Advertisement

The Effect of Processing Factors on the Thermal and Electrical Conductivity of Zirconium Carbides at High Temperatures

  • I. A. Vishnevetskaya
  • L. V. Kudryasheva
  • S. S. Ordanyan
  • V. A. Petrov

Abstract

A study has been made into the effect of purity and particle size of starting powder of zirconium carbides on the concentration and temperature curves of thermal and electrical conductivity of ZrCx specimens in the temperature range of 1500 to 3000 K. It is shown that the decrease in the thermal and electrical conductivity of specimens sintered from coarse-grained powders at x→1 has nothing to do with the higher purity of the material, as was assumed earlier, but results from the greater number of microstructural defects which are disregarded when standard procedures of correction for porosity are applied.

Keywords

Thermal Conductivity Concentration Curve Titanium Carbide Titanium Nitride Conductivity Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Neshpor, S. S. Ordanyan, A. I. Avgustinnik and M. B. Kusidman, The Effect of Chemical Composition on the Electrical and Thermophysical Properties of Zirconium and Niobium Carbides in the Region of Their Homogeneity, Zhurnal Prikladnoy Khimii, 37: 2375 (1964).Google Scholar
  2. 2.
    R. E. Taylor and E. K. Storms, Thermal Transport in Refractory Carbides, Thermal Conductivity, 14: 161 (1976).Google Scholar
  3. 3.
    E. K. Storms and P. Wagner, Thermal Conductivity of Substoichiometric ZrC and NbC, High Temp. Sci., 5: 454 (1973).Google Scholar
  4. 4.
    G. V. Sansonov and A. D. Panasyuk, Some Electrophysical Properties of Niobium and Zirconium Carbides in the Region of Their Homogeneity, Teplofizika Vysokikh Temperatur, 4: 207 (1966).Google Scholar
  5. 5.
    B. A. Fridlender, Studies into the Thermophysical Properties of Refractory Materials Produced by Chemical Vapour Deposition, Thesis for a candidate’s degree, Leningrad (1974).Google Scholar
  6. 6.
    W. S. Williams, Scattering of Electrons by Vacancies in NonStoichiometric Crystals of Titanium Carbide, Phys. Rev., 135: A505 (1964).Google Scholar
  7. 7.
    S. N. Lvov, V. F. Nemchenko, T. Ya. Kosolapova and G. V. Samsonov, Physical Properties of Titanium Carbides in the Region of Their Homogeneity, DAN SSSR, 157: 408 (1964).Google Scholar
  8. 8.
    A. Ya. Kuchma and G. V. Samsonov, Formation of Stable Electronic Configurations and Some Physical Properties of Carbides and Nitrides of Transition Metals in the Region of Their Homogeneity, Neorganicheskie Materialy, 2: 1970 (1966).Google Scholar
  9. 9.
    G. V. Samsonov, The Effect of Carbon Sublattice Defects on the Properties of Refractory Carbides of Transition Metals, Neorganicheskie Materialy, 9: 2144 (1973).Google Scholar
  10. 10.
    A. I. Avgustinnik, O. A. Golikova, G. M. Klimashin, et al., Relationship Between Some Electrical and Thermophysical Properties of Zirconium Monocarbide and Carbon Content in the Homogeneous Region, Neoranicheskie Materialy, 2: 1439 (1966).Google Scholar
  11. 11.
    I. G. Korshunov, V. Ye. Zinovyev, P. V. Geld, et al., Thermo-physical Properties of Zirconium and Niobium Carbides at Elevated Temperatures, Teplofiz, Vys. Temp., 15: 521 (1977).Google Scholar
  12. 12.
    A. S. Borukhovich, I. I. Matveyenko, Yu. G. Zainulin, et al., The Bonding and Electrical Conductivity of Cubic Zirconium Carbides and Oxycarbides, Neorganicheskie Materialy, 6: 2126 (1970).Google Scholar
  13. 13.
    O. A. Golikova, E. O. Dzhafarov, A. I. Avgustinnik and G. M. Klimashin, Electrical Properties of Carbides of Transition Metals of Group IV, Fizika i Tekhnika Poluprovodnikov, 3: 506 (1969).Google Scholar
  14. 14.
    O. A. Golikova, A. I. Avgustinnik, G. M. Klimashin and L. V. Kozlovsky, Electrical Properties of Titanium Carbide, Fizika Tverdogo Tela, 7: 2860 (1965).Google Scholar
  15. 15.
    A. I. Avgustinnik, O. A. Golikova, G. M. Klimashin, L. V. Kozlovsky and V. S. Neshpor, Dependence of Some Electrophysical Properties of Titanium Monocarbide on Carbon Content, in “Studies in the Chemistry of Silicates and Oxides,” Nauka, Moscow (1965).Google Scholar
  16. 16.
    O. A. Golikova, A. I. Avgustinnik, G. M. Klimashin, et al., Electrical Properties of Transition Metals Carbides of Group IV, Fizika Tverdogo Tela, 7: 3698 (1965).Google Scholar
  17. 17.
    V. S. Neshpor and G. M. Klimashin, Thermal Conductivity of Titanium Monocarbide Depending on Carbon Content in the Homogeneous Region, Neorganicheskie Materialy, 1: 1545 (1965).Google Scholar
  18. 18.
    V. S. Neshpor, Some Aspects of the Electronic Structure of Monocarbides and Mononitrides of Transition Metals, in “Physical Metallurgy,”Nauka, p. 333, Moscow (1971).Google Scholar
  19. 19.
    M. A. Kuzenokova and P. S. Kisly, Sintering of Titanium Nitride in Vacuum, Poroshkovaya Metallurgiya, 2: 52 (1971).Google Scholar
  20. 20.
    R. A. Andrievsky, I. I. Spivak and K. L. Chevasheva, Effective Self-Diffusion Coefficients in Interstitial Phases, Poroshkovaya Metallurgiya, 7: 65 (1968).Google Scholar
  21. 21.
    S. S. Ordanyan, A. I. Avgustinnik and L. V. Kudryasheva, Packing of Nonstoichiometric Phases of Niobium Carbide, Poroshkovaya Metallurgiya, 8: 26 (1968).Google Scholar
  22. 22.
    P. S. Kisly and M. A. Kuzenkova, Sintering of Refractory Compounds of Variable Composition, Poroshkovaya Metallurgiya, 2: 38 (1973).Google Scholar
  23. 23.
    R. A. Andrievsky, V. V. Klimenko, V. I. Mitrofanov and N. I. Poltoratsky, The Effect of Structural Vacancies in the Interstitial Phases on Shrinkage During Sintering, Poroshkovaya Metallurgiya, 6: 22 (1977).Google Scholar
  24. 24.
    I. M. Fedorchenko, Studies in Activated Sintering, Poroshkovaya Metallurgiya, 2: 27, 3: 17 (1962).Google Scholar
  25. 25.
    L. B. Nezhevenko, V. I. Groshev, B. D. Gurevich and O. V. Bokov, The Effect of Zirconium Carbide Powder Preparation Conditions on the Properties of Sintered Specimens, in: “Refractory Carbides,” Naukova Dumka, Kiev (1970).Google Scholar
  26. 26.
    O. V. Pshenichnaya, M. A. Kuzenkova and P. S. Kísly, Sintering of Zirconium Nitride in Vacuum and in Nitrogen, Poroshkovaya Metallurgiya, 12: 41 (1975).Google Scholar
  27. 27.
    P. S. Kisly, A. D. Panasyuk and G. V. Samsonov, Activated Sintering of Niobium Carbide, Poroshkovaya Metallurgiya, 2: 38 (1962).Google Scholar
  28. 28.
    V. S. Kindysheva and P. S. Kisly, Regularities of Sintering of Niobium Carbide, Poroshkovaya Metallurgiya, 10: 29 (1974).Google Scholar
  29. 29.
    A. I. Avgustinnik, V. M. Vigdergauz, V. M. Gropyanov and G. V. Drozdetskaya, The Effect of Particle Size on Compaction of Niobium Carbide Products at Various Sintering Temperatures, Poroshkovaya Metallurgiya, 6: 11 (1963).Google Scholar
  30. 30.
    M. A. Kuzenkova and P. S. Kisly, Sintering of Titanium Nitride in Nitrogen, Poroshkovaya Metalurgriya, 5: 34 (1970).Google Scholar
  31. 31.
    P. S. Kisly and M. A. Kuzenkova, On the Role of Surface Energy in the Initial Period of Sintering, Poroshkovaya Metallurgiya, 11: 21 (1969).Google Scholar
  32. 32.
    I. A. Vishnevetskaya and V. A. Petrov, Experimental Procedure and Apparatus for Measuring the Thermal Conductivity of Refractory Compounds, Teplofiz. Vys. Temp., 15: 1256 (1977).Google Scholar
  33. 33.
    V. A. Petrov and I. A. Vishnevetskaya, An Apparatus for Measurement of the Thermal Conductivity of Electroconductive Materials at High Temperature by Radial Method, in: “Proc. of 7th Symposium of Thermophys. Prop.,” A. Cezairliyan, ed., ASME, New York (1977).Google Scholar
  34. 34.
    V. A. Petrov and I. A. Vishnevetskaya, Differential Photoelectric Transducer for Measuring Small High-Temperature Gradients, in: “Thermophysical Properties of Substances at High Temperatures,” USSR Academy of Sciences, Moscow (1978).Google Scholar
  35. 35.
    S. G. Rabinovich, Method for Calculating Measurement Errors, Metrologiya, 3: 3 (1970).Google Scholar
  36. 36.
    V. I. Odelevsky, Calculation of Total Conductivity of Heterogeneous Systems, II. Statistical Mixtures of Unstretched Particles, 21: 678 (1951).Google Scholar
  37. 37.
    A. Loeb, Thermal Conductivity, VIII. A Theory of Thermal Conductivity of Porous Materials, J. Am. Cer. Soc., 37: 96 (1954).Google Scholar
  38. 38.
    L. N. Grossman, High-Temperature Thermophysical Properties of Zirconium Carbide, J. Am. Cer. Soc., 48: 236 (1965).Google Scholar
  39. 39.
    B. A. Fridlender and V. S. Neshpor, Thermal Diffusivity of Pyrolytic Zirconium Carbide, Teplofiz. Vys. Temp., 8: 795 (1970).Google Scholar
  40. 40.
    R. E. Taylor, Thermal Conductivity of Zirconium Carbide at High Temperatures, J. Am. Cer. Soc., 45: 353 (1962).Google Scholar
  41. 41.
    Yu. B. Paderno, I. G. Barantseva and V. L. Yupko, Variations in the Thermal Conductivity and Electrical Resistance of ZrC, HfC, NbC, and TaC at High Temperatures, in: “Refractory Inorganic Compounds,” Naukova Dumka, Kiev (1965).Google Scholar
  42. 42.
    W. S. Williams, High Temperature Thermal Conductivity of Transition Metal Carbides and Nitrides, J. Am. Cer. Soc., 49: 156 (1966).Google Scholar
  43. 43.
    L. G. Radosevich and W. S. Williams, Thermal Conductivity of Transition Metal Carbides, J. Am. Cer. Soc., 53: 30 (1970).Google Scholar
  44. 44.
    M. I. Aivazov and I. A. Domashnev, Dependence of the Conductivity Characteristics of Hot-Pressed Titanium Nitride Specimens on Porosity, Poroshkovaya Metallurgiya, 9: 51 (1968).Google Scholar
  45. 45.
    G. N. Dulnew and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composites, Energiya, Leningrad (1974).Google Scholar
  46. 46.
    F. B. Charvat and W. D. Kingery, Thermal Conductivity: XIII. Effect of Microstructure on Conductivity of Single-Phase Ceramics, J. Am. Cer. Soc., 40: 306 (1957).Google Scholar

Copyright information

© Purdue Research Foundation 1983

Authors and Affiliations

  • I. A. Vishnevetskaya
    • 1
  • L. V. Kudryasheva
    • 1
  • S. S. Ordanyan
    • 1
  • V. A. Petrov
    • 1
  1. 1.Institute of High TemperaturesAcademy of SciencesMoscowUSSR

Personalised recommendations