Phonon Scattering by Point Defects in Copper Alloys

  • N. Sadanand
  • D. H. Damon

Abstract

The strength of the phonon scattering by solute atoms in four copper alloy systems has been calculated from the values of the lattice thermal conductivities of these metals measured between 1.5 and 55 K. This analysis shows that the point defect scattering depends both on the difference between the masses of the copper and solute atoms and on the amount of lattice distortion produced by the addition of the solute atoms. A microscopic theory which includes the effects of the distortion as the dilation of the lattice about the solute gives a rough quantitative account of the experimental results and predicts the relative scattering strengths of four solutes — Sn, Al, Ge, and Ni. A good correlation between the strength of the phonon scattering rate and the change in the velocity of sound in these alloys is observed.

Keywords

Quartz Mold Helium Berman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klemens, P.G., (1958) Solid State Physics, ed. by F. Seitz and D. Turnbull, Academic Press, New York, Vol. 7, p. 1.Google Scholar
  2. 2.
    Bouley, A.C., Mohan, N.S. and Damon, D.H., (1976) Thermal Conductivity 14, ed. by P.G. Klemens and T.K. Chu, Plenum Press, New York, p. 81.Google Scholar
  3. 3.
    Touloukian, Y.S., Powell, R.W., Ho, C.Y. and Klemens, P.G., (1970) Thermophysical Properties of Matter: Thermal Conductivity of Metallic Elements & Alloys, Vol. 1, Plenum Press/IFI, New York.Google Scholar
  4. 4.
    Graevskaya, Ya. I. and Zvyagina, A.P., (1975) Heat capacity, diffuse scattering and short-range ordering of copper-tin alloys, Vestn. Mosk. Univ., Fiz. Astronomiya, 16 (3), 381.Google Scholar
  5. 5.
    Garber, M., Scott, B.W. and Blatt, F.J., (1963) Phys. Rev. 130, 2188.CrossRefGoogle Scholar
  6. 6.
    Klemens, P.G., (1955) Proc. Roy. Soc. Lond., A68, 1113.Google Scholar
  7. 7.
    Carruthers, P., (1961) Revs. Mod. Phys. 33, 1, 92.CrossRefGoogle Scholar
  8. 8.
    Ackerman, M.W. and Klemens, P.G., (1972) J. Appl. Phys. 42, 968.CrossRefGoogle Scholar
  9. 9.
    Collins, J.G. and White, G.K., (1964) in Progress in Low Temperature Physics, ed. C.J. Gorter ( North Holland Publishing Co., Amsterdam ) Vol. 4, p. 450.Google Scholar
  10. 10.
    Pearson, H.W., (1958) A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, New York.Google Scholar
  11. 11.
  12. 12.
    Berman, R., (1976) Thermal Conduction in Solids, Clarendon Press, Oxford, p. 73.Google Scholar
  13. 13.
    Moment, R.L., (1972) J. Appl. Phys. 43, 4419.CrossRefGoogle Scholar
  14. 14.
    Cain, L.S. and Thomas, J.F., (1971) Phys. Rev., B4, 4245.Google Scholar
  15. 15.
    Salama, K. and Alers, G.A., (1977) Phys. Stat. Sol. (a) 41, 241.CrossRefGoogle Scholar
  16. 16.
    Rayne, J.A., (1958) Phys. Rev., 110, 606.CrossRefGoogle Scholar
  17. 17.
    Guthrie, G.L., (1956) Ph.D. Thesis, Carnegie Institute of Technology, unpublished.Google Scholar

Copyright information

© Purdue Research Foundation 1983

Authors and Affiliations

  • N. Sadanand
    • 1
  • D. H. Damon
    • 1
  1. 1.Department of Physics and Institute of Materials ScienceThe University of ConnecticutStorrsUSA

Personalised recommendations