Metabolism of the Arterial Wall

  • Elspeth B. Smith
Conference paper
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 51)


In this Advanced Study Institute other speakers will discuss endothelial prostaglandin metabolism, factors controlling smooth muscle and endothelial cell proliferation, and aspects of lipid metabolism. I will confine my discussion to three other areas of arterial wall metabolism — energy production and the consequences of hypoxia, the intimal and medial cellular environment, and collagen synthesis — and will try to show how these may be inter-related in terms of atherogenesis.


Lactic Acid Arterial Wall Collagen Synthesis Aerobic Glycolysis Arterial Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.L. Lehninger, Biochemistry, Worth Publishers, New York (1970).Google Scholar
  2. 2.
    J.E. Kirk, P.G. Effersoe, and S.P. Chiang, The rate of respirat ion and glycolysis by human and dog aortic tissue, J.Gerontol., 9: 10 (1954).PubMedGoogle Scholar
  3. 3.
    A.L. Lehninger, The metabolism of the arterial wall, in, “Then Arterial Wall”, Lansing, A.I., ed., Williams & Wilkins, Baltimore (1959).Google Scholar
  4. 4.
    A.F. Whereat, Atherosclerosis and metabolic disorder in the arterial wall, Exp.Mol.Pathol., 7: 233 (1967).PubMedCrossRefGoogle Scholar
  5. 5.
    R.F. Scott, E.S. Morrison, and M. Kroms, Effect of cold shock on respiration and glycolysis in swine arterial tissue, Am.J, Physiol., 219: 1363 (1970).PubMedGoogle Scholar
  6. 6.
    A.D. Morrison, L. Berwick, L. Orci, and A.I. Winegrad, Morphology and metabolism of an aortic intima-media preparation in which intact endothelium is preserved, J.Clin.Invest., 57: 650 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    A.D. Morrison, L. Orci, L. Berwick, A. Perrelet and A.I. Winegrad, The status of the arterial endothelium in experimental studies, Atherosclerosis Revs., 3: 125 (1978).Google Scholar
  8. 8.
    E.S. Morrison, J. Frick and M. Kroms, The effects of O concen ration and albumin on respiration and aerobic glycolysis in rabbit aortic intima-media, Biochem.Med., 20: 279 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    H.J. Arnqvist and L. Lundholm, Influence of oxygen tension on the metabolism of vascular smooth muscle: demonstration of a Pasteur effect, Atherosclerosis, 25: 245 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    V. Niinikoski, C. Heughan and T.K. Hunt, Oxygen tensions in the aortic wall of normal rabbits, Atherosclerosis, 17: 353 (1973).PubMedCrossRefGoogle Scholar
  11. 11.
    E.R. Jurrus and H.S. Weiss, In vitro tissue oxygen tensions in the rabbit aortic arch, Atherosclerosis, 28: 223 (1977).Google Scholar
  12. 12.
    J.E. Kirk and T.J.S. Laursen, Diffusion coefficients of various solutes for human aortic tissue, with special reference to variation in tissue permeability with age, J.Gerontol., 10: 288 (1955).PubMedGoogle Scholar
  13. 13.
    A.V. Hill, The diffusion of oxygen and lactic acid through tissues, Proc.Roy.Soc. (London) Series B, 104: 39 (1928–29).Google Scholar
  14. 14.
    L.H. Back, Analysis of oxygen transport in the avascular region of arteries, Math.Biosci., 31: 285 (1976).CrossRefGoogle Scholar
  15. 15.
    L.H. Back, D.W. Crawford, personal communication.Google Scholar
  16. 16.
    G. Sneiderman and T.K. Goldstick, Significance of luminal plasma layer resistance in arterial wall oxygen supply, Atherosclerosis, 31: 11 (1978).CrossRefGoogle Scholar
  17. 17.
    E.B. Smith, Metabolic activities in the arterial wall, in, “Dynamics of Arterial Flow”, S. Wolf and N.T. Werthessen, eds., Advan.Exp.Med.Biol., 115: 245 (1979).Google Scholar
  18. 18.
    E.B. Smith and E.M. Staples, Distribution of plasma proeins across the human aortic wall: barrier functions of endothelium and internal elastic lamina, Atherosclerosis, 37: 579 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    M.A. Ricciutti, Myocardial lysosome stability in the early stages of acute ischaemic injury, Amer.J.Cardiol., 30: 492 (1972).PubMedCrossRefGoogle Scholar
  20. 20.
    K. Wildenthal, R.S. Decker, R. Poole, E.E. Griffin and J.T. Dingle, Sequential lysosomal alterations during cardiac ischaemia: 1. Biochemical and immunohistochemical changes, Lab.Invest., 38: 656 (1978).PubMedGoogle Scholar
  21. 21.
    K. Wildenthal, Lysosomal alterations in ischaemic myocardium: result or cause of myocardial damage?, J.Mol.Cell.Cardiol., 10: 595 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    C. DeDuve and H. Beaufay, Tissue fractionation studies: 10. Influence of ischaemia on the state of some bound enzymes in rat liver, Biochem.J., 73: 610 (1959).Google Scholar
  23. 23.
    L. Gordis and H.M. Nitowsky, Lysosomes in human cell cultures: kinetics of enzyme release from injured particles, Exp.Cell Res., 38: 556 (1965).PubMedCrossRefGoogle Scholar
  24. 24.
    E.B. Smith and R.H. Smith, Early changes in aortic intima, Atherosclerosis Rev., 1: 119 (1976).Google Scholar
  25. 25.
    E.B. Smith and I.B. Massie, Destruction of endogenous low density lipoprotein in incubated intima, Atherosclerosis, 26: 427 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    M.C. Burleigh, A.J. Barrett and G.S. Lazarus, Cathepsin B: a lysosomal enzyme that degrades native collagen, Biochem.J. 137: 387 (1974).PubMedGoogle Scholar
  27. 27.
    P.A. Poole-Wilson, Measurements of myocardial intracellular pH in pathological states, J.MoCell.Cardiol., 10: 511 (1978).CrossRefGoogle Scholar
  28. 28.
    J.J. Albers and E.L. Bierman, The effect of hypoxia on uptake and degradation of low density lipoproteins by cultured human arterial smooth muscle cells, Biochim.Biophys.Acta, 424: 422 (1976).PubMedGoogle Scholar
  29. 29.
    E.B. Smith and R.S. Slater, Relationship between low density lipoprotein in aortic intima and serum lipid levels, Lancet i, 463 (1972).Google Scholar
  30. 30.
    E.B. Smith, The relationship between plasma and tissue lipids in human atherosclerosis, Advan.Lipid Res., 12: 1 (1974).Google Scholar
  31. 31.
    E.B. Smith, Biochemical studies on permeabiliy and the inter action between blood constituents and arterial components in atherosclerosis, in, Atherosclerosis VM, A.M. Gotto, L.C. Smith and B. Allen, Springer-Verlag, Berlin, 121 (1980).Google Scholar
  32. 32.
    R.L. Bratzler, G.M. Chisholm, C.K. Colton, K.A. Smith and R.S. Lees, The distribution of labelled low density lipoproteins across the rabbit thoracic aorta in vivo, Atherosclerosis, 28: 289 (1977).PubMedCrossRefGoogle Scholar
  33. 33.
    G. Thorgeirsson and A.L. Robertson, The vascular endothelium — pathobiological significance, Amer.J.Path., 93: 803 (1978).PubMedGoogle Scholar
  34. 34.
    A.L. Robertson, Arterial endothelium in the initial stages of atherogenesis, in, “Atherosclerosis V”, A.M. Gotto, L.C. Smith and B. Allen, Springer-Verlag, Berlin 103 (1980).Google Scholar
  35. 35.
    D.Y.M. Leung, S. Glagov, J.M. Clark and M.B. Mathews, Mechanical influences on the biosynthesis of extracellular macro-molecules by aortic cells, in, “Extracellular Matrix Influences on Gene Expression”, H.C. Slavkin and R.C. Greulich, eds., Academic Press, New York, 633 (1975).Google Scholar
  36. 36.
    D.Y.M. Leung, S. Glagov and M.B. Mathews, Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro, Science, 191: 475 (1976).PubMedCrossRefGoogle Scholar
  37. 37.
    P.J. Reeds, R.M. Palmer and R.H. Smith, Protein and collagen synthesis in rat diaphragm muscle incubated in vitro: the effect of alterations in tension produced by electrical or mechanical means, Int.J.Biochem., 11: 7 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    G.M. Fischer, M.L. Swain and K. Cherian, Increased vascular collagen and elastin synthesis in experimental atheroscler-osis in the rabbit, Atherosclerosis, 35: 11 (1980).PubMedCrossRefGoogle Scholar
  39. 39.
    U. Langness and S. Udenfriend, Collagen proline hydroxylase activity and anaerobic metabolism, in, “Biology of the Fibroblast”, E. Kulonen and J. Pikkarainen, eds., Academic Press, New York, 373 (1973).Google Scholar
  40. 40.
    R. Schwarz, L. Colarusso and P. Doty, Maintenance of differ entiation in primary cultures of avian tendon cells, Exp. Cell Res., 102: 63 (1976).PubMedCrossRefGoogle Scholar
  41. 41.
    K.G. McCullagh and L.A. Ehrhart, Increased arterial collagen synthesis in experimental canine atherosclerosis, Atherosclerosis, 19: 13 (1974).Google Scholar
  42. 42.
    K.G. McCullagh and L.A. Ehrhart, Enhanced synthesis and accumulation of collagen in cholesterol-aggravated pigeon atherosclerosis, Atherosclerosis, 26: 341 (1977).PubMedCrossRefGoogle Scholar
  43. 43.
    G.C. Fuller, E. Miller, T. Farber and E. Vanloon, Aortic connective tissue changes in miniature pigs fed a lipid-rich diet, Connective Tiss.Res., 1: 217 (1972).CrossRefGoogle Scholar
  44. 44.
    R.W. St. Clair, J.J. Toma and H.B. Lofland, Proline hydroxylase activity and collagen content of pigeon aortas with natur-ally-occurring and cholesterol-aggravated atherosclerosis, Atherosclerosis, 21: 155 (1975).CrossRefGoogle Scholar
  45. 45.
    L.A. Ehrhart and D. Holderbaum, Stimulation of aortic protein synthesis in experimental rabbit atherosclerosis, Atherosclerosis, 27: 477 (1977).Google Scholar
  46. 46.
    D. Vesselinovitch, G.S. Getz, R.H. Hughes and R.W. Wissler, Atherosclerosis in the Rhesus monkey fed three food fats, Atherosclerosis, 20: 303 (1974).PubMedCrossRefGoogle Scholar
  47. 47.
    L.A. Ehrhart and D. Holderbaum, Aortic collagen, elastin and non-fibrous protein synthesis in rabbits fed cholesterol and peanut oil, Atherosclerosis, 37: 423 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Elspeth B. Smith
    • 1
  1. 1.Department of Chemical PathologyUniversity of AberdeenAberdeenScotland, UK

Personalised recommendations