The Influence of Cytoplast-to-Cell Ratio on Cybrid Formation

  • Clive L. Bunn


Fusions in which one of the partners is a cytoplasmic fragment of a cell, or cytoplast, have been extensively used in recent years to investigate a variety of problems in biology. For example, cytoplasmic inheritance can be observed. Properties of a cell that can be transferred and maintained through its cytoplasm to a recipient cell are presumed to be controlled by cytoplasmic hereditary factors. Thus, cytoplasmic transfer of chloramphenicol (CAP) resistance in mouse and human cells suggested that mitochondrial DNA (mtDNA) controlled CAP resistance (Bunn et al., 1974; Wallace et al., 1975), and this suggestion has proved correct (Clark and Shay, 1980; Blanc et al., 1981). Similarly, the cytoplasmic transfer of murine intracisternal A particles (Malech and Wivel, 1976) and of microtubule-organizing centers (Shay et al., 1978) suggest at least a partial replicative autonomy for these particles.


Recipient Cell Cytoplasmic Incompatibility Human Diploid Fibroblast Teratocarcinoma Cell Cytoplasmic Inheritance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blanc, H., Wright, C. T., Bibb, M. J., Wallace, D. C., and Clayton, D. A., 1981, Mitochondrial DNA of chloramphenicol-resistant mouse cells contains a single nucleotide change in the region encoding the 3′ end of the large ribosomal RNA, Proc. Natl. Acad. Sci. USA 78:3789–3793.PubMedCrossRefGoogle Scholar
  2. Bogenhagen, D., and Clayton, D. A., 1974, The number of mitochondrial DNA genomes in mouse L and human Hela cells, J. Biol. Chem. 249:7991–7995.PubMedGoogle Scholar
  3. Bunn, C. L., and Eisenstadt, J. M., 1977, Cybrid formation in mouse L cells: The influence of cytoplast-to-cell ratio, Somat. Cell Genet. 3:335–341.PubMedCrossRefGoogle Scholar
  4. Bunn, C. L., and Tarrant, G. M., 1980, Limited lifespan in somatic cell hybrids and cybrids, Exp. Cell Res. 127:385–396.PubMedCrossRefGoogle Scholar
  5. Bunn, C. L., Wallace, D. C., and Eisenstadt, J. M., 1974, Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells, Proc. Natl. Acad. Sci. USA 71:1681–1685.PubMedCrossRefGoogle Scholar
  6. Bunn, C. L., Wallace, D. C., and Eisenstadt, J. M., 1977, Mitotic segregation of cytoplasmic determinants for chloramphenicol resistance in mammalian cells I: Fusions with mouse cell lines, Somat. Cell Genet. 3:71–92.PubMedCrossRefGoogle Scholar
  7. Burke, D. C., and Veomett, G., 1977, Enucleation and reconstruction of interferon-producing cells, Proc. Natl Acad. Sci. USA 74:3391–3395.PubMedCrossRefGoogle Scholar
  8. Clark, M. A., and Shay, J. W., 1980, A method for producing mitochondrial chimeras, J. Cell Biol. 87:293a.Google Scholar
  9. Clark, M. A., Lorkowski, G., and Shay, J. W., 1980a, Suppression of tumorigenicity in cybrids. J. Cell Biol. 87:292a.CrossRefGoogle Scholar
  10. Clark, M. A., Shay, J. W., and Goldstein, L., 1980b, Techniques for purifying L-cell karyoplasts with minimal amounts of cytoplasm. Somat. Cell. Genet. 6:455–464.PubMedCrossRefGoogle Scholar
  11. Coon, H. G., 1979, Tumorgenicity of cybrids, J. Cell Biol. 83:449a.Google Scholar
  12. DeWit-Verbeek, H. A., Hoogeveen, A., and Galjaard, H., 1978, Complementation studies with enucleated fibroblasts from different variants of B-galactosidase deficiency, Exp. Cell Res. 113:215–218.CrossRefGoogle Scholar
  13. Dujon, B., Slonimski, P. P., and Weill, L., 1974, Mitochondrial genetics IX: A model for recombination and segregation of mitochondrial genomes in Saccharomyces cerevisiae, Genetics 78:415–437.PubMedGoogle Scholar
  14. Ege, T., and Ringertz, N., 1975, Viability of cells reconstituted by virus-induced fusion of minicells with anucleate cells, Exp. Cell Res. 94:469–473.PubMedCrossRefGoogle Scholar
  15. Ege, T., Zeuthen, J., and Ringertz, N. R., 1975, Reactivation of chick erythrocyte nuclei after fusion with enucleated cells, Somat. Cell Genet. 1:65–80.PubMedCrossRefGoogle Scholar
  16. England, J. M., Costantino, P., and Attardi, G., 1978, Mitochondrial RNA and protein synthesis in enucleated African Green Monkey cells, J. Mol. Biol. 119:455–462.PubMedCrossRefGoogle Scholar
  17. Giguere, L., and Morais, R., 1981, On suppression of tumorigenicity in hybrid and cybrid mouse cells, Somat. Cell Genet. 7:457–471.PubMedCrossRefGoogle Scholar
  18. Gopalakrishnan, T. V., and Anderson, W. F., 1979, Epigenetic activation of phenylalanine hydroxylase in mouse erythroleukemia cells by the cytoplast of rat hepatoma cells, Proc. Natl. Acad. Sci. USA 76:3932–3936.PubMedCrossRefGoogle Scholar
  19. Gopalakrishnan, T. V., Thompson, E. B., and Anderson, W. F., 1977, Extinction of hemoglobin inducibility in Friend erythroleukemia cells by fusion with cytoplasm of enucleated mouse neuroblastoma or fibroblast cells, Proc. Natl. Acad. Sci. USA 74:1642–1646.PubMedCrossRefGoogle Scholar
  20. Gurdon, J. B., 1974, The Control of Gene Expression in Animal Development, Clarendon Press, Oxford.Google Scholar
  21. Halaban, R., Moellman, G., Godawska, E., and Eisenstadt, J. M., 1980, Pigmentation and tumorigenicity of reconstituted, cybrid, and hybrid mouse cells, Exp. Cell Res. 130:427–435.PubMedCrossRefGoogle Scholar
  22. Hightower, M. J., and Lucas, J. J., 1980, Construction of viable mouse-human hybrid cells by nuclear transplantation, J. Cell. Physiol. 105:93–103.PubMedCrossRefGoogle Scholar
  23. Howell, A. N., and Sager, R., 1978, Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines, Proc. Natl. Acad. Sci. USA 75:2358–2362.PubMedCrossRefGoogle Scholar
  24. James, L., and Veomett, G. E., 1981, Decreased longevity of human diploid cells after incorporation of latex spheres within their cytoplasm, Exp. Cell Res. 132:468–473.PubMedCrossRefGoogle Scholar
  25. Jonak, G. J., and Baserga, R., 1979, Cytoplasmic regulation of two G1-specific temperature sensitive functions, Cell 18:117–123.PubMedCrossRefGoogle Scholar
  26. Jongkind, J. F., Verkerk, A., Schaap, G. H., and Galjaard, H., 1980, Non-selective isolation of fibroblast cybrids by flow sorting, Exp. Cell Res. 130:481–484.PubMedCrossRefGoogle Scholar
  27. Kennett, R. H., 1979, Cell fusion, in: Methods in Enzymology, Volume LVIII (W. B. Jakoby and I. B. Pastan, eds.), Academic Press, New York, pp. 345–359.Google Scholar
  28. Krondahl, U., Bols, N., Ege, T., Linder, S., and Ringertz, N. R., 1977, Cells reconstituted from cell fragments of two different species multiply and form colonies, Proc. Natl. Acad. Sci. USA 74:606–609.PubMedCrossRefGoogle Scholar
  29. Levine, M. P., and Cox, R. P., 1978, Use of latex particles for analysis of heterokaryon formation and cell fusion, Somat. Cell Genet. 4:507–512.PubMedCrossRefGoogle Scholar
  30. Linder, S., 1980, Teratoma cybrids. An analysis of the post-fusion effects of myoblast cytoplasms on embryonal carcinoma cells, Exp. Cell Res. 130:159–167.PubMedCrossRefGoogle Scholar
  31. Linder, S., Brzeski, H., and Ringertz, N. R., 1979, Phenotypic expression in cybrids derived from teratocarcinoma cells fused with myoblast cytoplasms, Exp. Cell Res. 120:1–14.PubMedCrossRefGoogle Scholar
  32. Lipsich, L. A., Lucas, J.J., and Kates, J. R., 1978, Cell cycle dependence of the reactivation of chick erythrocyte nuclei after transplantation into mouse L929 cell cytoplasts, J. Cell Physiol. 97:199–208.PubMedCrossRefGoogle Scholar
  33. Lipsich, L. A., Kates, J. R., and Lucas, J. J., 1979, Expression of a liver specific function by mouse fibroblast nuclei transplanted into rat hepatoma cytoplasts, Nature 281:74–76.PubMedCrossRefGoogle Scholar
  34. Malech, H. L., and Wivel, N. A., 1976, Transfer of murine intracisternal A particle phenotype in chloramphenicol resistant cytoplasts, Cell 9:383–391.PubMedCrossRefGoogle Scholar
  35. McBurney, M. W., and Strutt, B., 1979, Fusion of embryonal carcinoma cells to fibroblast cells, cytoplasts, and karyoplasts, Exp. Cell Res. 124:171–180.PubMedCrossRefGoogle Scholar
  36. Muggleton-Harris, A. L., and Hayflick, L., 1976, Cellular aging studied by the reconstruction of replicating cells from nuclei and cytoplasms isolated from normal human diploid cells, Exp. Cell Res. 103:321–330.PubMedCrossRefGoogle Scholar
  37. Nette, E. G., Sit, H. L., Clavey, W., and King, D. W., 1978, The use of nuclear and cytoplasmic genetic markers in the selection of human-mouse reconstituted cells, J. Cell Biol. 79:392a.Google Scholar
  38. Pollack, R., and Goldman, R., 1973, Synthesis of infective poliovirus in BSC-1 monkey cells enucleated with cytochalasin B, Science 179:915–916.PubMedCrossRefGoogle Scholar
  39. Poste, G., 1973, Anucleate mammalian cells: Applications in cell biology and virology, in: Methods in Cell Biology, Volume VII (D. M. Prescott, ed.), Academic Press, New York, pp. 211–249.Google Scholar
  40. Prescott, D. M., and Kirkpatrick, J. B., 1973, Mass enucleation of cultured animal cells, in: Methods in Cell Biology, Volume VII (D. M. Prescott, ed.), Academic Press, New York, pp. 189–202.Google Scholar
  41. Prescott, D. M., Kates, J., and Kirkpatrick, J. B., 1971, Replication of vaccinia virus DNA in enucleated L-cells, J. Mol. Biol. 59:505–508.PubMedCrossRefGoogle Scholar
  42. Prescott, D. M., Meyerson, D., and Wallace, J., 1972, Enucleation of mammalian cells with cytochalasin B, Exp. Cell Res. 71:480–485.PubMedCrossRefGoogle Scholar
  43. Rabinovitch, P. S., and Norwood, T. H., 1981, Rapid kinetics of polyethylene glycol-mediated cell fusion, Somat. Cell Genet. 7:281–287.PubMedCrossRefGoogle Scholar
  44. Rao, M. V. N., 1976, Reactivation of chick erythrocyte nuclei in young and senescent cells, Exp. Cell Res. 102:25–30.PubMedCrossRefGoogle Scholar
  45. Rmgertz, N. R., Krondahl, U., and Coleman, J. R., 1978, Myogenic expression after fusion of minicells from rat myoblasts (L6) with mouse fibroblast (A9) cytoplasms, Exp. Cell Res. 113:233–246.CrossRefGoogle Scholar
  46. Shay, J. W., 1977, Selection of reconstituted cells from karyoplasts fused to chloramphenicol resistant cytoplasts, Proc. Natl. Acad. Sci. USA 74:2461–2464.PubMedCrossRefGoogle Scholar
  47. Shay, J. W., and Clark, M. A., 1980, Alternative method of identifying reconstituted cells, Proc. Natl. Acad. Sci. USA 77:381–384.PubMedCrossRefGoogle Scholar
  48. Shay, J. W., Porter, K. R., and Prescott, D. M., 1973, Observations on the nuclear and cytoplasmic portions of CHO cells enucleated with cytochalasin B, J. Cell Biol. 59:311a.Google Scholar
  49. Shay, J. W., Peters, T. T., and Fuseler, J. W. 1978, Cytoplasmic transfer of microtubule organizing centers in mouse tissue culture cells, Cell 14:835–842.PubMedCrossRefGoogle Scholar
  50. Veomett, G., Prescott, D. M., Shay, J., and Porter, K. R., 1974, Reconstruction of mammalian cells from nuclear and cytoplasmic components separated by treatment with cytochalasin B, Proc. Natl. Acad. Sci. USA 71:1999–2002.PubMedCrossRefGoogle Scholar
  51. Wallace, D. C., Bunn, C. L., and Eisenstadt, J. M., 1975, Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells, J. Cell Biol. 67:174–188.PubMedCrossRefGoogle Scholar
  52. Wallace, D. C., Pollack, Y., Bunn, C. L., and Eisenstadt, J. M., 1976, Cytoplasmic inheritance in mammalian tissue culture cells, In Vitro 12:758–776.PubMedCrossRefGoogle Scholar
  53. Wallace, D. C., Bunn, C. L., and Eisenstadt, J. M., 1977, Mitotic segregation of cytoplasmic determinants for chloramphenicol resistance in mammalian cells. II: Fusions with human cell lines, Somat. Cell Genet. 3:93–119.PubMedCrossRefGoogle Scholar
  54. Watanabe, T., Dewey, M. J., and Mintz, B., 1978, Teratocarcinoma cells as vehicles for introducing specific mutant mitochondrial genes into mice, Proc. Natl. Acad. Sci. USA 75:5113–5117.PubMedCrossRefGoogle Scholar
  55. Wigler, M. H., and Weinstein, I. B., 1975, A preparative method for obtaining enucleated mammalian cells, Biochem. Biophys, Res. Commun. 63:669–674.CrossRefGoogle Scholar
  56. Wilson, J. N., Howell, N., Sager, R., and Davidson, R. L., 1978, Polyethylene glycol-mediated cybrid formation: High efficiency techniques and cybrid formation without enucleation, Somat. Cell Genet. 4:745–752.PubMedCrossRefGoogle Scholar
  57. Wise, G. E., and Prescott, D. M., 1973, Ultrastructure of enucleated mammalian cells in culture, Exp. Cell Res. 81:65–72.CrossRefGoogle Scholar
  58. Wright, W. E., 1973, The production of mass populations of anucleate cytoplasms, in: Methods in Cell Biology, Volume VII (D. M. Prescott, ed.), Academic Press, New York, pp. 203–210.Google Scholar
  59. Wright, W. E., 1978, The isolation of heterokaryons and hybrids by a selective system using irreversible biochemical inhibitors, Exp. Cell Res. 112:395–407.PubMedCrossRefGoogle Scholar
  60. Wright, W. E., and Hayflick, L., 1975a, Nuclear control of cellular aging demonstrated by hybridization of anucleated and whole cultured normal human fibroblasts, Exp. Cell Res. 96:113–121.PubMedCrossRefGoogle Scholar
  61. Wright, W. E., and Hayflick, L., 1975b, Use of biochemical lesions for selection of human cells with hybrid cytoplasms, Proc. Natl. Acad. Sci. USA 72:1812–1816.PubMedCrossRefGoogle Scholar
  62. Yatscoff, R. W., Mason, J. R., Patel, H. V., and Freeman, K. B., 1981, Cybrid formation with recipient cells containing dominant phenotypes, Somat. Cell Genet. 7:1–10.PubMedCrossRefGoogle Scholar
  63. Zeigler, M. L., 1978, Phenotypic expression of malignancy in hybrid and cybrid mouse cells, Somat. Cell Genet. 4:477–489.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Clive L. Bunn
    • 1
  1. 1.Department of BiologyUniversity of South CarolinaColumbiaUSA

Personalised recommendations