Cytoplasmic Inheritance of Chloramphenicol Resistance in Mammalian Cells

  • Douglas C. Wallace


Chloramphenicol (CAP) resistance was the first cytoplasmic drug resistance marker to be described for mammalian cells. CAP and a variety of structurally related analogs (Fig. 1) are potent inhibitors of both bacteria and mammalian cells. Inhibition of bacterial growth is rapid, but inhibition of mammalian cell replication requires several generations (Spolsky and Eisenstadt, 1972; Bunn et al., 1974; D. C. Wallace et al., 1975).


Chinese Hamster Cell Chloramphenicol Resistance Mitochondrial Protein Synthesis Cytoplasmic Inheritance Reconstituted Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adoutte, A., and Beisson, J., 1972, Evolution of mixed populations of genetically different mitochondria in Paramecium aurelia, Nature 235:393–396.PubMedCrossRefGoogle Scholar
  2. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G., 1981, Sequence and organization of the human mitochondrial genome, Nature 290:457–465.PubMedCrossRefGoogle Scholar
  3. Attardi, B., and Attardi, G., 1972, Fate of mitochondrial DNA in human-mouse somatic cell hybrids, Proc. Natl. Acad. Sci. USA 69:129–133.PubMedCrossRefGoogle Scholar
  4. Baer, R. J., and Dubin, D.T., 1981, Methylated regions of hamster mitochondrial ribosomal RNA: Structural and functional correlates, Nucleic Acids Res. 9:323–337.PubMedCrossRefGoogle Scholar
  5. Bastos, R. de N., and Mahler, H. R., 1974, Molecular mechanisms of mitochondrial genetic activity. Effects of ethidium bromide on the deoxyribonucleic acid and energetics of isolated mitochondria, J. Biol. Chem. 249:6617–6627.Google Scholar
  6. Blanc, H., Adams, C. A., and Wallace, D. C., 1981a, Different nucleotide changes in the large rRNA gene of the mitochondrial DNA confer chloramphenicol resistance on two human cell lines, Nucleic Acids Res. 9:5785–5795.PubMedCrossRefGoogle Scholar
  7. Blanc, H., Wright, C. T., Bibb, M. J., Wallace, D. C., and Clayton, D. A., 1981b, Mitochondrial DNA of chloramphenicol-resistant mouse cells contains a single nucleotide change in the region encoding the 3′ end of the large ribosomal RNA, Proc. Natl. Acad. Sci. USA 78:3789–3793.PubMedCrossRefGoogle Scholar
  8. Brosius, J., Dull, T. J., and Noller, H. F., 1980, Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli, Proc. Natl. Acad. Sci. USA 77:201–204.PubMedCrossRefGoogle Scholar
  9. Brown, W. M., 1980, Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis, Proc. Natl. Acad. Sci. USA 77:3605–3609.PubMedCrossRefGoogle Scholar
  10. Brown, W. M., George, M., Jr., and Wilson, A. C., 1979, Rapid evolution of animal mitochondrial DNA, Proc. Natl. Acad. Sci. USA 76:1967–1971.PubMedCrossRefGoogle Scholar
  11. Bunn, C. L., and Eisenstadt, J. M., 1977a, Cybrid formation in mouse L cells: the influence of cytoplast-to-cell ratio, Somat. Cell Genet. 3:335–341.PubMedCrossRefGoogle Scholar
  12. Bunn, C. L., and Eisenstadt, J. M., 1977b, Carbomycin resistance in mouse L cells, Somat. Cell Genet. 3:611–627.PubMedCrossRefGoogle Scholar
  13. Bunn, C. L., Wallace, D. C., and Eisenstadt, J. M., 1974, Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells, Proc. Natl. Acad. Sci. USA 71:1681–1685.PubMedCrossRefGoogle Scholar
  14. Bunn, C. L., Wallace, D. C., and Eisenstadt, J. M., 1977, Mitotic segregation of cytoplasmic determinants for chloramphenicol resistance in mammalian cells I: Fusions with mouse cell lines, Somat. Cell Genet. 3:71–92.PubMedCrossRefGoogle Scholar
  15. Carter, S. B., 1967, Effects of cytochalasins on mammalian cells, Nature 213:261–264.PubMedCrossRefGoogle Scholar
  16. Case, J.T., and Wallace, D. C., 1981, Maternal inheritance of mitochondrial DNA polymorphisms in cultured human fibroblasts, Somat. Cell Genet. 7:103–108.PubMedCrossRefGoogle Scholar
  17. Clark, M. A., Shay, J. W., and Goldstein, L., 1980, Techniques for purifying L-cell karyoplasts with minimal amounts of cytoplasm. Somat. Cell Genet. 6:455–464.PubMedCrossRefGoogle Scholar
  18. Clayton, D. A., and Teplitz, R. L., 1972, Intracellular mosaicism (nuclear-/mitochondrial+) for thymidine kinase in mouse L cells, J. Cell Sci. 10:487–493.PubMedGoogle Scholar
  19. Clayton, D. A., Teplitz, R. L., Nabholz, M., Dovey, H., and Bodmer, W., 1971, Mitochondrial DNA of human-mouse cell hybrids, Nature 234:560–562.PubMedCrossRefGoogle Scholar
  20. Coon, H. G., 1978, The genetics of the mitochondrial DNA of mammalian somatic cells, their hybrids and cybrids, Natl. Cancer Inst. Monogr. 48:45–55.PubMedGoogle Scholar
  21. Coon, H. G., and Ho, C., 1978, Transformation of cultured cells to chloramphenicol resistance by purified mammalian mitochondrial DNA, in: Genetic Interaction and Gene Transfer, Brookhaven Symposium, Volume 29 (C. W. Anderson, ed.), Brookhaven Natl. Lab., Upton, New York, pp. 166–177.Google Scholar
  22. Coon, H. G., Horak, I., and Dawid, I. B., 1973, Propagation of both parental mitochondrial DNAs in rat-human and mouse-human hybrid cells, J. Mol. Biol. 81:285–298.PubMedCrossRefGoogle Scholar
  23. Costantino, P., and Attardi, G., 1975, Identification of discrete electrophoretic components among the products of mitochondrial protein synthesis in HeLa cells, J. Mol. Biol. 96:291–306.PubMedCrossRefGoogle Scholar
  24. Craig, I., and Webb, M., 1979, Resistance to antimycin A: A new extrachromosomal genetic marker in mammalian cells, J. Supramol. Struct. 10–12 (Suppl. 3):396 Abt.Google Scholar
  25. Croizat, B., and Attardi, G., 1975, Selective in vivo damage by ‘visible’ light of BrdU-containing mitochondrial DNA in a thymidine kinase-deficient mouse cell line with persistent mitochondrial enzyme activity, J. Cell. Sci. 19:69–84.PubMedGoogle Scholar
  26. De Francesco, L., Attardi, G., and Croce, C. M., 1980, Uniparental propagation of mitochondrial DNA in mouse-human cell hybrids, Proc. Natl. Acad. Sci. USA 77:4079–4083.PubMedCrossRefGoogle Scholar
  27. Das, H. K., Goldstein, A., and Kanner, L. C., 1966, Inhibition by chloramphenicol of the growth of nascent protein chains in Escherichia coli, Mol. Pharmacol. 2:158–170.PubMedGoogle Scholar
  28. Ditta, G., Soderberg, K., Landy, F., and Scheffler, I. E., 1976, The selection of Chinese hamster cells deficient in oxidative energy metabolism, Somat. Cell Genet. 2:331–344.PubMedCrossRefGoogle Scholar
  29. Ditta, G., Soderberg, K., and Scheffler, I. E., 1977, Chinese hamster cell mutant with defective mitochondrial protein synthesis, Nature 268:64–67.PubMedCrossRefGoogle Scholar
  30. Doersen, C.-J., and Stanbridge, E. J., 1979, Cytoplasmic inheritance of erythromycin resistance in human cells, Proc. Natl Acad. Sci. USA 76:4549–4553.PubMedCrossRefGoogle Scholar
  31. Dujon, B., 1980, Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the ω and rib-1 loci, Cell 20:185–197.PubMedCrossRefGoogle Scholar
  32. Dujon, B., Colson, A. M., and Slonimski, P. P., 1977, The mitochondrial genetic map of Saccharomyces cerevisiae: Compilation of mutants, genes, genetic and physical maps, in: Mitochondria 1977: Genetics and Biogenesis of Mitochondria (W. Bandlow, R. J. Schweyen, K. Wolf, and F. Kaudewitz, eds.), W. de Gruyter, Berlin, pp. 579–669.Google Scholar
  33. Dulbecco, R., and Freeman, G., 1959, Plaque production by the polyoma virus, Virology 8:396–397.PubMedCrossRefGoogle Scholar
  34. Eliceiri, G. L., 1973, The mitochondrial DNA of hamster-mouse hybrid cells, FEBS Lett. 36:232–234.PubMedCrossRefGoogle Scholar
  35. Ferguson, J., and Davis, R. W., 1978, Quantitative electron microscopy of nucleic acids, in: Advanced Techniques in Biological Electron Microscopy II (J. K. Koehler, ed.), Springer-Verlag, Berlin, pp. 123–171.CrossRefGoogle Scholar
  36. Ferris, S. D., Sage, R. D., and Wilson, A. C., 1982, Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female, Nature 295:163–165.PubMedCrossRefGoogle Scholar
  37. Fettes, I. M., Haldar, D., and Freeman, K. B., 1972, Effect of chloramphenicol on enzyme synthesis and growth of mammalian cells, Can. J. Biochem. 50:200–209.PubMedCrossRefGoogle Scholar
  38. Francisco, J. F., Brown, G. G., and Simpson, M. V., 1979, Further studies on types A and B rat mtDNAs: Cleavage maps and evidence for cytoplasmic inheritance in mammals, Plasmid 2:426–436.PubMedCrossRefGoogle Scholar
  39. Freeman, K. B., 1970a, Effects of chloramphenicol and its isomers and analogues on the mitochondrial respiratory chain, Can. J. Biochem. 48:469–478.PubMedCrossRefGoogle Scholar
  40. Freeman, K. B., 1970b, Inhibition of mitochondrial and bacterial protein synthesis by chloramphenicol, Can. J. Biochem. 48:479–485.PubMedCrossRefGoogle Scholar
  41. Giguere, L., and Morais, R., 1981, On suppression of tumorigenicity in hybrid and cybrid mouse cells, Somat. Cell Genet. 7:457–471.PubMedCrossRefGoogle Scholar
  42. Giles, R. E., Blanc, H., Cann, H. M., and Wallace, D. C., 1980a, Maternal inheritance of human mitochondrial DNA, Proc. Natl. Acad. Sci. USA 77:6715–6719.PubMedCrossRefGoogle Scholar
  43. Giles, R. E., Stroynowski, I., and Wallace, D. C., 1980b, Characterization of mitochondrial DNA in chloramphenicol-resistant intraspecific hybrids and a cybrid, Somat. Cell Genet. 6:543–554.PubMedCrossRefGoogle Scholar
  44. Grand Island Biological Company, 1978/1979, Gibco CataJogue, Gibco, Grand Island, New York.Google Scholar
  45. Harris, M., 1980, Pyruvate blocks expression of sensitivity to antimycin A and chloramphenicol, Somat. Cell Genet. 6:699–708.PubMedCrossRefGoogle Scholar
  46. Hayashi, J.-I., Yonekawa, H., Gotoh, O., Watanabe, J., and Tagashira, Y., 1978, Strictly maternal inheritance of rat mitochondrial DNA, Biochem. Biophys. Res. Commun. 83:1032–1038.PubMedCrossRefGoogle Scholar
  47. Hayashi, J.-I., Gotoh, O., Tagashira, Y., Tostu, M., and Sekiguchi, T., 1980, Identification of mitochondrial DNA species in interspecific cybrids and reconstituted cells using restriction endonuclease, FEBS Lett. 117:59–62.PubMedCrossRefGoogle Scholar
  48. Hightower, M. J., Fairfield, F. R., and Lucas, J. J., 1981, A staining procedure for identifying viable cell hybrids constructed by somatic cell fusion, cybridization, or nuclear transplantation, Somat. Cell Genet. 7:321–329.PubMedCrossRefGoogle Scholar
  49. Ho, C., and Coon, H. G., 1979, Restricted mitochondrial DNA fragments as genetic markers in cytoplasmic hybrids, in: Extrachromosomal DNA, ICN-UCLA Symposium on Molecular and Cellular Biology, Volume XV (D. J. Cummings, P. Borst, I. B. Dawid, S. M. Weissman, and C. F. Fox, eds.), Academic Press, New York, pp. 501–514.Google Scholar
  50. Howell, N., and Sager, R., 1977, Differential effects of mitochondrial inhibitors on normal and tumorigenic mouse cells, Fed. Proc. 36:356 Abt.Google Scholar
  51. Howell, A. N., Sager, R., 1978, Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines, Proc. Natl. Acad. Sci. USA 75:2358–2362.PubMedCrossRefGoogle Scholar
  52. Howell, N., and Sager, R., 1979, Cytoplasmic genetics of mammalian cells: Conditional sensitivity to mitochondrial inhibitors and isolation of new mutant phenotypes, Somat. Cell Genet. 5:833–845.PubMedCrossRefGoogle Scholar
  53. Ibrahim, N. G., Burke, J. P., and Beattie, D. S., 1974, The sensitivity of rat liver and yeast mitochondrial ribosomes to inhibitors of protein synthesis, J. Biol. Chem. 249:6806–6811.PubMedGoogle Scholar
  54. Johnson, L. V., Walsh, M. L., and Chen, L. B., 1980, Localization of mitochondria in living cells with rhodamine 123, Proc. Natl. Acad. Sci. USA 77:990–994.PubMedCrossRefGoogle Scholar
  55. Jongkind, J. F., Verkerk, A., and Tanke, H., 1979, Isolation of human fibroblast heterokaryons with two-color flow sorting (FACS II), Exp. Cell Res. 120:444–448.PubMedCrossRefGoogle Scholar
  56. Kearsey, S. E., and Craig, I. W., 1981, Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance. Nature 290:607–608.PubMedCrossRefGoogle Scholar
  57. Kislev, N., Spolsky, C. M., and Eisenstadt, J. M., 1973, Effect of chloramphenicol on the ultrastructure of mitochondria in sensitive and resistant strains of HeLa, J. Cell Biol. 57:571–579.PubMedCrossRefGoogle Scholar
  58. Kroon, A. M., de Vos, W. M., and Bakker, H., 1978, The heterogeneity of rat-liver mitochondrial DNA, Biochim. Biophys. Acta 519:269–273.PubMedGoogle Scholar
  59. Kuhns, M. C., and Eisenstadt, J. M., 1979, Oligomycin-resistant mitochondrial ATPase from mouse fibroblasts, Somat. Cell Genet. 5:821–832.PubMedCrossRefGoogle Scholar
  60. Lamb, A. J., Clark-Walker, G. D., and Linnane, A. W., 1968, The biogenesis of mitochondria 4: The differentiation of mitochondrial and cytoplasmic protein synthesizing systems in vitro by antibiotics, Biochim. Biophys. Acta 161:415–427.PubMedGoogle Scholar
  61. Lansman, R. A., and Clayton, D. A., 1975a, Selective nicking of mammalian mitochondrial DNA in vivo: Photosensitization by incorporation of 5-bromodeoxyuridine, J. Mol. Biol. 99:761–776.PubMedCrossRefGoogle Scholar
  62. Lansman, R. A., and Clayton, D. A., 1975b, Mitochondrial protein synthesis in mouse L-cells: Effect of selective nicking on mitochondrial DNA, J. Mol. Biol. 99:777–793.PubMedCrossRefGoogle Scholar
  63. Lichtor, T., and Getz, G. S., 1978, Cytoplasmic inheritance of rutamycin resistance in mouse fibroblasts, Proc. Natl. Acad. Sci. USA 75:324–328.PubMedCrossRefGoogle Scholar
  64. Littlefield, J. W., 1966, The periodic synthesis of thymidine kinase in mouse fibroblasts, Biochim. Biophys. Acta 114:398–403.PubMedGoogle Scholar
  65. Loeb, J. N., and Hubby, B. G., 1968, Amino acid incorporation by isolated mitochondria in the presence of cycloheximide, Biochim. Biophys. Acta 166:745–748.PubMedGoogle Scholar
  66. Malech, H. L., and Wivel, N. A., 1976, Transfer of murine intracisternal A particle phenotype in chloramphenicol-resistant cytoplasts, Cell 9:383–391PubMedCrossRefGoogle Scholar
  67. Maxam, A. M., and Gilbert, W., 1980, Sequencing end-laoeled DNA with base-specific chemical cleavages, in: Methods in Enzymology, Volume 65 (L. Grossman and K. Moldave, eds.), Academic Press, New York, pp. 499–560.Google Scholar
  68. Mitchell, C. H., and Attardi, G., 1978, Cytoplasmic transfer of chloramphenicol resistance in a human cell line, Somat. Cell Genet. 4:737–744.PubMedCrossRefGoogle Scholar
  69. Mitchell, C. H., England, J. M., and Attardi, G., 1975, Isolation of chloramphenicol-resistant variants from a human cell line, Somat. Cell Genet. 1:215–234.PubMedCrossRefGoogle Scholar
  70. Molloy, P. L., and Eisenstadt, J. M., 1979, Erythromycin resistance in mouse L cells, Somat. Cell Genet. 5:585–595.PubMedCrossRefGoogle Scholar
  71. Morais, R., Gregoire, M., Jennotee, L., and Gravel, D., 1980, Chick embryo cells rendered respiration-deficient by chloramphenicol and ethidium bromide are auxotrophic for pyrimidines, Biochem. Biophys. Res. Commun. 94:71–77.PubMedCrossRefGoogle Scholar
  72. Munro, E., Siegel, R. L., Craig, I. W., and Sly, W. S., 1978, Cytoplasmic transfer of a determinant for chloramphenicol resistance between mammalian cell lines, Proc. R. Soc. Lond. (Biol.) 201:73–85.CrossRefGoogle Scholar
  73. Nass, M. M. K., 1969, Mitochondrial DNA I: Intramolecular distribution and structural relations of single-and double-length circular DNA, J. Mol. Biol. 42:521–528.PubMedCrossRefGoogle Scholar
  74. Nette, E. G., Sit, H. L., Clavey, W., and King, D. W., 1979, Isolation of viable reconstituted cells from human karyoplasts fused to mouse cytoplasts, Exp. Cell Res. 121:143–151.PubMedCrossRefGoogle Scholar
  75. Nierhaus, D., and Nierhaus, K. H., 1973, Identification of the chloramphenicol-binding protein in Escherichia coli ribosomes by partial reconstitution, Proc. Natl. Acad. Sci. USA 70:2224–2228.PubMedCrossRefGoogle Scholar
  76. O’Brien, T. W., Denslow, N. D., Harville, T. O., Hessler, R. A., and Matthews, D. E., 1980, Functional and structural roles of proteins in mammalian mitochondrial ribosomes, in: The Organization and Expression of the Mitochondrial Genome (A. M. Kroon and C. Saccone, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 301–305.Google Scholar
  77. Oliver, N. A., and Wallace, D. C., 1982, Assignment of two mitochondrially-synthesized polypeptides to the human mitocondrial DNA and their use in the study of intracellular mitochondrial interaction, Mol. Cell Biol. 2.Google Scholar
  78. Perlman, S., and Penman, S., 1970, Mitochondrial protein synthesis: Resistance to emetine and response to RNA synthesis inhibitors, Biochem. Biophys. Res. Commun. 40:941–948.PubMedCrossRefGoogle Scholar
  79. Pongs, O., and Messer, W., 1976, The chloramphenicol receptor site in Escherichia coli in vivo affinity labeling by monoiodoamphenicol, J. Mol. Biol. 101:171–184.PubMedCrossRefGoogle Scholar
  80. Pongs, O., Bald, R., and Erdmann, V. A., 1973, Identification of chloramphenicol-binding protein in Escherichia coli ribosomes by affinity labeling, Proc. Natl. Acad. Sci. USA 70:2229–2233.PubMedCrossRefGoogle Scholar
  81. Posakony, J. W., England, J. M., and Attardi, G., 1975, Morphological heterogeneity of HeLa cell mitochondria visualized by a modified diaminobenzidine staining technique, J. Cell Sci. 19:315–329.PubMedGoogle Scholar
  82. Prescott, D. M., Myerson, D., and Wallace, J., 1972, Enucleation of mammalian cells with cytochalasin B, Exp. Cell Res. 71:480–485.PubMedCrossRefGoogle Scholar
  83. Putrament, A., Baranowska, H., and Prazmo, W., 1973, Induction by manganese of mitochondrial antibiotic resistance mutations in yeast, Mol. Gen. Genet. 126:357–366.PubMedCrossRefGoogle Scholar
  84. Putrament, A., Baranowska, H., Ejchart, A., and Jachymczyk, W., 1977, Manganese mutagenesis in yeast. VI. Mn2+ uptake, mitDNA replication and ER induction. Comparison with other divalent cations, Mol. Gen. Genet. 151:69–76.PubMedCrossRefGoogle Scholar
  85. Reitzer, L. J., Wice, B. M., and Kenneil, D., 1979, Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells, J. Biol. Chem. 254:2669–2676.PubMedGoogle Scholar
  86. Ringertz, N. R., 1978, Reconstruction of cells by Sendai virus-induced fusion of cell fragments, Natl. Cancer Inst. Monogr. 48:31–36.PubMedGoogle Scholar
  87. Rosenberg, E., Mora, C., and Edwards, D. L., 1976, Selection of extranuclear mutants of Neurospora crassa, Genetics 83:11–24.PubMedGoogle Scholar
  88. Sager, R., and Kitchen, R., 1975, Selective silencing of eukaryotic DNA, Science 189:426–433.PubMedCrossRefGoogle Scholar
  89. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H., and Roe, B. A., 1980, Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing, J. Mol. Biol. 143:161–178.PubMedCrossRefGoogle Scholar
  90. Schaap, G. H., Van der Kamp, A. W. M., Öry, F. G., and Jongkind, J. F., 1979, Isolation of enucleate cells using a fluorescence activated cell sorter (FACS II), Exp. Cell Res. 122:422–426.PubMedCrossRefGoogle Scholar
  91. Shannon, C., Enns, R., Wheelis, L., Burchiel, K., and Criddle, R. S., 1973, Alterations in mitochondrial adenosine triphosphatase activity resulting from mutation of mitochondrial deoxyribonucleic acid, J. Biol. Chem. 248:3004–3011.PubMedGoogle Scholar
  92. Shay, J. W., 1977, Selection of reconstituted cells from karyoplasts fused to chloramphenicol-resistant cytoplasts, Proc. Natl. Acad. Sci. USA 74:2461–2464.PubMedCrossRefGoogle Scholar
  93. Shay, J. W., Peters, T. T., and Fuseler, J. W., 1978, Cytoplasmic transfer of microtubule organizing centers in mouse tissue culture cells, Cell 14:835–842.PubMedCrossRefGoogle Scholar
  94. Siegel, R. L., Jeffreys, A. J., Sly, W., and Craig, I. W., 1976, Isolation and detailed characterization of human cell lines resistant to D-threochloramphenicol, Exp. Cell Res. 102:298–310.PubMedCrossRefGoogle Scholar
  95. Smith, C. A., 1977, Absence of ethidium bromide induced nicking and degradation of mitochondrial DNA in mouse L-cells, Nucleic Acids Res. 4:1419–1427.PubMedCrossRefGoogle Scholar
  96. Soderberg, K., Mascarello, J. T., Breen, G. A. M., and Scheffler, I. E., 1979, Respiratory-deficient Chinese hamster cell mutants: Genetic characterization, Somat. Cell Genet. 5:225–240.PubMedCrossRefGoogle Scholar
  97. Spolsky, C. M., 1973, Chloramphenicol resistant mutants of HeLa cells, Ph. D. thesis, Yale University.Google Scholar
  98. Spolsky, C. M., and Eisenstadt, J. M., 1972, Chloramphenicol-resistant mutants of human HeLa cells, FEES Lett. 25:319–324.CrossRefGoogle Scholar
  99. Van Etten, R. A., Walberg, M. W., and Clayton, D. A., 1980, Precise localization and nucleotide sequence of the two mouse mitochondrial rRNA genes and three immediately adjacent novel tRNA genes, Cell 22:157–170.PubMedCrossRefGoogle Scholar
  100. Veomett, G., Shay, J., Hough, P. V. C., and Prescott, D. M., 1976, Large-scale enucleation of mammalian cells, in: Methods in Cell Biology, Volume XIII (D. M. Prescott, ed.), Academic Press, New York, pp. 1–6.Google Scholar
  101. Wallace, D. C., 1975, Cytoplasmic genetics in mammalian tissue culture cells, Ph.D. Thesis, Yale University.Google Scholar
  102. Wallace, D. C., 1981, Assignment of the chloramphenicol resistance gene to mitochondrial deoxyribonucleic acid and analysis of its expression in cultured human cells, Mol. Cell. Biol. 1:697–710.PubMedGoogle Scholar
  103. Wallace, D. C., and Eisenstadt, J. M., 1979, Expression of cytoplasmically inherited genes for chloramphenicol resistance in interspecific somatic cell hybrids and cybrids, Somat. Cell Genet. 5:373–396.CrossRefGoogle Scholar
  104. Wallace, D. C., Bunn, C. L., and Eisenstadt, J. M., 1975, Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells, J. Cell Biol. 67:174–188.PubMedCrossRefGoogle Scholar
  105. Wallace, D. C., Pollack, Y., Bunn, C. L., and Eisenstadt, J. M., 1976, Cytoplasmic inheritance in mammalian tissue culture cells, In Vitro 12:758–776.PubMedCrossRefGoogle Scholar
  106. Wallace, D. C., Bunn, C. L., and Eisenstadt, J. M., 1977, Mitotic segregation of cytoplasmic determinants for chloramphenicol resistance in mammalian cells II: Fusions with human cell lines, Somat. Cell Genet. 3:93–119.PubMedCrossRefGoogle Scholar
  107. Wallace, D. C., Oliver, N. A., Blanc, H., and Adams, C. W., 1982, A system to study human mitochondrial genes: Application to chloramphenicol resistance, in: Mitochondrial Genes (P. Slonimski, P. Borst, and G. Attardi, eds.), Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  108. Wallace, R. B., and Freeman, K. B., 1975, Selection of mammalian cells resistant to a chloramphenicol analog, J. Cell Biol. 65:492–498.PubMedCrossRefGoogle Scholar
  109. Wigler, M. H., and Weinstein, I. B., 1975, A preparative method for obtaining enucleated mammalian cells, Biochem. Biophys. Res. Commun. 63:669–674.PubMedCrossRefGoogle Scholar
  110. Wilson, J. M., Howell, N., Sager, R., and Davidson, R. L., 1978, Polyethylene-glycol-mediated cybrid formation: High-efficiency techniques and cybrid formation without enucleation, Somat. Cell Genet. 4:745–752.PubMedCrossRefGoogle Scholar
  111. Wintersberger, U., and Hirsch, J., 1973a, Induction of cytopalsmmic respiratory deficient mutants in yeast by the folic acid analogue, methotrexate I: Studies on the mechanism of petite induction, Mol. Gen. Genet. 126:61–70.PubMedCrossRefGoogle Scholar
  112. Wintersberger, U., and Hirsch, J., 1973b, Induction of cytoplasmic respiratory deficient mutants in yeast by the folic acid analogue, methotrexate II: genetic analysis of the methotrexate-induced petites, Mol. Gen. Genet. 126:71–74.PubMedCrossRefGoogle Scholar
  113. Wiseman, A., and Attardi, G., 1978, Reversible tenfold reduction in mitochondrial DNA content of human cells treated with ethidium bromide, Med. Gen. Genet. 167:51–63.Google Scholar
  114. Wiseman, A., and Attardi, G., 1979, Cytoplasmically inherited mutations of a human cell line resulting in deficient mitochondrial protein synthesis, Somat. Cell Genet. 5:241–262.PubMedCrossRefGoogle Scholar
  115. Yatscoff, R. W., Goldstein, S., and Freeman, K. B., 1978, Conservation of genes coding for proteins synthesized in human mitochondria, Somat. Cell Genet. 4:633–645.PubMedCrossRefGoogle Scholar
  116. Yatscoff, R. W., Mason, J. R., Patel, H. V., and Freeman, K. B., 1981, Cybrid formation with recipient cell lines containing dominant phenotypes, Somat. Cell Genet. 7:1–9PubMedCrossRefGoogle Scholar
  117. Yen, R. C. K., and Harris, M., 1978, Cytoplasmic transfer of chloramphenicol resistance in Chinese hamster cells, Cell Structure and Function 3:79–88.CrossRefGoogle Scholar
  118. Ziegler, M. L., 1978, Phenotypic expression of malignancy in hybrid and cybrid mouse cells, Somat. Cell Genet. 4:477–489.PubMedCrossRefGoogle Scholar
  119. Ziegler, M. L., and Davidson, R. L., 1979, The effect of hexose on chloramphenicol sensitivity and resistance in Chinese hamster cells, J. Cell. Physiol. 98:627–635.PubMedCrossRefGoogle Scholar
  120. Ziegler, M. L., and Davidson, R. L., 1981, Elimination of mitochondrial elements and improved viability in hybrid cells, Somat. Cell Genet. 7:73–88.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Douglas C. Wallace
    • 1
  1. 1.Department of Genetics, School of MedicineStanford UniversityStanfordCaliforniaUSA

Personalised recommendations