Mitochondrial Influences in Hybrid Cells

  • Michael L. Ziegler


The analysis of genetic mechanisms underlying phenotypic expression in somatic cells depends on techniques which can demonstrate the presence of particular heritable components. For genetic elements located in the nucleus of the cell, numerous chromosomal, drug resistance, and biochemical markers are now available which allow study of specific loci. Similarly, for the analysis of mitochondrial inheritance in somatic cells there has been increased availability of drug resistance markers which can be transmitted by cytoplasmic transfer (Bunn et al., 1974; Lictor and Getz, 1978; Harris, 1978). Specific differences in buoyant density and restriction endonuclease digest patterns of mitochondrial DNA also have served as markers for the identification of cytoplasmic genetic determinants (Dawid et al., 1974; Case and Wallace, 1981).


Hybrid Cell Somatic Cell Hybrid Chinese Hamster Cell Cytoplasmic Inheritance Mitochondrial Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attardi, B., and Attardi, G., 1972, Fate of mitochondrial DNA in human-mouse somatic cell hybrids, Proc. Natl. Acad. Sci. USA 69:129–133.PubMedCrossRefGoogle Scholar
  2. Boveri, T., 1893, An organism produced sexually without characteristics of the mother, Am. Naturalist 27:222–232.CrossRefGoogle Scholar
  3. Bunn, C. L., Wallace, D. C., and Eisenstadt, J. M., 1974, Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells, Proc. Natl. Acad. Sci. USA 71:1681–1685.PubMedCrossRefGoogle Scholar
  4. Case, J. T., and Wallace, D. C., 1981, Maternal inheritance of mitochondrial DNA polymorphisms in cultured human fibroblasts, Somat. Cell Genet. 7:103–108.PubMedCrossRefGoogle Scholar
  5. Clayton, D. A., Teplitz, R. L., Nabholz, M., Dovey, H., and Bodmer, W., 1971, Mitochondrial DNA of human-mouse cell hybrids, Nature 234:560–562.PubMedCrossRefGoogle Scholar
  6. Coon, H. G., Horak, I., and Dawid, I. B., 1973, Propagation of both parental mitochondrial DNAs in rat-human and mouse-human hybrid cells, J. Mol. Biol. 81:285–298.PubMedCrossRefGoogle Scholar
  7. Dawid, I. G., Horak, I., and Coon, H. G., 1974, The use of somatic cells as an approach to mitochondrial genetics in animals, Genetics 78:459–479.PubMedGoogle Scholar
  8. De Francesco, L., Attardi, G., and Croce, C. M., 1980, Uniparental propagation of mitochondrial DNA in mouse-human cell hybrids, Proc. Natl. Acad. Sci. USA 77:4079–4083.PubMedCrossRefGoogle Scholar
  9. Ditta, G., Soderberg, K., Landy, F., and Scheffler, I. E., 1976, The selection of Chinese hamster cells deficient in oxidative energy metabolism, Somat. Cell Genet. 2:331–344.PubMedCrossRefGoogle Scholar
  10. Doersen, C., and Stanbridge, E. J., 1979, Cytoplasmic inheritance of erythromycin resistance in human cells, Proc. Natl. Acad. Sci. USA 76:4549–4553.PubMedCrossRefGoogle Scholar
  11. Dujon, B., Kruszewska, A., Slonimski, P. P., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Netter, P., and Weill, L., 1975, Mitochondrial Genetics X: Effects of UV irradiation on transmission and recombination of mitochondrial genes in Saccharomyces cerevisiae, Mol. Gen. Genet. 137:29–72.Google Scholar
  12. Eliceiri, G. L., 1973, The mitochondrial DNA of hamster-mouse hybrid cells, FEBS Lett. 36:232–234.PubMedCrossRefGoogle Scholar
  13. Gear, A. R. L., 1974, Rhodamine 6G: A potent inhibitor of mitochondrial oxidative phosphorylation, J. Biol. Chem. 249:3628–3637.PubMedGoogle Scholar
  14. Gillham, N. W., Boynton, J. E., and Lee, R. W., 1974, Segregation and recombination of non-Mendelian genes in Chlamydomonas, Genetics 78:439–457.PubMedGoogle Scholar
  15. Graves, J. A. M., 1972, Cell cycles and chromosome replication patterns in interspecific somatic hybrids, Exp. Cell Res. 73:81–94.PubMedCrossRefGoogle Scholar
  16. Graves, J. A. M., and Koschel, K. W., 1980, Changes in the cell cycle during culture of mousechinese hamster cell hybrids, J. Cell. Physiol. 102:209–216.PubMedCrossRefGoogle Scholar
  17. Harris, M., 1978, Cytoplasmic transfer of resistance to antimycin A in Chinese hamster cells, Proc. Natl. Acad. Sci. USA 75:5604–5608.PubMedCrossRefGoogle Scholar
  18. Harris, M., 1980, Pyruvate blocks expression of sensitivity to antimycin A and chloramphenicol, Somat. Cell Genet. 6:699–708.PubMedCrossRefGoogle Scholar
  19. Humphrey, R. M., and Hsu, T. C., 1965, Further studies on biological properties of mammalian cell lines resistant to 5-bromodeoxyuridine, Texas Rep. Biol. Med. 23:321.Google Scholar
  20. Jami, J., and Grandchamp, S., 1971, Karyological properties of human-mouse somatic hybrids, Proc. Natl. Acad. Sci. USA 68:3097–3101.PubMedCrossRefGoogle Scholar
  21. Johnson, L. V., Walsh, M. L., and Chen, L. B., 1980, Localization of mitochondria in living cells with rhodamine 123, Proc. Natl. Acad. Sci. USA 77:990–994.PubMedCrossRefGoogle Scholar
  22. Lanfranchi, G., and Marin, G., 1981, Evidence for the derivation of mammalian somatic hybrids from polykaryocytes, Exp. Cell Res. 133:255–260.PubMedCrossRefGoogle Scholar
  23. Lichtor, T., and Getz, G. S., 1978, Cytoplasmic inheritance of rutamycin resistance in mouse fibroblasts, Proc. Natl. Acad. Sci. USA 75:324–328.PubMedCrossRefGoogle Scholar
  24. Mascarello, J. T., Soderberg, K., and Scheffler, I. E., 1980, Assignment of a gene for succinate dehydrogenase to human chromosome 1 by somatic cell hybridization, Cytogenet. Cell Genet. 28:121–135.PubMedCrossRefGoogle Scholar
  25. Matsuya, H., and Green, H., 1969, Somatic cell hybrid between the established human line D98 (presumptive HeLa) and 3T3, Science 163:697–698.PubMedCrossRefGoogle Scholar
  26. Sager, R., and Ramanis, Z., 1967, Biparental inheritance of nonchromosomal genes induced by ultraviolet irradiation, Proc. Natl. Acad. Sci. USA 58:931–937.PubMedCrossRefGoogle Scholar
  27. Sager, R., and Ramanis, Z., 1973, The mechanism of maternal inheritance in Chlamydomonas: Biochemical and genetic studies, Theor. Appl. Genet. 43:101–108.CrossRefGoogle Scholar
  28. Strugger, S., 1938, Die Vitalfärbung des Protoplasmas mit Rhodamin B und 6G, Protoplasma 30:85–100.CrossRefGoogle Scholar
  29. Wallace, D. C., and Eisenstadt, J. M., 1979, Expression of cytoplasmically inherited genes for chloramphenicol resistance in interspecific somatic cell hybrids and cybrids, Somat. Cell Genet. 5:373–396.CrossRefGoogle Scholar
  30. Ziegler, M. L., and Davidson, R. L., 1979, The effect of hexose on chloramphenicol sensitivity and resistance in Chinese hamster cells, J. Cell. Physiol. 98:627–636.PubMedCrossRefGoogle Scholar
  31. Ziegler, M. L., and Davidson, R. L., 1981, Elimination of mitochondrial elements and improved viability in hybrid cells, Somat. Cell Genet. 7:73–88.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Michael L. Ziegler
    • 1
  1. 1.Department of Pathology and College of DentistryUniversity of Kentucky Medical CenterLexingtonUSA

Personalised recommendations