Advertisement

Thermal Conductivity Measurements and Molecular Association: Ethanol Vapor

  • D. J. Frurip
  • L. A. Curtiss
  • M. Blander

Abstract

Thermal conductivity measurements on ethanol vapor are reported as a function of temperature (329–419K) and pressure (100–1800 torr). The thermal conductivity versus pressure plots at constant temperature exhibit strong upward curvature at the lower temperatures and nearly linear increases at the higher temperatures. This enhancement in the thermal conductivity is indicative of the presence of a dimeric species and one or more larger clusters in the vapor. Analysis of the data gave best fits for monomer-dimer-tetramer and monomer-dimer-hexamer models. The resulting thermodynamic parameters for the association reactions in the monomer-dimer-tetramer model are: -ΔH2 = 3.70 kcal mol−1, -ΔS2 = 16.36 cal mol−1 K−1; -ΔH4 = 22.15 kcal mol−1, -ΔS4−74.65 cal mo1−1 K−1. Quantum mechanical evidence indicates that the tetramer is the most probable associated species larger than the dimer.

Keywords

Thermal Conductivity Ethanol Vapor Molecular Association Thermal Conductivity Enhancement Associate Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An excellent review of such studies through 1973 is given in R. C. Wilhoit and B. J. Zwolinski, “Physical and Thermodynamic Properties of Aliphatic Alcohols”, J. Phys. Chem. Ref. Data, 2, Supplement 1 (1973).Google Scholar
  2. 2.
    T. A. Renner, G. H. Kucera, and M. Blander, J. Chem. Phys., 66, 177 (1977).CrossRefGoogle Scholar
  3. 3.
    a) J. N. Butler and R. S. Brokaw, J. Chem. Phys., 26, 1636 (1957).Google Scholar
  4. (b).
    R. S. Brokaw, J. Chem. Phys., 32, 1005 (1960).CrossRefGoogle Scholar
  5. 4.
    L. A. Curtiss, D. J. Frurip, and M. Blander, J. Am. Chem. Soc. 100 79 (1978).CrossRefGoogle Scholar
  6. 5.
    T. A. Renner and M. Blander, J. Phys. Chem., 81, 857 (1977).CrossRefGoogle Scholar
  7. 6.
    D. J. Frurip, L. A. Curtiss, and M. Blander, J. Phys. Chem.,82 2555 (1978).CrossRefGoogle Scholar
  8. 7.
    W. G. Kannuluik and E. H. Carman, Proc. Phys. Soc., London, Sec. B, 65, 701 (1952).CrossRefGoogle Scholar
  9. 8.
    Y. S. Touloukian, P. E. Liley, and S. C. Saxena, Thermophysical Properties of Matter, Vol. 3, IFI-Plenum, N.Y. (1970).Google Scholar
  10. 9.
    P. I. Shushpanov, J. Exptl. Theoret. Phys. (USSR), 9, 875 (1939).Google Scholar
  11. 10.
    O. R. Foz, J. F. G. Banda, and A. P. Masiâ, Zeits. Fur. Electrochem., 56, 569 (1952).Google Scholar
  12. 11.
    Y. S. Touloukian, S. C. Saxena, and P. Hestermans, Thermophysical Properties of Matter, Vol. 11, IFI-Plenum, N.Y. (1970).Google Scholar
  13. 12.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, N.Y. (1954).Google Scholar
  14. 13.
    Y. S. Touloukian and T. Makita, Thermophysical Properties of Matter, Vol. 6, IFI-Plenum, N.Y. (1970).Google Scholar
  15. 14.
    G. M. Barrow, J. Chem. Phys., 20, 1739 (1952).CrossRefGoogle Scholar
  16. 15.
    C. B. Kretschmer and R. Wiebe, J. Am. Chem. Soc., 76, 2579 (1954).CrossRefGoogle Scholar
  17. 16.
    L. A. Curtiss, J. Chem. Phys. 67 1144 (1977).CrossRefGoogle Scholar
  18. 17.
    L. A. Curtiss, Int. J. Quantum Chemistry: Quantum Chemistry Symposium, 11, 459 (1977).Google Scholar

Copyright information

© Purdue Research Foundation 1983

Authors and Affiliations

  • D. J. Frurip
    • 1
  • L. A. Curtiss
    • 1
  • M. Blander
    • 1
  1. 1.Chemical Engineering DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations