaffner, 1980), viruses (Hamer et al., 1979; Mulligan et al., 1979), or whole chromosomes (McBride and Athwall, 1977) by cells. Purified nucleic acids can be introduced into cells as calcium phosphate coprecipitates (Graham and Van der Eb, 1973) or polycation complexes (McCutchen and Pagano, 1968), which may be endocytosed. In addition, cryoprotectants and polyalcohols (Hinnen et al., 1978; Stow and Wilkie, 1976) also facilitate nucleic acid uptake. Direct introduction of genetic material into cells can be accomplished by microinjection with small capillary needles (Capecchi, 1980; Anderson et al., 1980) or by prepackaging the nucleic acid in carriers such as liposomes (phospholipid vesicles*) or red blood cell ghosts (Straus and Raskas, 1980). While specific successes have been attained by all the methods mentioned, this chapter will deal with the methods, advantages, and potential of liposomes as carriers of nucleic acids.


Polyethylene Glycol Intracellular Delivery Phospholipid Vesicle Semliki Forest Virus Liposome Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W., Killos, L., Sanders-Haigh, L., Kretschmer, P., and Diakumakos, E., 1980, Replication and expression of thymidine kinase and human globin genes microinjected into mouse fibroblasts, Proc. Natl. Acad. Sci. USA 77:5399–5403.PubMedCrossRefGoogle Scholar
  2. Avery, O. T., Macleod, C. M., and McCarty, M., 1944, Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus Type III, J. Exp. Med. 79:137–158.PubMedCrossRefGoogle Scholar
  3. Bangham, A., Standish, M., and Watkins, J., 1964, Diffusion of univalent ions across the lamellae of swollen phospholipids, J. Mol. Biol. 13:238–52.CrossRefGoogle Scholar
  4. Bartlett, G., 1959, Phosphorous assay in column chromatography, J. Biol. Chem. 234:466–68.PubMedGoogle Scholar
  5. Capecchi, M., 1980, High efficiency transformation by direct microinjection of DNA into cultured mammalian cells, Cell 22:479–88.PubMedCrossRefGoogle Scholar
  6. Chen, H. W., Kandutsch, A. A., and Waymouth, C., 1974, Inhibition of cell growth by oxygenated derivatives of cholesterol, Nature 251:419–21.PubMedCrossRefGoogle Scholar
  7. Deamer, D., and Bangham, A., 1976, Large volume liposomes by an ether vaporization method, Biochim. Biophys. Acta 443:629–34.PubMedCrossRefGoogle Scholar
  8. Deamer, D., and Uster, P., 1980, Liposome preparation methods and monitoring liposome fusion, in: Introduction of Macromolecules into Viable Mammalian Cells (R. Baserga, C. Croce, and G. Roueza, eds.), Alan R. Liss, New York, 205–20.Google Scholar
  9. de Duve, C., de Barsy, T., Poole, B., Trouet, A., Tulkens, P., and van Hoof, F., 1974, Lysosomotropic agents, Biochem. Pharmacol. 23:2495–531.PubMedCrossRefGoogle Scholar
  10. Dellaporta, S., Fraley, R., Giles, K., Papahadjopoulos, D., Powell, A., Thomashow, M., Nester, E., and Gordon, M., 1982, Plant protoplast transformation by liposome-encapsulated Ti plasmid of Agrobacterium tumefaciens, In preparation.Google Scholar
  11. Dimitriadis, G., 1978, Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes, Nature 274:923–4.PubMedCrossRefGoogle Scholar
  12. Enoch, H., and Strittmatter, P., 1979, Formation and properties of 1000-A-diameter single bilayer phospholipid vesicles, Proc. Natl. Acad. Sci. USA 76:145–9.PubMedCrossRefGoogle Scholar
  13. Fournier, R., and Ruddle, F., 1977, Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells, Proc. Natl. Acad. Sci. USA 74:319–23.PubMedCrossRefGoogle Scholar
  14. Fraley, R., and Papahadjopoulos, D., 1981, New generation liposomes: The engineering of an efficient vehicle for intracellular delivery of nucleic acids, Trends Biochem. Sci. 6:77–80.CrossRefGoogle Scholar
  15. Fraley, R., and Papahadjopoulos, D., 1982, Liposomes: The development of a new carrier system for introducing nucleic acids into plant and animal cells, in: Current Topics in Microbiology and Immunology: Gene Cloning in Organisms Other Than E. coli, (P. H. Hof Schneider and W. Goebel, eds.), Vol. 96, pp. 171–192, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  16. Fraley, R., Fornari, C., and Kaplan, S., 1979, Entrapment of a bacterial plasmid in phospholipid vesicles: Potential for gene transfer, Proc. Natl. Acad. Sci. USA 76:3348–52.PubMedCrossRefGoogle Scholar
  17. Fraley, R., Subramani, S., Berg, P., and Papahadjopoulos, D., 1980, Introduction of liposomeencapsulated SV40 DNA into cells, J. Biol. Chem. 255:10431–35.PubMedGoogle Scholar
  18. Fraley, R., Straubinger, R. M., Rule, G., Springer, E. L, and Papahadjopoulos, D., 1981, Liposomemediated delivery of deoxyribonucleic acid: Enhanced efficiency of delivery by changes in lipid composition and incubation conditions, Biochemistry 20:6978–6987.PubMedCrossRefGoogle Scholar
  19. Fraley, R., Dellaporta, S., and Papahadjopoulos, D., 1982, Liposome-mediated delivery of TMV RNA into tobacco protoplasts: A sensitive assay for monitoring liposome-protoplast interactions, Proc. Natl. Acad. Sci. USA 79:1859–63.PubMedCrossRefGoogle Scholar
  20. Graham, F., and Van der Eb, A., 1973, A new technique for the assay of infectivity of human Adenovirus 5 DNA, Virology 52:456–60.PubMedCrossRefGoogle Scholar
  21. Gregoriadis, G., and Davis, C., 1979, Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells, Biochem. Biophys. Res. Commun. 89:1287–92.PubMedCrossRefGoogle Scholar
  22. Hamer, D. H., Smith, K. D., Boyer, S. H., and Leder, P., 1979, SV40 recombinants carrying rabbit β-globin gene coding sequence, Cell 17:725–35.PubMedCrossRefGoogle Scholar
  23. Heath, T., Fraley, R., and Papahadjopoulos, D., 1980a, Antibody targeting of liposomes: Cell specificity obtained by conjugation of F(ab′)2 to the vesicle surface, Science 210:539–41.PubMedCrossRefGoogle Scholar
  24. Heath, T. D., Robertson, D., Birback, M. S. C., and Davies, A. J. S., 1980b, Covalent attachment of horseradish peroxidase to the outer surface of liposomes, Biochim. Biophys. Acta 599:42–62.PubMedCrossRefGoogle Scholar
  25. Heath, T., Macher, B. A., and Papahadjopoulos, D., 1981, Covalent attachment of immunoglobulins to liposomes via glycosphingolipids, Biochim. Biophys. Acta. 640:66–82.PubMedCrossRefGoogle Scholar
  26. Helenius, A., Kartenbeck, J., Simons, K., and Fries, E., 1980, On the entry of Semliki Forest Virus into BHK-21 cells, J. Cell. Biol. 84:404–20.PubMedCrossRefGoogle Scholar
  27. Hinnen, A., Hicks, J., and Fink, G., 1978, Transformation of yeast, Proc. Natl. Acad. Sci. USA 75:1929–33.PubMedCrossRefGoogle Scholar
  28. Hoffman, R., Margolis, P., and Bergelson, L., 1978, Binding and entrapment of high molecular weight DNA by lecithin liposomes, FEBS Lett. 93:365–8.PubMedCrossRefGoogle Scholar
  29. Huang, C., 1969, Studies on phosphatidylcholine vesicles. Formation and physical characteristics, Biochemistry 8:344–52.PubMedCrossRefGoogle Scholar
  30. Huang, A. C., Huang, L., and Kennel, S. J., 1980, Monoclonal antibody covalently coupled with fatty acid. A reagent for in vitro liposome targeting, J. Biol. Chem. 255:8015–8.PubMedGoogle Scholar
  31. Jonah, M., Cerny, E. A., and Rahman, Y. E., 1978, Tissue distribution of EDTA encapsulated within liposomes of varying surface properties, Biochim. Biophys. Acta 541:321–3.PubMedCrossRefGoogle Scholar
  32. Kates, M., 1972, Techniques in lipidology, in: Laboratory Techniques in Biochemistry and Molecular Biology (T. S. Work and E. Work, eds.), North-Holland, New York.Google Scholar
  33. Kimelberg, H., and Mayhew, E., 1978, Properties and biological effects of liposomes and their uses in pharmacology and toxicology, CRC Crit. Rev. Toxicol. 6:25–78.CrossRefGoogle Scholar
  34. Leserman, L., Barbet, J., Kourilsky, R., and Weinstein, J., 1980, Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A, Nature 288:602–4.PubMedCrossRefGoogle Scholar
  35. Lurquin, P., 1979, Entrapment of plasmid DNA by liposomes and their interactions with plant protoplasts, Nucleic Acid Res. 6:3773–84.PubMedCrossRefGoogle Scholar
  36. Martin, F., Hubbel, W., and Papahadjopoulos, D., 1981, Immunospecific targeting of liposomes to cells: a novel and efficient method for covalent attachement of Fab’ fragments via disulfide bonds, Biochemistry 20:4429–38.CrossRefGoogle Scholar
  37. Mauk, M., Gamble, R., and Baldeschwieler, J., 1980, Vesicle-targeting: Timed release and specificity for leukocytes in mice by subcutaneous injection, Science 207:309–11.PubMedCrossRefGoogle Scholar
  38. Mayhew, E., Rustum, Y., Szoka, F., and Papahadjopoulos, D., 1979, Role of cholesterol in enhancing the anti-tumor effect of 1-β-D arabinofuranosyl cytosine entrapped in liposomes, Cancer Treatm. Rep. 63(11-12): 1923–8.Google Scholar
  39. McBride, O., and Athwall, R., 1977, Genetic analysis by chromosome-mediated gene transfer, In Vitro 12:777–86.CrossRefGoogle Scholar
  40. McCutchen, J., and Pagano, J., 1968, Enhancement of the infectivity of Simian Virus 40 deoxyribonucleic acid with diethylaminoethyldextran, J. Natl. Cancer Inst. 41:351–7.Google Scholar
  41. Miller, D. K., and Lenard, J., 1980, Inhibition of Vesicular Stomatitis Virus infection by spike glycoprotein. Evidence for an intracellular, G protein-requiring step, J. Cell. Biol. 84:430–7.PubMedCrossRefGoogle Scholar
  42. Mukherjee, A., Orloff, S., Butler, J., Triche, T., Lalley, P., and Schulman, J., 1978, Entrapment of metaphase chromosomes into phospholipid vesicles (lipochromosomes): Carrier potential in gene transfer, Proc. Natl. Acad. Sci. USA 75:1361–5.PubMedCrossRefGoogle Scholar
  43. Mulligan, R. C., Howard, B. H., and Berg, P., 1979, Synthesis of rabbit β-globin in cultured monkey kidney cells following infection with a SV40 β-globin recombinant genome, Nature 277:108–14.PubMedCrossRefGoogle Scholar
  44. Nicolson, G., and Poste, G., 1978, Mechanism of resistance to ricin toxin in selected mouse lymphoma lines, J. Supramol. Struct. 8:235–45.PubMedCrossRefGoogle Scholar
  45. Olson, F., Hunt, C., Vail, W., and Papahadjopoulos, D., 1979, Preparation of liposomes of defined size by extrusion through polycarbonate filters, Biochim. Biophys. Acta 557:9–23.PubMedCrossRefGoogle Scholar
  46. Ostro, M., Giacomoni, D., Lavelle, D., Paxton, W., and Dray, S., 1978, Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line, Nature 274:921–3.PubMedCrossRefGoogle Scholar
  47. Pagano, R., and Weinstein, J., 1978, Interaction of liposomes with mammalian cells, Ann. Rev. Biophys. Bioeng. 7:435–68.CrossRefGoogle Scholar
  48. Papahadjopoulos, D., 1978, Liposomes and Their Uses in Biology and Medicine, New York Academy of Sciences, New York.Google Scholar
  49. Papahadjopoulos, D., and Kimelberg, H., 1973, Phospholipid vesicles (liposomes) as models for biological membranes, in: Progress in Surface Science, Volume 4 (S. G. Davidson, ed.), Pergamon Press, New York, pp. 141–232.Google Scholar
  50. Papahadjopoulos, D., and Miller, W., 1967, Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals, Biochim. Biophys. Acta 135:624–38.PubMedCrossRefGoogle Scholar
  51. Papahadjopoulos, D., and Watkins, J. C., 1967, Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals, Biochim. Biophys. Acta 135:639–52.PubMedCrossRefGoogle Scholar
  52. Papahadjopoulos, D., Nir, S., and Ohki, S., 1972, Permeability properties of phospholipid membranes: Effect of cholesterol and temperature, Biochim. Biophys. Acta 266:561–71.PubMedCrossRefGoogle Scholar
  53. Papahadjopoulos, D., Vail, W., Jacobson, K., and Poste, G., 1975, Cochleate lipid cylinders: Formation by fusion of unilamellar vesicles, Biochim. Biophys. Acta 394:483–91.PubMedCrossRefGoogle Scholar
  54. Papahadjopoulos, D., Vail, W., Pangborn, W., and Poste, G., 1976, Studies on membrane fusion II: Induction of membrane fusion in pure phospholipid membranes by calcium ions and other divalent metals, Biochim. Biophys. Acta 448:265–83.PubMedCrossRefGoogle Scholar
  55. Papahadjopoulos, D., Wilson, T., and Taber, R., 1980a, Liposomes as macromolecular carriers for the introduction of RNA and DNA into cells, in: Transfer of Cell Constituents into Eukaryotic Cells (J. Celis, A. Graessman, and A. Loyter, eds.), Plenum Press, New York.Google Scholar
  56. Papahadjopoulos, D., Wilson, T., and Taber, R., 1980b, Liposomes as vehicles for cellular incorporation of biologically active macromolecules, In Vitro 16:49–54.CrossRefGoogle Scholar
  57. Pietronigro, D. D., Jones, W. B. G., Katy, K., Demopoulos, H. B., 1977, Interaction of DNA and liposomes as a model of membrane-mediated DNA damage, Nature 267:78–9.PubMedCrossRefGoogle Scholar
  58. Poste, G., 1980, The interaction of lipid vesicles (liposomes) with cultured cells and their use as carriers for drugs and macromolecules, in: Liposomes in Biological Systems (G. Gregoriadis and A. Allison, eds.), Wiley, New York, pp. 101–51.Google Scholar
  59. Ringertz, N., and Savage, R., 1976, Cell Hybrids, Academic Press, New York, pp. 1–366.Google Scholar
  60. Schaffner, W., 1980, Direct transfer of cloned genes from bacteria to mammalian cells, Proc. Natl. Acad. Sci. USA 77:2163–7.PubMedCrossRefGoogle Scholar
  61. Stow, N., and Wilkie, N., 1976, An improved technique for obtaining enhanced infectivity with Herpes Simplex Virus Type I DNA, J. Gen. Virol. 33:447–58.PubMedCrossRefGoogle Scholar
  62. Straus, S., and Raskas, H., 1980, Transfection of KB cells by polyethylene glycol-induced fusion with erythrocyte ghosts containing Adenovirus Type II DNA, J. Gen. Virol. 48:241–5.PubMedCrossRefGoogle Scholar
  63. Szoka, F., and Papahadjopoulos, D., 1978, Procedure for preparing liposomes with large internal aqueous space and high capture by reverse-phase evaporation, Proc. Natl. Acad. Sci. USA 75:145–9.CrossRefGoogle Scholar
  64. Szoka, F., and Papahadjopoulos, D., 1980, Comparative properties and methods of preparation of lipid vesicles (liposomes), Ann. Rev. Biophys. Bioeng. 9:467–508.CrossRefGoogle Scholar
  65. Szoka, F., Jacobson, K., and Papahadjopoulos, D., 1979, The use of aqueous space markers to determine the mechanism of interaction between phospholipid vesicles and cells, Biochim. Biophys. Acta 551:295–303.PubMedGoogle Scholar
  66. Szoka, F., Olson, F., Heath, T., Vail, W., Mayhew, E., and Papahadjopoulos, D., 1980, Preparation of unilamellar liposomes of intermediate size (0.1–0.2 μm) by a combination of reverse-phase evaporation and extrusion through polycarbonate membranes, Biochim. Biophys. Acta 601:559–71.PubMedCrossRefGoogle Scholar
  67. Szoka, F., Magnusson, K. E., Wojcieszyn, J., Hou, Y., Derzko, Z., and Jacobson, K. 1981, Use of lectins and polyethylene glycol for fusion of glycolipid-containing liposomes with eukaryotic cells, Proc. Natl. Acad. Sci. USA 78:1685–9.PubMedCrossRefGoogle Scholar
  68. Tyrrell, D., Heath, T., Colley, C., and Ryman, B., 1976, New aspects of liposomes, Biochim. Biophys. Acta 457:259–302.PubMedGoogle Scholar
  69. Van Renswoude, J., and Hoekstra, D., 1981, Cell-induced leakage of liposome contents, Biochemistry 20:540–6.PubMedCrossRefGoogle Scholar
  70. Wigler, M., Silverstein, S., Lee, L., Pelecer, A., Cheng, Y., and Axel, R., 1977, Transfer of purified Herpes Virus thymidine kinase gene to cultured mouse cells, Cell 11:223–32.PubMedCrossRefGoogle Scholar
  71. Wilson, T., Papahadjopoulos, D., and Taber, R., 1977: Biological properties of poliovirus encapsulated in lipid vesicles: Antibody resistance and infectivity in virus resistant cells, Proc. Natl. Acad. Sci. USA 74:3471–5.PubMedCrossRefGoogle Scholar
  72. Wilson, T., Papahadjopoulos, D., and Taber, R., 1979, The introduction of poliovirus RNA into cells via lipid vesicles (liposomes), Cell 17:77–84.PubMedCrossRefGoogle Scholar
  73. Wong, T.-K., Nicolau, C., Hofschneider, P., 1980, Appearance of β lactamase activity in animal cells upon liposome-mediated gene transfer, Gene 10:87–94.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Robert M. Straubinger
    • 1
  • Demetrios Papahadjopoulos
    • 1
  1. 1.Cancer Research Institute and Department of PharmacologyUniversity of California-San FranciscoSan FranciscoUSA

Personalised recommendations