Advertisement

Shedding of Tumor Cell Surface Membranes

  • Andrejs Liepins

Abstract

Various antigenic determinants of the cell surface membrane not only have been shown to be modulated in the plane of the cell surface by various physiologic and experimental conditions (Nowotny et al., 1974; Poskitt et al., 1976; Raz et al., 1978; Van Blitterswijk et al., 1979), but have also been transferred to recipient cells by membrane vesicle-cell hybridization techniques (Poste and Nicolson, 1980; Volsky et al., 1981). These lines of evidence have provided the necessary impetus for the development of methods for the procurement of cell surface membranes without cell disruption or the use of drugs that may alter their biologic properties.

Keywords

Membrane Vesicle P815 Cell Deuterium Oxide Cell Surface Membrane Cell Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, P., 1974, Escape from immune destruction by the host through shedding of surface antigens: Is this a characteristic shared by malignant and embryonic cells? Cancer Res. 34:2077–2882.PubMedGoogle Scholar
  2. Black, P. H., 1980a, Shedding from the cell surface of normal and cancer cells, Adv. Cancer Res. 32:75–199.PubMedCrossRefGoogle Scholar
  3. Black, P. H., 1980b, Shedding from normal and cancer-cell surfaces, N. Engl. J. Med. 303:1415–1416.PubMedCrossRefGoogle Scholar
  4. Borisy, G. G., Olmstead, J. B., and Klugman, R. A., 1972, In vitro aggregation of cytoplasmic microtubule subunits, Proc. Natl. Acad. Sci. USA 69:2890–2894.PubMedCrossRefGoogle Scholar
  5. Boyse, E. A., Old, L.J., and Stockert, E., 1965, The TL (Thymus leukemia) antigen: A review, in: Immunopathology, 4th Int. Symp. Monte Carlo (P. Grabar and P. A. Miescher, eds.), pp. 23–40, Grune and Stratton, Inc. N.Y.Google Scholar
  6. Brinkley, B. R., Fuller, G. M., and Highfield, D. P., 1975, Cytoplasmic microtubules and transformed cells in culture: Analysis by tubulin antibody immunofluorescence, Proc. Natl. Acad. Sci. USA 72:4981–4985.PubMedCrossRefGoogle Scholar
  7. Britch, M., and Allen, T. D., 1981, The effects of cytochalasin B on the cytoplasmic contractile network revealed by whole-cell transmission electron microscopy, Exp. Cell Res. 131:161–172.PubMedCrossRefGoogle Scholar
  8. Davey, G. C., Currie, G. A., and Alexander, P., 1976, Spontaneous shedding and antibody induced modulation of histocompatibility antigens on murine lymphomata: Correlation with metastatic capacity, Br. J. Cancer 33:9–14.PubMedCrossRefGoogle Scholar
  9. De Broe, M. E., Wieme, R. J., Logghe, G. N., and Roels, F., 1977, Spontaneous shedding of plasma membrane fragments by human cells in vivo and in vitro, Clin. Chim. Acta 81:237–245.PubMedCrossRefGoogle Scholar
  10. Dedman, J. R., Brinkley, B. R., and Means, A. R., 1979, Regulation of microfilaments and microtubules by calcium and cyclic AMP, in: Advances in Cyclic Nucleotide Research, Volume II (P. Greengard and G. A. Robison, eds.), Raven Press, New York, pp. 131–174.Google Scholar
  11. Edelman, G. M., 1976, Surface modulation in cell recognition and cell growth, Science 192:218–226.PubMedCrossRefGoogle Scholar
  12. Gasic, G. J., Boettiger, D., Catalfamo, J. L., Gasic, T. B., and Stewart, G. J., 1978, Aggregation of platelets and cell membrane vesiculation by rat cells transformed in vitro by Rous Sarcoma Virus, Cancer Res. 38:2950–2955.PubMedGoogle Scholar
  13. Godman, G. C., and Miranda, A. F., 1978, Cellular contractibility and the visible effects of cytochalasin, in: Cytochalasins — Biochemical and Cell Biological Aspects, North-Holland Research Monographs: Frontiers of Biology, Volume 46 (S. W. Tanenbaum, ed.), Elsevier/ North-Holland Biomedical Press, New York, pp. 278–429.Google Scholar
  14. Godman, G. C., Miranda, A. F., Deitch, A. D., and Tanenbaum, S. W., 1975, Action of cytochalasin-D on cells of established lines, J. Cell Biol. 64:644–667.PubMedCrossRefGoogle Scholar
  15. Hart, I. R., Raz, A., and Fidler, I. J., 1980, Effects of cytoskeleton-disrupting agents on the metastatic behavior of melanoma cells, J. Natl. Cancer Inst. 64:891–900.PubMedGoogle Scholar
  16. Hoerl, B. J., and Scott, R. E., 1978, Plasma membrane vesiculation: A cellular response to injury, Virchows Arch. B Cell Path. 27:335–345.Google Scholar
  17. Jaken, S., and Black, P. H., 1979, Differences in intracellular distribution of plasminogen activator in growing, confluent, and transformed 3T3 cells, Proc. Natl. Acad. Sci. USA 76:246–250.PubMedCrossRefGoogle Scholar
  18. Jones, P. A., Laug, W. E., and Benedict, W. F., 1975, Fibrinolytic activity in a human fibrosarcoma cell line and evidence for the induction of plasminogen activator secretion during tumor formation, Cell 6:245–252.PubMedCrossRefGoogle Scholar
  19. Katz, J. J., and Crespi, H. L., 1970, Isotope effects in biological systems, in: Isotope Effects in Chemical Reactions, ACS Monograph 167 (C. J. Collins and N. S. Bowman, eds.), Van Nostrand Reinhold, New York, pp. 266–363.Google Scholar
  20. Kim, U., Baumler, A., Carruthers, C., and Bielat, K., 1975, Immunological escape mechanism in spontaneously metastasizing mammary tumors, Proc. Natl. Adac. Sci. USA 72:1012–1016.CrossRefGoogle Scholar
  21. Kirkland, W. L., and Burton, P. R., 1972, Dibutyryl cyclic AMP-mediated stabilization of mouse neuroblastoma cell neurite microtubules exposed to low temperature, Nature New. Biol. 240:205–207.PubMedGoogle Scholar
  22. Koch, G. L. E., and Smith, M. J., 1978, An association between actin and the major histocompatibility antigen H-2, Nature 273:274–278.PubMedCrossRefGoogle Scholar
  23. Liepins, A., and Hillman, A. J., 1981, Shedding of tumor cell surface membranes, Cell Biol. Internatl. Reports 5:15–26.CrossRefGoogle Scholar
  24. Liepins, A., Faanes, R. B., Choi, Y. S., and de Harven, E., 1978, T-lymphocyte mediated lysis of tumor cells in the presence of alloantiserum, Cell. Immunol. 36:331–344.PubMedCrossRefGoogle Scholar
  25. Meek, W. D., and Puck, T. T., 1979, Role of the microfibrilar system in knob action of transformed cells, J. Supramol. Struct. 12:335–354.PubMedCrossRefGoogle Scholar
  26. Nicolson, G. L., Smith, J. R., and Poste, G., 1976, Effects of local anesthetics on cell morphology and membrane associated cytoskeletal organization in BALB/3T3 cells, J. Cell Biol. 68:395–402.PubMedCrossRefGoogle Scholar
  27. Nordquist, R. E., Anglin, J. H, and Lerner, M. P., 1977, Antibody induced antigen redistribution and shedding from human breast cancer cells, Science 197:366–367.PubMedCrossRefGoogle Scholar
  28. Nowotny, A., Groshman, J., Abdelnoor, A., Rote, N., Cynara Yang, Waltersdorff, R., 1974, Escape of TA3 tumors from allogeneic immune rejection: Theory and experiments, Eur. J. Immunol. 4:73–78.PubMedCrossRefGoogle Scholar
  29. Ostlund, R. E., Leung, J. T., and Hajek, S. V., 1980, Regulation of microtubule assembly in cultured fibroblasts, J. Cell Biol. 85:386–391.PubMedCrossRefGoogle Scholar
  30. Pearson, G. R., and Scott, R. E., 1977, Isolation of virus-free Herpes virus saimiri antigen-positive plasma membrane vesicles, Proc. Natl. Acad. Sci. USA 74:2546–2550.PubMedCrossRefGoogle Scholar
  31. Petitou, M., Tuy, F., Rosenfeld, C., Mishal, Z., Paintrand, M., Jasnin, C., Mathe, G., and Inbar, M., 1978, Decreased microviscosity of membrane lipids in leukemic cells: Two possible mechanisms, Proc. Natl. Acad. Sci. USA 75:2306–2310.PubMedCrossRefGoogle Scholar
  32. Porter, K. R., Puck, T. T., Hsie, A. W., and Kelly, D., 1974, An electron microscope study of the effects of dibutyryl cyclic AMP on Chinese hamster ovary cells, Cell 2:145–162.PubMedCrossRefGoogle Scholar
  33. Poskitt, P. K. F., Poskitt, T. R., and Wallace, J. H., 1976, Release into culture medium of membrane-associated, tumor-specific antigen by B-16 melanoma cells (39332), Proc. R. Soc. Exp. Biol. Med. 152:76–80.Google Scholar
  34. Poste, G., and Nicolson, G. L., 1980, Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells, Proc. Natl. Acad. Sci. USA 77:399–403.PubMedCrossRefGoogle Scholar
  35. Prujansky-Jakobovits, A., Volsky, D. J., Loyter, A., and Sharon, N., 1980, Alteration of lymphocyte surface properties by insertion of foreign functional components of plasma membrane, Proc. Natl. Acad. Sci. USA 77:7247–7251.PubMedCrossRefGoogle Scholar
  36. Puck, T. T., 1977, Cyclic AMP, the microtubule-microfilament system, and cancer, Proc. Natl. Acad. Sci. USA 74:4491–4495.PubMedCrossRefGoogle Scholar
  37. Quigley, J. P., 1976, Association of a protease (plasminogen activator) with a specific membrane fraction isolated from transformed cells, J. Cell Biol. 71:472–486.PubMedCrossRefGoogle Scholar
  38. Raz, A., Barzilai, R., Spira, G., and Inbar, M., 1978, Oncogenicity and immunogenicity associated with membranes from cell-free ascites fluid of lymphoma-bearing mice, Cancer Res. 38:2480–2485.PubMedGoogle Scholar
  39. Roozemond, R. C., and Urli, D. C., 1981, Fluorescence polarization studies and biochemical properties of membranes exfoliated from the cell surface of rabbit thymocytes in situ, Biochim. Biophys. Acta 643:327–338.PubMedCrossRefGoogle Scholar
  40. Scott, R. E., 1976, Plasma membrane vesiculation: A new technique for the isolation of plasma membranes, Science 194:743–745.PubMedCrossRefGoogle Scholar
  41. Sundqvist, K.-G., and Ehrnst, A. 1976, Cytoskeletal control of surface membrane mobility, Nature 264:226–231.PubMedCrossRefGoogle Scholar
  42. Trump, B. F., Berezesky, J. K., Laiho, K. U., Osormio, A. R., Mergner, W. J., and Smith, M. W., 1980, The role of calcium in cell injury. A review, in: Scanning Electron Microscopy II, SEM Inc., AMF O’Hare (Chicago), Illinois, pp. 437–462.Google Scholar
  43. Van Blitterswijk, W. J., Emmelot, P., Hilkmann, M., Hilgers, J., and Feltkamp, C. A., 1979, Rigid plasma-mambrane derived vesicles, enriched in tumor-associated surface antigens (MLr), occurring in the ascites fluid of a murine leukemia (GRSL), Int. J. Cancer 23:62–70.PubMedCrossRefGoogle Scholar
  44. Virtanen, J., and Mietinen, A., 1980, The role of actin in the surface integrity of cultured rat liver parenchymal cells, Cell Biol. International Reports 4:29–36.CrossRefGoogle Scholar
  45. Volsky, D. J., Ahrlund-Richter, L., Dalianis, T., and Klein, G., 1981, Implantation of mouse histocompatibility antigens into membranes of cultured tumor cells, Eur. J. Immunol. 11:341–344.PubMedCrossRefGoogle Scholar
  46. Walsh, F. S., Barber, B. H., and Crumpton, M. J., 1976, Preparation of inside-out vesicles of pig lymphocyte plasma membrane, Biochemistry 15:3557–3563.PubMedCrossRefGoogle Scholar
  47. Zeligs, J. D., and Wollman, S. H., 1977, Ultrastructure of blebbing and phagocytosis of blebs by hyperplastic thyroid epithelial cells in vivo, J. Cell. Biol. 72:584–594.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Andrejs Liepins
    • 1
  1. 1.Memorial UniversitySt. John’sCanada

Personalised recommendations