Erythromycin Resistance in Human Cells

  • Claus-Jens Doersen
  • Eric J. Stanbridge


The biogenesis of mitochondria depends on the cooperation of the nuclear and mitochondrial genomes. The remarkable nature of the interaction is best seen in the assembly of the mitochondrial protein-synthesizing apparatus and the respiratory enzyme complexes of the inner mitochondrial membrane (Schatz and Mason, 1974; Borst and Grivell, 1978; Tzagoloff et al., 1979). Our understanding of the role of the mitochondrial genome in the biogenesis of mitochondria in lower eukaryotes has benefited from the vast number of mutants affecting mitochondrial function (Borst and Grivell, 1978; Tzagoloff et al., 1979). Many of these mutants were selected by virtue of their resistance to specific inhibitors of mitochondrial protein synthesis and respiration. A similar approach has been applied to somatic cells in recent years. Resistance to the mitochondrial protein synthesis inhibitors chloramphenicol (Bunn et al., 1974; Wallace et al., 1975; Mitchell and Attardi, 1978; Munro et al., 1978) and erythromycin (Doersen and Stanbridge, 1979) has been shown to be cytoplasmically inherited. Noncytoplasmically inherited resistance to carbomycin (Bunn and Eisenstadt, 1977a) and erythromycin (Molloy and Eisenstadt, 1979) has also been reported. Respiration deficiency resulting from defects in mitochondrial protein synthesis has been shown to be both cytoplasmically (Wiseman and Attardi, 1979) and nuclearly (Soderberg et al., 1979) inherited. Cytoplasmic inheritance of resistance to inhibition of respiration (Harris, 1978) and oxidative phosphorylation (Lichtor and Getz, 1977; Breen and Scheffler, 1980) has also been demonstrated. It is hoped that the continued characterization of these mutants and isolation of additional ones will enhance our understanding of the expression of the mammalian mitochondrial genome, the organization and sequence of which has resulted from elegant molecular studies (Attardi, 1981).


HeLa Cell Mitochondrial Genome Resistant Phenotype Resistant Cell Line Mitochondrial Preparation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attardi, G., 1981, Organization and expression of the mammalian mitochondrial genome; A lesson in economy, Trends Biochem. Sci. 6:86–89, 100-103CrossRefGoogle Scholar
  2. Attardi, B., and Attardi, G., 1971, Expression of the mitochondrial genome in HeLa cells. I. Properties of the discrete RNA components from the mitochondrial fraction, J. Moi. Biol. 55:231–249.CrossRefGoogle Scholar
  3. Attardi, B., Cravioto, B., and Attardi, G., 1969, Membrane-bound ribosomes in HeLa cells. I. Their proportion to total cell ribosomes and their association with messenger RNA, J. Mol. Biol. 44:47–70.PubMedCrossRefGoogle Scholar
  4. Bogenhagen, D., and Clayton, D. A., 1974, The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells, J. Biol. Chem. 249:7991–7995.PubMedGoogle Scholar
  5. Borst, P., and Grivell, L. A., 1978, The mitochondrial genome of yeast, Cell 15:705–723.PubMedCrossRefGoogle Scholar
  6. Breen, G. A. M., and Scheffler, I. E., 1980, Cytoplasmic inheritance of oligomycin resistance in Chinese hamster ovary cells, J. Cell Biol. 86:723–729.PubMedCrossRefGoogle Scholar
  7. Bunn, C. L., and Eisenstadt, J. M., 1977a, Carbomycin resistance in mouse L-cells, Somat. Cell Genet. 3:611–627.PubMedCrossRefGoogle Scholar
  8. Bunn, C. L., and Eisenstadt, J. M., 1977b, Cybrid formation in mouse L-cells: The influence of cytoplast-to-cell ratio. Somat. Cell Genet. 3:331–341.Google Scholar
  9. Bunn, C. L., Wallace, D. C., and Eisenstadt, J. M., 1974, Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells, Proc. Natl. Acad. Sci. USA 71:1681–1685.PubMedCrossRefGoogle Scholar
  10. Ceccarini, C., and Eagle, H., 1971, Induction and reversal of contact inhibition of growth by pH modification, Nature New Biol. 233:271–273.PubMedGoogle Scholar
  11. Ditta, G., Soderberg, K., and Scheffler, I. E., 1977, Chinese hamster cell mutant with defective mitochondrial protein synthesis, Nature 268:64–67.PubMedCrossRefGoogle Scholar
  12. Dixon, H., Kellerman, G. M., and Linnane, A. W., 1972, Effect of mikamycin, carbomycin, spiramycin, erythromycin, and paromomycin, on growth and respiration of HeLa cells, Arch. Biochem. Biophys. 152:869–875.PubMedCrossRefGoogle Scholar
  13. Doersen, C.-J., and Stanbridge, E. J., 1979, Cytoplasmic inheritance of erythromycin resistance in human cells, Proc. Natl. Acad. Sci. USA 76:4549–4553.PubMedCrossRefGoogle Scholar
  14. Doersen, C.-J., and Stanbridge, E. J., 1981, Effects of mycoplasma contamination on phenotype expression of mitochondrial mutants in human cells, Mol. Cell Biol. 1:321–329.PubMedGoogle Scholar
  15. Doersen, C.-J., and Stanbridge, E. J., 1982a, Nuclear inheritance of erythromycin resistance in human cells: A new class of mitochondrial protein synthesis mutants, Mol. Cell. Biol. Google Scholar
  16. Doersen, C.-J., and Stanbridge, E. J., 1982b, Erythromycin inhibition of cell proliferation and in vitro mitochondrial protein synthesis in human cells is pH dependent, Biochim. Biophys. Acta, submitted.Google Scholar
  17. Eagle, H., 1971, Buffer combinations for mammalian cell culture, Science 174:500–503.PubMedCrossRefGoogle Scholar
  18. Freeman, K. B., 1970, Effects of chloramphenicol and its isomers and analogues on the mitochondrial respiratory chain, Can. J. Biochem. 48:469–478.PubMedCrossRefGoogle Scholar
  19. Greco, M., Pepe, G., and Saccone, C., 1973, Characterization of the monomer form of rat liver mitochondrial ribosome and its activity in poly U-directed polyphenylalanine synthesis, in: The Biogenesis of Mitochondria (A. M. Kroon and C. Saccone, eds.), Academic Press, New York, pp. 367–376.Google Scholar
  20. Grivell, L. A., Reijnders, L., and deVries, H., 1971, Altered mitochondrial ribosomes in a cytoplasmic mutant of yeast, FEBS Lett. 16:159–163.PubMedCrossRefGoogle Scholar
  21. Grivell, L. A., Netter, P., Borst, P., and Slonimski, P. P., 1973, Mitochondrial antibiotic resistance in yeast: Ribosomal mutants resistant to chloramphenicol, erythromycin and spiramycin, Biochim. Biophys. Acta 312:358–367.PubMedGoogle Scholar
  22. Gupta, R. S., and Siminovitch, L., 1977, The molecular basis of emetine resistance in Chinese hamster ovary cells: Alteration of the 40s ribosomal subunit, Cell 10:61–66.PubMedCrossRefGoogle Scholar
  23. Harris, M., 1978, Cytoplasmic transfer of resistance to antimycin A Chinese hamster cells, Proc. Natl. Acad. Sci. USA 75:5604–5608.PubMedCrossRefGoogle Scholar
  24. Ibrahim, N. G., and Beattie, D. S., 1973, Protein synthesis on ribosomes isolated from rat liver mitochondria: Sensitivity of erythromycin, FEBS Lett. 36:102–104.PubMedCrossRefGoogle Scholar
  25. Ibrahim, N. G., Burke, J. P., and Beattie, D. S., 1973, Mitochondrial protein synthesis in vitro is not an artifact, FEBS Lett. 29:73–76.PubMedCrossRefGoogle Scholar
  26. Kroon, A. M., and deVries, H., 1971, Mitochondriogenesis in animal cells: Studies with different inhibitors, in: Autonomy and Biogenesis of Mitochondria and Chloroplasts (N. K. Boardman, A. W. Linnane, and R. M. Smillie, eds.), Elsevier/North-Holland, Amsterdam, pp. 318–327.Google Scholar
  27. Lederman, M., and Attardi, G., 1970, In vitro protein synthesis in a mitochondrial fraction from HeLa cells: Sensitivity to antibiotics and ethidium bromide, Biochem. Biophys. Res. Commun. 40:1492–1500.PubMedCrossRefGoogle Scholar
  28. Leibowitz, R. D., 1971, The effect of ethidium bromide on mitochondrial DNA synthesis and mitochondrial DNA structure in HeLa cells, J. Cell Biol. 51:116–122.PubMedCrossRefGoogle Scholar
  29. Lichtor, T., and Getz, G. S., 1977, Cytoplasmic inheritance of rutamycin resistance in mouse fibroblasts, Proc. Natl Acad. Sci. USA 75:324–328.CrossRefGoogle Scholar
  30. Linnane, A. W., Lamb, A. J., Christodoulou, C., and Lukins, H. B., 1968, The biogenesis of mitochondria. VI. Biochemical basis for the resistance of Saccharomyces cerevisiae towards antibiotics which specifically inhibit mitochondrial protein synthesis, Proc. Natl. Acad. Sci. USA 59:1288–1293.PubMedCrossRefGoogle Scholar
  31. Manchee, R., and Taylor-Robinson, D., 1969, Studies on the nature of receptors involved in the attachment of tissue culture cells to mycoplasmas, Br. J. Exp. Pathol. 50:66–75.PubMedGoogle Scholar
  32. Mao, J. C.-H., and Putterman, M., 1969, The intramolecular complex of erythromycin and ribosome, J. Mol. Biol. 44:347–361.PubMedCrossRefGoogle Scholar
  33. Mao, J. C.-H., and Wiegand, R. G., 1968, Mode of action of macrolides, Biochim. Biophys., Acta 157:404–413.Google Scholar
  34. Mitchell, C. H., and Attardi, G., 1978, Cytoplasmic transfer of chloramphenicol resistance in a human cell line, Somat. Cell Genet. 4:737–744.PubMedCrossRefGoogle Scholar
  35. Mitchell, C. H., England, J. M., and Attardi, G., 1975, Isolation of chloramphenicol-resistant variants from human cell lines, Somat. Cell. Genet. 1:215–234.PubMedCrossRefGoogle Scholar
  36. Molloy, P. L., and Eisenstadt, J. M., 1979, Erythromycin resistance in mouse L-cells, Somat. Cell Genet. 5:585–595.PubMedCrossRefGoogle Scholar
  37. Munro, E., Siegle, R. L., Craig, I. W., and Sly, W. S., 1978, Cytoplasmic transfer of a determinant for chloramphenicol resistance between mammalian cell lines, Proc. R. Soc. Lond. B 201:73–85.PubMedCrossRefGoogle Scholar
  38. Nass, M. M. K., 1972, Differential effects of ethidium bromide on mitochondrial and nuclear DNA synthesis in vivo in cultured mammalian cells, Exp. Cell Res. 72:211–222.PubMedCrossRefGoogle Scholar
  39. Naum, Y., and Pious, D. A., 1971, Reversible inhibition of cytochrome oxidase accumulation in human cells by ethidium bromide, Exp. Cell Res. 65:355–359.PubMedCrossRefGoogle Scholar
  40. Pestka, S., 1971, Inhibitors of ribosome functions, Ann. Rev. Microbiol. 25:487–562.CrossRefGoogle Scholar
  41. Russell, W. C., Newman, C., and Williamson, D. H., 1975, A simple cytochemical technique for demonstration of DNA cells infected with mycoplasmas and viruses, Nature 253:461–462.PubMedCrossRefGoogle Scholar
  42. Schatz, G., and Mason, T. L., 1974, The biosynthesis of mitochondrial proteins, Ann. Rev. Biochem. 43:51–87.CrossRefGoogle Scholar
  43. Schneider, E. L., Stanbridge, E. J., and Epstein, C. J., 1974, Incorporation of 3H-uridine and 3H-uracil into RNA: A simple technique for the detection of mycoplasma contamination of cultured cells, Exp. Cell Res. 84:311–318.PubMedCrossRefGoogle Scholar
  44. Slonimski, P. P., Perrodin, G., and Croft, J. H., 1968, Ethidium bromide induced mutation of yeast mitochondria: Complete transformation of cells into respiratory deficient non-chromosomal “petites,” Biochem. Biophys. Res. Commun. 30:232–239.PubMedCrossRefGoogle Scholar
  45. Smith, C. A., Jordan, J. M., and Vinograd, J., 1971, In vivo effects of intercalating drugs on the superhelix density of mitochondrial DNA isolated from human and mouse cells in culture, J. Mol. Biol. 59:255–272.PubMedCrossRefGoogle Scholar
  46. Soderberg, K., Mascarello, J. T., Breen, G. A. M., and Scheffler, I. E. 1979, Respiration-deficient Chinese hamster cell mutants: Genetic characterization, Somat. Cell Genet. 5:225–240.PubMedCrossRefGoogle Scholar
  47. Spolsky, C. M., and Eisenstadt, J. M., 1972, Chloramphenicol resistant mutants of human HeLa cells, FEBS Lett. 25:319–324.PubMedCrossRefGoogle Scholar
  48. Stanbridge, E. J., 1971, Mycoplasmas and cell cultures, Bacteriol. Rev. 35:206–227.PubMedGoogle Scholar
  49. Stanbridge, E. J., and Doersen, C.-J., 1978, Some effects that mycoplasmas have upon their infected host, in: Mycoplasma Infection of Cell Cultures (G. J. McGarrity, D. G., Murphy, and W. W. Nichols, eds.), Plenum Press, New York, pp. 119–134.Google Scholar
  50. Stanbridge, E. J., and Weiss, R. L., 1978, Mycoplasma capping on lymphocytes, Nature 276:583–587.PubMedCrossRefGoogle Scholar
  51. Szybalski, W., Szybalska, E. H., and Ragni, G., 1962, Genetic studies with human cell lines. Natl Cancer Inst. Monogr. 7:75–89.Google Scholar
  52. Towers, N. R., Dixon, H., Kellerman, G. M., and Linnane, A. W., 1972, Biogenesis of mitochondria 22. The sensitivity of rat liver mitochondria to antibiotics: a phylogenetic difference between a mammalian system and yeast, Arch. Biochem. Biophys. 151:361–369.PubMedCrossRefGoogle Scholar
  53. Towers, N. R., Kellerman, G. M., and Linnane, A. W., 1973, Competition between non-inhibitory antibiotics and inhibitory antibiotics for binding by rat liver mitochondrial ribosomes, Arch. Biochem. Biophys. 155:159–166.PubMedCrossRefGoogle Scholar
  54. Tzagoloff, A., Macino, G., and Sebald, W., 1979, Mitochondrial genes and translation products, Ann. Rev. Biochem. 48:419–441.CrossRefGoogle Scholar
  55. Wallace, D. C., Bunn, C. L., and Eisenstadt, J. M., 1975, Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells, J. Cell Biol. 67:174–188.PubMedCrossRefGoogle Scholar
  56. Wasmuth, J. J., Hill, J. M., and Vock, K. S., 1980, Biochemical and genetic evidence for a new class of emetine-resistant Chinese hamster cells with alterations in the protein biosynthetic machinery, Somat. Cell Genet. 6:495–516.PubMedCrossRefGoogle Scholar
  57. Weissman, B. E., and Stanbridge, E. J., 1980, Characterization of ouabain resistant hypoxanthine guanine phosphoribosyl transferase deficient human cells and their usefulness as a general method for the production of human cell hybrids, Cytogenet. Cell Genet. 28:227–239.PubMedCrossRefGoogle Scholar
  58. Williamson, D. H., Johnston, L. H., Richmond, K. M. V., and Games, J. C., 1977, Packaging and recombination of mitochondrial DNA in vegetatively growing yeast cells, in: Mitochondria 1977, Genetics and Biogenesis of Mitochondria (W. Bandlow, R. J. Schweyen, K. Wolf, and F. Kaudewitz, eds.), W. deGruyter, Berlin, pp. 1–24.Google Scholar
  59. Wiseman, A. and Attardi, G., 1978, Reversible tenfold reduction in mitochondrial DNA content of human cells treated with ethidium bromide, Mol. Gen. Genet. 167:51–63.PubMedGoogle Scholar
  60. Wiseman, A., and Attardi, G., 1979, Cytoplasmically inherited mutations of a human cell line resulting in deficient mitochondrial protein synthesis, Somat. Cell Genet. 5:241–262.PubMedCrossRefGoogle Scholar
  61. Zylber, E., Vesco, C., and Penman, S., 1969, Selective inhibition of the synthesis of mitochondria-associated RNA by ethidium bromide, J. Mol. Biol. 44:195–204.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Claus-Jens Doersen
    • 1
  • Eric J. Stanbridge
    • 1
  1. 1.Department of Microbiology, California College of MedicineUniversity of California — IrvineIrvineUSA

Personalised recommendations