Advertisement

Cytoplasmic Inheritance of Rutamycin Resistance in Mammalian Cells

  • Godfrey S. Getz
  • Kathleen L. Kornafel

Abstract

The yeast Saccharomyces cerevisiae has proven the most informative model organism for the study of mitochondrial biogenesis and genetics. This is attributed to its ability to grow anaerobically and therefore without mitochondrial respiration. It was its ability to grow in the absence of mitochondrial protein synthesis that initially led Slonimski and colleagues (Coen et al., 1970) to seek mutants resistant to inhibitors of this process. In the last 10–15 years a rich library of information on mitochondrial genetics has been accumulated, so that the mitochondrial genome has probably become the best understood of eukaryotic genomes. The yeast mitochondrial genome is 70–76 kb in size and codes for the two ribosomal RNAs, 24 tRNAs, cytochrome b, three cytochrome oxidase peptides, and at least two ATPase peptides, as well as at least one ribosomal (Var) protein (Schatz and Mason, 1974; Borst and Grivell, 1978; Locker and Rabinowitz, 1979; Tzagoloff et al., 1979). The vast majority of the mitochondrial proteins are specified by the nuclear genome, are synthesized in the cytoplasm, in some cases as larger precursors, and are specifically imported into the mitochondria (Schatz, 1979). Several but not all of the yeast mitochondrial genomes contain intervening sequences (Bos et al., 1978; Haid et al., 1979; Bonitz et al., 1980). Indeed the complete nucleotide sequence of most of these genes has now been determined. A substantial portion of the yeast mitochondrial genome appears to consist of spacer DNA, whose role, if any, is unclear. Recombination between mitochondrial DNA molecules has been unequivocally demonstrated (Lewin et al., 1979).

Keywords

Mitochondrial Genome Lactic Acid Production Chinese Hamster Cell Chloramphenicol Resistance Mitochondrial Protein Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G., 1981, Sequence and organization of the human mitochondrial genome, Nature 290:457–465.PubMedCrossRefGoogle Scholar
  2. Berk, A. J., and Clayton, D. A., 1974, Mechanism of mitochondrial DNA replication in mouse L-cells: Asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of initiation sequences, J. Mol. Biol. 86:801–824.PubMedCrossRefGoogle Scholar
  3. Blanc, H., Wright, C. T., Bibb, M. J., Wallace, D. C., and Clayton, D. A., 1981, Mitochondrial DNA of chloramphenicol-resistant mouse cells contains a single nucleotide change in the region encoding the 3′ end of the large ribosomal RNA, Proc. Natl. Acad. Sci. USA 78:3789–3793.PubMedCrossRefGoogle Scholar
  4. Bogenhagen, D., and Clayton, D. A., 1974, The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human cells, J. Biol. Chem. 249:7791–7795.Google Scholar
  5. Bonitz, S. G., Coruzzi, G., Thalenfeld, B. E., and Tzagoloff, A., 1980, Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrome oxidase, J. Biol. Chem. 255:11927–11941.PubMedGoogle Scholar
  6. Borst, P., and Grivell, L. A., 1978, The mitochondrial genome of yeast, Cell 15:705–723.PubMedCrossRefGoogle Scholar
  7. Bos, J. L., Heyting, C., Borst, P., Arnberg, A. C., and Van Bruggen, E. F. J., 1978, An insert in the single gene for the large ribosomal RNA in yeast mitochondrial DNA, Nature 275:336–338.PubMedCrossRefGoogle Scholar
  8. Breen, G. A. M., and Scheffler, I. E., 1979, Respiration-deficient Chinese hamster cell mutants: Biochemical characterization, Somat. Cell Genet. 5:441–451.PubMedCrossRefGoogle Scholar
  9. Bunn, C., Wallace, D. C., and Eisenstadt, J., 1974, Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells, Proc. Natl. Acad. Sci. USA 71:1681–1685.PubMedCrossRefGoogle Scholar
  10. Clayton, D. A., and Teplitz, R. L., 1972, Intracellular mosaicism (nuclear-/mitochondrial+) for thymidine kinase in mouse L cells, J. Cell Sci. 10:487.PubMedGoogle Scholar
  11. Coen, D., Deutsch, J., Netler, P., Petrochilo, E., and Slonimski, P. P., 1970, Mitochondrial genetics. I — Methodology and phenomenology, in: Symposia of the Society for Experimental Biology, No. 24 (P. L. Miller, ed.) Cambridge University Press, London, pp. 449–496.Google Scholar
  12. Criddle, R. S., Packer, L., and Shieh, P., 1977, Oligomycin-dependent ionophoric protein subunit of mitochondrial adenosine triphosphatase, Proc. Natl. Acad. Sci. USA 74:4306–4310, 1977.PubMedCrossRefGoogle Scholar
  13. Cross, R. L., and Kohlbrenner, W. E., 1978, The mode of inhibition of oxidative phosphorylation by efrapeptin (A23871). Evidence for an alternating site mechanism for ATP synthesis, J. Biol. Chem. 253:4865–4873.PubMedGoogle Scholar
  14. DeFrancesco, L., Scheffler, I. E., and Bissell, M. J., 1976, A respiratory-deficient Chinese hamster cell line with a defect in NADH-coenzyme Q reductase, J. Biol. Chem. 251:4588–4595.PubMedGoogle Scholar
  15. DeJong, L., Holtrop, M., and Kroon, A. M., 1980, The biogenesis of rat-liver mitochondrial ATPase: Evidence that the N,N’-dicyclohexyl carbodiimide-binding protein is synthesized outside the mitochondria, Biochim. Biophys. Acta 606:331–337.Google Scholar
  16. Ditta, G., Soderberg, K., Landy, F., and Scheffler, I. E., 1976, The selection of Chinese hamster cells deficient in oxidative energy metabolism, Somat. Cell Genet. 2:331–344.PubMedCrossRefGoogle Scholar
  17. Downie, J. A., Gibson, F., and Cox, G. B., 1979, Membrane adenosine triphosphatases of prokaryotic cells, Ann. Rev. Biochem. 48:103–131.PubMedCrossRefGoogle Scholar
  18. Dujon, B., 1980, Sequence of the intron and flanking exons of mitochondrial 21S rRNA gene of yeast strains having different alleles at the ω and rib-1 loci, Cell 20:185–197.PubMedCrossRefGoogle Scholar
  19. Foster, D. L., Mosher, M. E., Futai, M., and Fillingame, R. H., 1980, Subunits of the H+-ATPase of Escherichia coli. Overproduction of an eight-subunit F1F0-ATPase following induction of a lamda-transducing phage carrying the une operon, J. Biol. Chem. 255:12037–12041.PubMedGoogle Scholar
  20. Giles, R. E., Stroynowski, I., and Wallace, D. C., 1980, Characterization of the mitochondrial DNA in chloramphenicol resistant interspecific hybrids and a cybrid, Somat. Cell Genet. 6:543–554.PubMedCrossRefGoogle Scholar
  21. Haid, A., Schweyen, R. J., Beckmann, H., Kaudewitz, F., Solioz, M., and Schatz, G., 1979, The mitochondrial COB region in yeast codes for apocytochrome b and is mosaic, Eur. J. Biochem. 94:451–464.PubMedCrossRefGoogle Scholar
  22. Howell, N., and Sager, R., 1979, Cytoplasmic genetics of mammalian cells: Conditional sensitivity to mitochondrial inhibitors and isolation of new mutant phenotypes, Somat. Cell Genet. 5:833–845.PubMedCrossRefGoogle Scholar
  23. Kuhns, M. C., and Eisenstadt, J. M., 1979, Oligomycin-resistant mitochondrial ATPase from mouse fibroblasts, Somat. Cell Genet. 5:821–832.PubMedCrossRefGoogle Scholar
  24. Lagarde, A. E., and Siminovitch, L., 1979, Studies on Chinese hamster ovary mutants showing multiple cross-resistance to oxidative phosphorylation inhibitors, Somat. Cell Genet. 5:847–871.PubMedCrossRefGoogle Scholar
  25. Lewin, A. S., Morimoto, R., and Rabinowitz, M., 1979, Stable heterogeneity of mitochondrial DNA in grande and petite strains of S. cerevisiae, Plasmid 2:155–181.PubMedCrossRefGoogle Scholar
  26. Lichtor, T. R., 1980, Cytoplasmic inheritance of rutamycin resistance and a respiratory deficiency in mouse fibroblasts, Ph.D. Thesis, University of Chicago.Google Scholar
  27. Lichtor, T., and Getz, G. S., 1978, Cytoplasmic inheritance of rutamycin resistance in mouse fibroblasts, Proc. Natl. Acad. Sci. USA 75:324–328.PubMedCrossRefGoogle Scholar
  28. Lichtor, T., Tung, B., and Getz, G. S., 1979, Cytoplasmically inherited respiratory deficiency of a mouse fibroblast line which is resistant to rutamycin, Biochemistry 18:2582–2590.PubMedCrossRefGoogle Scholar
  29. Locker, J., and Rabinowitz, M., 1979, An overview of mitochondrial nucleic acids and biogenesis, in: Methods in Enzymology, Vol. 56, Biomembranes, Part GBiogenesis of Mitochondria, Organization and Transport (S. Fleischer and L. Packer, eds.), Academic Press, New York, pp. 3–16.Google Scholar
  30. Locker, J., Lewin, A. S., and Rabinowitz, M. 1979, The structure and organization of mitochondrial DNA from petite yeast, Plasmid 2:155–181.PubMedCrossRefGoogle Scholar
  31. Macino, G., and Tzagoloff, A., 1980, Assembly of the mitochondrial membrane system: Sequence analysis of a yeast mitochondrial ATPase gene containing the oli-2 and oli-4 loci, Cell 20:507–517.PubMedCrossRefGoogle Scholar
  32. Pettit, F. H., Pelley, J. W., and Reed, L. J., 1975, Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios, Biochem. Biophys. Res. Comun. 65:575–582.CrossRefGoogle Scholar
  33. Putrament, A., Baranowska, H., and Prazo, W., 1973, Induction by manganese of mitochondrial antibiotic resistance mutations in yeast, Mol. Gen. Genet. 126:357–366.PubMedCrossRefGoogle Scholar
  34. Schatz, G., 1979, How mitochondria import proteins from the cytoplasm, FEBS Lett. 103:203–211.PubMedCrossRefGoogle Scholar
  35. Schatz, G., and Mason, T. L., 1974, The biosynthesis of mitochondrial proteins, Ann. Rev. Biochem. 43:51–87.CrossRefGoogle Scholar
  36. Sebald, W., and Wachter, E., 1978, Amino acid sequence of the putative protonophore of the energy-transducing ATPase complex, in: 29th Mossbacher Colloquium on Energy Conservation (G. Schaefer and M. Klingenberg, eds.), Springer-Verlag, Berlin, pp. 228–236.Google Scholar
  37. Sebald, W., Wachter, E., and Tzagoloff, A., 1979, Identification of amino acid substitutions in the dicyclohexylcarbodiimide-binding subunit of the mitochondrial ATPase complex from oligomycin resistant mutants of Saccharomyces cerevisiae, Eur. J. Biochem. 100:599–607.PubMedCrossRefGoogle Scholar
  38. Shannon, C., Enns, R., Wheelis, L., Burchiel, K., and Criddle, R. S., 1973, Alterations in mitochondrial adenosine triphosphatase activity resulting from mutation of mitochondrial deoxyribonucleic acid, J. Biol. Chem. 248:3004–3011.PubMedGoogle Scholar
  39. Somlo, M., 1977, Effect of oligomycin on coupling in isolated mitochondria from oligomycin-resistant mutants of Saccharomyces cerevisiae carrying an oligomycin resistant ATP phosphohydrolase, Arch. Biochem. Biophys. 182:518–524.PubMedCrossRefGoogle Scholar
  40. Tzagoloff, A., Akai, A., Needleman, R. B., and Zulch, G., 1975, Assembly of the mitochondrial membrane system. Cytoplasmic mutants of Saccharomyces cerevisiae with lesions in enzymes of the respiratory chain and in the mitochondrial ATPase, J. Biol. Chem. 250:8236–8242.PubMedGoogle Scholar
  41. Tzagoloff, A., Macino, G., and Sebald, W., 1979, Mitochondrial genes and translation products, Ann. Rev. Biochem. 48:419–441.PubMedCrossRefGoogle Scholar
  42. Whitfield, C. D., Bostedor, R., Goodrum, D., Haak, M., and Chu, E. H. Y., 1981, Hamster cell mutants unable to grow on galactose and exhibiting an overlapping complementation pattern are defective in the electron transport chain, J. Biol. Chem. 256:6651–6656.PubMedGoogle Scholar
  43. Williamson, D. H., Johnston, L. H., Richmond, K. M. V., and Game, J. C., 1977, Two aspects of mitochondrial DNA structure: The occurrence of two types of mitochondrial DNA in rat liver and the isolation from rat liver of DNA complexes of high buoyant density, in: Mitochondria 1977, Genetics and Biogenesis of Mitochondria (W. Bandlow, R. J. Schweyen, K. Wolf, and F. Kaudewitz, eds.), Walter deGruyter, Berlin, pp. 1–24.Google Scholar
  44. Wiseman, A., and Attardi, G., 1978, Reversible tenfold reduction in mitochondrial DNA content of human cells treated with ethidium bromide, Mol. Gen. Genet. 167:51–63.PubMedGoogle Scholar
  45. Wiseman, A., and Attardi, G., 1979, Cytoplasmically inherited mutations of a human cell line resulting in deficient mitochondrial protein synthesis, Somat. Cell Genet. 5:241–262.PubMedCrossRefGoogle Scholar
  46. Ziegler, M. A., and Davidson, R. L., 1979, The effect of hexose on chloramphenicol sensitivity and resistance in Chinese hamster cells, J. Cell Physiol. 98:627–635.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Godfrey S. Getz
    • 1
  • Kathleen L. Kornafel
    • 2
  1. 1.Departments of Pathology and BiochemistryUniversity of ChicagoChicagoUSA
  2. 2.Department of PathologyUniversity of ChicagoChicagoUSA

Personalised recommendations