Advertisement

Thermal Conductivity of Fluids in the Critical Region

  • R. S. Basu
  • J. V. Sengers

Abstract

A progress report towards formulating an accurate description of the critical thermal conductivity enhancement of fluids is presented. The improved formulation presented in this paper is based on a scaled fundamental equation for the thermodynamic properties in the critical region and a relationship between the equation of state and the scale factor of the correlation length which characterizes the range of the critical fluctuations. As an example, we consider carbon dioxide for which a considerable amount of experimental evidence is available.

Keywords

Thermal Conductivity Correlation Length Critical Region Binary Liquid Mixture Thermal Conductivity Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. V. Sengers, Transport processes near the critical point of gases and binary liquids in the hydrodynamic regime, Ber. Bunsenges. physik. Chemie 76: 234 (1972).Google Scholar
  2. 2.
    H. J. M. Hanley, J. V. Sengers and J. F. Ely, On estimating thermal conductivity coefficients in the critical region of gases, in “Thermal Conductivity 14”, P. G. Klemens and T. K. Chu, eds., Plenum Publ. Corp., New York (1976).Google Scholar
  3. 3.
    P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Revs. Mod. Phys. 49: 435 (1977).Google Scholar
  4. 4.
    R. S. Basu and J. V. Sengers, Thermal conductivity of steam in the critical region, in “Proc. 7th Symposium on Thermo-physical Properties”, A. Cezairliyan, ed., American Society of Mechanical Engineers, New York (1977).Google Scholar
  5. 5.
    J. V. Sengers and J. M. H. Levelt Sengers, Critical phenomena in classical fluids, in “Progress in Liquid Physics”, C. A. Croxton, ed., Wiley, New York (1978).Google Scholar
  6. 6.
    J. V. Sengers and M. R. Holdover, Two scale factor universality near the critical point of fluids, Phys. Lett. 66A: 44 (1978).Google Scholar
  7. 7.
    K. Kawasaki, Kinetic equations and time correlation functions of critical fluctuations, Ann. Phys. 61: 1 (1970).Google Scholar
  8. 8.
    D. W. Oxtoby and W. M. Gelbart, Shear viscosity and order parameter dynamics of fluids near the critical point, J. Chem. Phys. 61: 2957 (1974).Google Scholar
  9. 9.
    E. D. Siggia, B. I. Halperin and P. C. Hohenberg, Renormalization group treatment of the critical dynamics of the binary-fluid and gas-liquid transitions, Phys. Rev. B 13: 2110 (1976).CrossRefGoogle Scholar
  10. S. H. Chen, C. C. Lai and J. Rouch. Experimental confirmation of renormalization group prediction of critical concentration fluctuation rate in hydrodynamic limit, J. Chem. Phys. 68:1994 (1978).Google Scholar
  11. 11.
    C. M. Sorensen, R. C. Mockler and W. J. O’Sullivan, Rayleigh linewidth measurements near the critical point of a binary fluid, Phys. Rev. Lett. 40: 777 (1978).Google Scholar
  12. 12.
    R. F. Chang, P. H. Keyes, J. V. Sengers and C. O. Alley, Dynamics of concentration fluctuations near the critical mixing point of a binary fluid, Phys. Rev. Lett. 27: 1706 (1971);Google Scholar
  13. R. F. Chang, P. H. Keyes, J. V. Sengers and C. O. Alley, Non-local effects in the diffusion coefficient of a binary fluid near the critical mixing point, Ber. Bunsenges. physik. Chemie 76: 260 (1972).Google Scholar
  14. 13.
    H. C. Burstyn, J. V. Sengers and P. Esfandiari, Stokes-Einstein diffusion of critical fluctuations in a fluid, Phys. Rev. A 22: 282 (1980).CrossRefGoogle Scholar
  15. 14.
    A. Michels, J. V. Sengers and P. S. van der Gulik, Thermal conductivity of carbon dioxide in the critical region, Physica 28:1201 (1962); 28: 1216 (1962).Google Scholar
  16. 15.
    B. Le Neindre, R. Tufeu, P. Bury and J. V. Sengers, Thermal conductivity of carbon dioxide and steam in the supercritical region, Ber. Bunsenges. physik. Chemie 77: 262 (1973).Google Scholar
  17. 16.
    H. Becker and U. Grigull, Ein holographischer Realzeit-Interferometer zur Messung von Phasenänderungen transparanter Objekte, Optik 35: 223 (1972);Google Scholar
  18. H. Becker and U. Grigull, Wärmeleitfähigkeit von Kohlendioxid im kritischen Gebiet wird optisch gemessen, Maschinenmarkt 81: 50 (1975).Google Scholar
  19. 17.
    H. Becker and U. Grigull, Messung der Temperatur- und der Wärmeleitfähigkeit von Kohlendioxid im kritischen Gebiet mittels holographischer Interferometrie nach einem instationären Verfahren, Wärme- und Stoffübertragung 11: 9 (1978)CrossRefGoogle Scholar
  20. 18.
    A. Michels and C. Michels, Isotherms of CO2 between 0° and 150° and pressures from 16 to 250 atm (amagat densities 18–206), Proc. Roy. Soc. (London) A 153:201 (1935); Series evaluation of the isotherm data of CO2 between 0° and 150°C and up to 3000 atm, Proc. Roy. Soc. (London) A 160: 348 (1937).Google Scholar
  21. 19.
    A. Michels, C. Michels and H. Wouters, Isotherms of CO2 between 70 and 3000 atmospheres (amagat densities between 200 and 600), Proc. Roy. Soc. (London) A 153: 214 (1935).Google Scholar
  22. 20.
    A. Michels, B. Blaisse and C. Michels, The isotherms of CO2 in the neighborhood of the critical point and round the coexistence line, Proc. Roy. Soc. (London) A 160: 358 (1937).Google Scholar
  23. 21.
    A. Michels and S. R. De Groot, Thermodynamic properties of carbon dioxide as a function of density and temperature, Appl. Sci. Res. A 1: 94 (1948).CrossRefGoogle Scholar
  24. 22.
    A. Michels and J. C. Strijland, The specific heat at constant volume of compressed carbon dioxide, Physica 18: 613 (1952).CrossRefGoogle Scholar
  25. 23.
    J. T. R. Watson, Thermal conductivity of carbon dioxide gas and liquid, ESDU Data Item No. 76021, Engineering Sciences Data Unit, London (1976).Google Scholar
  26. 24.
    M. R. Moldover, Visual observation of the critical temperature and density: CO2 and CH4, J. Chem. Phys. 61: 1766 (1974).Google Scholar
  27. 25.
    J. M. H. Levelt Sengers, W. L. Greer and J. V. Sengers, Scaled equation of state parameters for gases in the critical region, J. Phys. Chem. Ref. Data 5: 1 (1976).Google Scholar
  28. 26.
    D. McIntyre and J. V. Sengers, Study of fluids by light scattering, in “Physics of Simple Liquids”, H. N. V. Temperley, J. S. Rowlinson and G. S. Rushbrooke, eds., North Holland Publ. Comp., Amsterdam (1968).Google Scholar
  29. 27.
    H. L. Swinney and D. L. Henry, Dynamics of fluids near the critical point: Decay rate of order-parameter fluctuations, Phys. Rev. A 8: 2586 (1973).Google Scholar
  30. 28.
    B. S. Maccabee and J. A. White, Temperature variation of the correlation length of carbon dioxide at its critical density, Phys. Lett. 35A: 187 (1971).Google Scholar
  31. 29.
    Y. Garrabos, R. Tufeu, B. Le Neindre, G. Zalczer and D. Beysens, Rayleigh and Raman scattering near the critical point of carbon dioxide, J. Chem. Phys. 72: 4637 (1980).Google Scholar
  32. 30.
    H. L. Swinney, private communication.Google Scholar
  33. 31.
    T. A. Murphy, J. V. Sengers and J. M. H. Levelt Sengers, Analysis of the pressure of gases near the critical point in terms of a scaled equation of state, in “Proc. 6th Symposium on Thermophysical Properties”, P. E. Liley, ed., American Society of Mechanical Engineers, New York (1973), p. 180.Google Scholar
  34. 32.
    J. M. H. Levelt Sengers and W. T. Chen, Vapor pressure, critical isochore and some metastable states of CO2, J. Chem. Phys. 56: 595 (1972).Google Scholar
  35. 33.
    M. R. Moldover, Implementation of scaling and extended scaling equations of state for the critical point of fluids, J. Res. Natl. Bur. Stand. 83: 329 (1978).Google Scholar
  36. 34.
    J. V. Sengers, R. S. Basu and J. M. H. Levelt Sengers, Representative equations for the thermodynamic and transport properties of fluids near the gas-liquid critical point, Technical Report BN 960, Institute for Physical Science and Technology, University of Maryland, College Park, MD (1981).Google Scholar

Copyright information

© Purdue Research Foundation 1983

Authors and Affiliations

  • R. S. Basu
    • 1
  • J. V. Sengers
    • 1
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations