Techniques for Using HAT Selection in Somatic Cell Genetics

  • W. N. Choy
  • T. V. Gopalakrishnan
  • J. W. Littlefield


Somatic cell hydridization provides a unique system to analyze gene interactions between somatic cells through the formation of hybrids in intraspecific or interspecific crosses. With the development of conditional genetic markers, many phenotypic changes in cell hybrids, either permanent or transient, can be monitored in a quantitative fashion. Spontaneous fusions of cells are always infrequent and hybrids generated from such fusions are usually hard to identify. Improved fusion techniques and selection systems for cell hybrids in the past decade have circumvented many of the above difficulties.


Thymidine Kinase Cell Hybrid Mouse Mammary Tumor Virus Diphtheria Toxin Somatic Cell Hybrid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelberg, E. A., Callahan, T., Slayman, C. W., and Hoffman, J. F., 1975, Ouabain-resistant mutants of mouse and human lymphocytes, J. Gen. Physiol. 66:17a.Google Scholar
  2. Bakay, B., Croce, C. M., Koprowski, H., and Nyhan, W. L., 1973, Restoration of hypoxanthine phosphoribosyltransferase activity in mouse IR cells after fusion with chick embryo fibroblasts, Proc. Natl. Acad. Sci. USA 70:1998–2002.PubMedCrossRefGoogle Scholar
  3. Bakay, B., Graf, M., Carey, S., Nissinen, E., and Nyhan, W. L., 1978, Reexpression of HPRT activity following cell fusion with polyethylene glycol, Biochem. Genet. 16:277–237.CrossRefGoogle Scholar
  4. Baker, R. M., Brunette, D. M., Mankovity, R., Thompson, L. H., Whitmore, G. F., Siminovitch, L., and Till, J. E., 1974, Ouabain resistant mutants of mouse and hamster cells in culture, Cell 1:9–22.CrossRefGoogle Scholar
  5. Boone, C., Chen, T.-R., and Ruddle, F. H., 1972, Assignment of three human genes to chromosomes (LHD-A to 11, TK to 17, and IDH to 20) and evidence for translocation between human and mouse chromosomes in somatic cell hybrids, Proc. Natl. Acad. Sci. USA 69:510–514.PubMedCrossRefGoogle Scholar
  6. Brake, C. and Serra, A., 1981, A simple method for fusing human lymphocytes with rodent cells in monolayer by polyethylene glycol, Somat. Cell Genet. 7:109–116.CrossRefGoogle Scholar
  7. Chan, T. S., Long, C., and Green, H., 1975, A human-mouse somatic cell hybrid line selected for human deoxycytidine deaminase, Somat. Cell Genet. 1:81–90.PubMedCrossRefGoogle Scholar
  8. Choy, W. N., and Littlefield, J. W., 1980, Isolation of diploid human lymphoblast mutants presumably homozygous for ouabain resistance, Proc. Natl. Acad. Sci. USA 77:1101–1105.PubMedCrossRefGoogle Scholar
  9. Chu, E. H. Y., and Powell, S. S., 1976, Selective systems in somatic cell genetics, in: Advances in Human Genetics, Volume 7 (H. Harris and K. Kirschhorn, eds.), Plenum Press, New York, pp. 189–258.Google Scholar
  10. Chu, E. H. Y., Brimer, P., Jacobson, K. B., and Merriam, E. V., 1969, Mammalian cell genetics. I. Selection and characterization of mutations auxotrophic for L-glutamine or resistant to 8-azaguanine in Chinese hamster cells in vitro, Genetics 62:359–377.PubMedGoogle Scholar
  11. Clements, G. B., 1975, Selection of biochemically variant cells in culture, in: Advances in Cancer Research, Volume 21 (G. Klein and S. Weinhouse, eds.), Academic Press, New York, pp. 273–390.Google Scholar
  12. Corsaro, C. M., and Migeon, B. R., 1978, Gene expression in euploid human hybrid cells: Ouabain resistance is codominant, Somat. Cell Genet. 4:531–540.PubMedCrossRefGoogle Scholar
  13. Creagan, R. P., Chen, S., and Ruddle, F. H., 1979, Genetic analysis of the cell surface: Association of human chromosome 5 with sensitivity to diphtheria toxin in mouse-human somatic cell hybrids, Proc. Natl. Acad. Sci. USA 72:2237–2241.CrossRefGoogle Scholar
  14. Davidson, R. L., and Gerald, P. S., 1976, Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol, Somat. Cell Genet. 2:165–176.PubMedCrossRefGoogle Scholar
  15. Davidson, R. L., and Adelstein, S. J., and Oxman, M. N., 1973, Herpes Simplex Virus as a source of thymidine kinase for thymidine kinase-deficient mouse cells: Suppression and reactivation of the viral enzymes, Proc. Natl. Acad. Sci. USA 70:1912–1916.PubMedCrossRefGoogle Scholar
  16. Davidson, R. L., O’Malley, K. A., and Wheeler, T. B., 1976, Polyethylene glycol-induced mammalian cell hybridization: Effect of polyethylene glycol molecular weight and concentration, Somat. Cell Genet. 2:271–280.PubMedCrossRefGoogle Scholar
  17. Dendy, P. R., and Harris, H., 1973, Sensitivity to diphtheria toxin as a species-specific marker in hybrid cells, J. Cell Sci. 12:831–837.PubMedGoogle Scholar
  18. Eisenbarth, G. S., 1981, Application of monoclonal antibody techniques to biochemical research, Anal. Biochem. 111:1–16.PubMedCrossRefGoogle Scholar
  19. Fenwick, R. G., 1980, Reversion of mutation affecting the molecular weight of HGPRT: Intragenic suppression and localization of X-linked genes, Somat. Cell Genet. 6:477–494.PubMedCrossRefGoogle Scholar
  20. Fisher, P. B. and Bryson, V., 1977, Toxicity of nystatin and its methyl ester toward parental and hybrid mammalian cells, In Vitro 13:548–556.PubMedCrossRefGoogle Scholar
  21. Fisher, P. B., Sisskin, E. E., and Goldstein, N. I., 1978, Selecting somatic cell hybrids with HAT media and nystation methyl ester J. Cell Sci. 32:433–439.PubMedGoogle Scholar
  22. Fox, M., and Boyle, J. M., 1976, Factors affecting the growth of Chinese hamster cells in HAT selection media, Mutat. Res. 35:445–464.PubMedCrossRefGoogle Scholar
  23. Goldstein, N. I., and Fisher, P. B., 1978, Selection of mouse X hamster hybrids using HAT medium and a polyene antibiotic, In Vitro 14:200–206.PubMedCrossRefGoogle Scholar
  24. Goldstein, S., and Lin, C. C., 1972, Survival and DNA repair of somatic cell hybrids after ultraviolet irradiation, Nature New Biol. 239:142–145.PubMedGoogle Scholar
  25. Graf, L. H., Urlaub, G., and Chasin, L. A., 1979, Transformation of the gene for hypoxanthine phosphoribosyltransferase, Somat. Cell Genet. 5:1031–1044.PubMedCrossRefGoogle Scholar
  26. Hakala, M. T., 1957, Prevention of toxicity of amethopterin for sarcoma-180 cells in tissue culture, Science 126:255.PubMedCrossRefGoogle Scholar
  27. Harris, H., and Watkins, J. F., 1965, Hybrid cells derived from mouse and man: Artificial heterokaryons of mammalian cells from different species, Nature 205:640–646.PubMedCrossRefGoogle Scholar
  28. Hynes, N. E., Kennedy, N., Rahmsdorf, U., and Groner, B., 1981, Hormone-responsive expression of an endogeneous proviral gene of mouse mammary tumor virus after molecular cloning and gene transfer into cultured cells, Proc. Natl. Acad. Sci. USA 78:2038–2042.PubMedCrossRefGoogle Scholar
  29. Jha, K. K., and Ozer, H., 1976, Expression of transformation in cell hybrids. I. Isolation and application of density-inhibited BALB/3T3 cells deficient in hypoxanthine phosphoribosyltransferase and resistant to ouabain. Somat. Cell Genet. 2:215–224.PubMedCrossRefGoogle Scholar
  30. Kao, F. T., Johnson, R. T., and Puch, T. T., 1969, Complementation analysis on virus-fused Chinese hamster cells with nutritional markers, Science 164:312–314.PubMedCrossRefGoogle Scholar
  31. Klebe, R. J., and Mancuso, M. G., 1981, Chemicals which promote cell hybridization, Somat. Cell Genet. 7:473–488.PubMedCrossRefGoogle Scholar
  32. Klinger, H. P., and Shin, S., 1974, Modulation of the activity of an avian gene transferred into a mammalian cell by cell fusion, Proc. Natl. Acad. Sci. USA 71:1398–1402.PubMedCrossRefGoogle Scholar
  33. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497.PubMedCrossRefGoogle Scholar
  34. Köhler, G., and Milstein, C., 1976, Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion, Eur. J. Immunol. 6:511–519.PubMedCrossRefGoogle Scholar
  35. Kucherlapati, R. S., Baker, R. M., and Ruddle, F. H., 1975, Ouabain as a selective agent in the isolation of somatic cell hybrids, Cytogenet. Cell Genet. 14:362–363.PubMedCrossRefGoogle Scholar
  36. Kurtz, D., 1981, Hormonal inducibility of rat α2u globulin genes in transfected mouse cells, Nature 291:629–631.PubMedCrossRefGoogle Scholar
  37. Kusano, T., Long, C., and Green, H., 1971, A new reduced human-mouse somatic cell hybrid containing the human gene for adenine phosphoribosyltransferase, Proc. Natl. Acad. Sci. USA 68:82–86.PubMedCrossRefGoogle Scholar
  38. Lester, S. C., Levain, S. K., Steglich, C., and DeMars, R., 1980, Expressions of human genes for adenine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase after genetic transformation of mouse cells with purified human DNA, Somat. Cell Genet. 6:241–260.PubMedCrossRefGoogle Scholar
  39. Lewis, W. H., Srinwasan, P. R., Stokoe, N., and Siminovitch, L., 1980, Parameters governing the transfer of the genes for thymidine kinase and dihydrofolate reductase into mouse cells using metaphase chromosome or DNA, Somat. Cell Genet. 6:333–347.PubMedCrossRefGoogle Scholar
  40. Liskay, R. M., and Patterson, D., 1978, Selection of somatic cell hybrids between HGPRT- and APRT- cells, in: Methods in Cell Biology, Volume XX (D. M. Prescott, ed.), Academic Press, New York, pp. 335–360.Google Scholar
  41. Littlefield, J. W., 1964, Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants, Science 145:709–710.PubMedCrossRefGoogle Scholar
  42. Littlefield, J. W. 1966, The use of drug-resistant markers to study the hybridization of mouse fibroblasts, Exp. Cell Res. 41:190–196.PubMedCrossRefGoogle Scholar
  43. Lowy, I., Pellicer, A., Jackson, J. F., Sim, G. K., Silverstein, S., and Axel, R., 1980, Isolation of transforming DNA: Cloning the hamster aprt gene, Cell 22:817–823.PubMedCrossRefGoogle Scholar
  44. McBride, O. W., and Ozer, H. L., 1973, Transfer of genetic information by purified metaphase chromosomes, Proc. Natl. Acad. Sci. USA 70:1258–1262.PubMedCrossRefGoogle Scholar
  45. McKusick, V. A., and Ruddle, F. H., 1977, The status of the gene map of the human chromosomes, Science 196:390–405.PubMedCrossRefGoogle Scholar
  46. Neff, J. M., and Enders, S. F., 1968, Polio virus replication and cytopathogenicity in monolayer hamster cultures fused with beta-propiolactone inactivated Sendai virus, Proc. Soc. Exp. Biol. Med. 127:260–267.PubMedGoogle Scholar
  47. Norwood, T. H., Zeigler, C. J., and Martin, G. M., 1976, Dimethyl sulfoxide enhances polyethylene glycol-mediated cell fusion, Somat. Cell Genet. 3:263–270.CrossRefGoogle Scholar
  48. Okada, Y., 1962, Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich’s ascites tumor cells. I. Microscopic observation of giant polynuclear cell formation, Exp. Cell Res. 26:98–107.PubMedCrossRefGoogle Scholar
  49. Okada, Y., and Tadokoro, J., 1962, Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich’s tumor cells. II. Quantitative analysis of giant polynuclear cell formation, Exp. Cell Res. 26:108–118.PubMedCrossRefGoogle Scholar
  50. O’Malley, K. A., and Davidson, R. L., 1977, A new dimension in suspension fusion techniques with polyethylene glycol, Somat. Cell Genet. 4:441–448.CrossRefGoogle Scholar
  51. Pellicer, A., Wagner, E. F., Kareh, A. E., Dewey, M. J., Renser, A. J., Silverstein, S., Axel, R., and Mintz, B., 1980, Introduction of a viral thymidine kinase gene and the human β-globin gene into developmentally multipotential mouse teratocarcinoma cells, Proc. Natl. Acad. Sci. USA 77:2098–2102.PubMedCrossRefGoogle Scholar
  52. Perucho, M., Hanahan, D., Lipsich, L., and Wigler, M., 1980, Isolation of the chicken thymidine kinase gene by plasmid rescue, Nature 285:207–210.PubMedCrossRefGoogle Scholar
  53. Pontecorvo, G., 1975, Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment, Somat. Cell Genet. 1:397–400.PubMedCrossRefGoogle Scholar
  54. Rabinovitch, P. S., and Norwood, T. H., 1981, Rapid kinetics of polyethylene glycol-mediated fusion, Somat. Cell Genet. 7:281–288.PubMedCrossRefGoogle Scholar
  55. Ruddle, F. H., 1972, Linkage analysis using somatic cell hybrids, in: Advances in Human Genetics, Volume 3 (H. Harris and K. Hirschhorn, eds.) Plenum Press, New York, pp. 173–235.Google Scholar
  56. Sabourin, D. J., and Davidson, R. L., 1979, Transfer of the herpes simplex thymidine kinase gene from human cells to mouse cells by means of metaphase chromosome, Somat. Cell Genet. 5:159–174.PubMedCrossRefGoogle Scholar
  57. Schneiderman, S., Farber, J. L., and Baserga, R., 1979, A simple method for decreasing the toxicity of polyethylene glycol in mammalian cell hybridization, Somat. Cell Genet. 5:263–270.PubMedCrossRefGoogle Scholar
  58. Siminovitch, L., 1976, On the nature of hereditable variation in cultured somatic cells, Cell 7:1–11.PubMedCrossRefGoogle Scholar
  59. Siniscalco, M., Klinger, H. P., Eagle, H., Koprowski, H., Fujimoto, W. Y., and Seegmiller, J. E., 1969, Evidence for intergenic complementation in hybrid cells derived from two human diploid strains each carrying an X-linked mutation, Proc. Natl. Acad. Sci. USA 62:793–799.PubMedCrossRefGoogle Scholar
  60. Szybalski, W., Szybalska, E. H., and Ragni, G., 1962, Genetic studies with human cell lines, Natl. Cancer Inst. Monogr. 7:75–89.Google Scholar
  61. Vaughan, V. L., Hansen, D., and Stradler, J., 1976, Parameters of polyethylene glycol-induced cell fusion and hybridization in lymphoid cell lines, Somat. Cell Genet. 2:537–544.CrossRefGoogle Scholar
  62. Watson, B., Cromley, I. P., Gardiner, S. E., Evans, H. J., and Harris, H., 1972, Reappearance of murine hypoxanthine guanine phosphoribosyltransferase activity in mouse A9 cells after attempted hybridization with human cell lines, Exp. Cell Res. 75:401–409.PubMedCrossRefGoogle Scholar
  63. Weissman, B., and Stanbridge, E. J., 1980, Characterization of ouabain resistant, hypoxanthine phosphoribosyltransferase deficient human cells and their usefulness as a general method for the production of human cell hybrids, Cytogenet. Cell Genet. 28:277–239.CrossRefGoogle Scholar
  64. Werkheiser, W. C., 1961, Specific binding of 4-amino folic acid analogues by folic acid reductase, J. Biol. Chem. 236:888–893.Google Scholar
  65. Wigler, M., Silverstein, S., Lee, L. S., Pellicer, A., Cheng, Y. C., and Axel, R., 1977, Transfer of purified Herpes virus thymidine kinase gene to cultured mouse cells, Cell 11:223–232.PubMedCrossRefGoogle Scholar
  66. Wigler, M., Pellicer, A., Silverstein, S., and Axel, R., 1978, Biochemical transfer of single-copy eukaryotic genes using total cellular DNA as donor, Cell 14:725–731.PubMedCrossRefGoogle Scholar
  67. Wigler, M., Sweck, R., Sim, G. K., Wold, B., Pellicer, A., Lacy, E., Maniatis, T., Silverstein, S., and Axel R., 1979, Transformation of mammalian cells with genes from procaryotes and eucaryotes, Cell 16:777–785.PubMedCrossRefGoogle Scholar
  68. Wold, B., Wigler, M., Lacy, E., Maniatis, T., Silverstein, S., and Axel, R., 1979, Introduction and expression of a rabbit β-globin gene in mouse fibroblasts, Proc. Natl. Acad. Sci. USA 76:5684–5688.PubMedCrossRefGoogle Scholar
  69. Zepp, H. O., Conover, J. H., Hirschhorn, K., and Hodes, H. L., 1971, Human mosquito somatic cell hybrids induced by ultraviolet-inactivated Sendai virus, Nature New Biol. 229:119–121.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • W. N. Choy
    • 1
  • T. V. Gopalakrishnan
    • 2
  • J. W. Littlefield
    • 2
  1. 1.Toxicology and Biological Evaluation Research, Western Regional Research CenterUnited States Department of Agriculture BerkeleyCaliforniaUSA
  2. 2.Department of Pediatrics, School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations