Thermal Conductivity in Two Regions of a Neutron Star

  • Alak Ray


Recent X-ray observational results1 put fairly stringent upper limits on the blackbody temperatures of compact sources in supernova remnants. For a few seconds during the collapse of a supernova the single star may become as luminous as an entire galaxy containing a trillion stars. One class of highly condensed objects that are believed to be left behind in a supernova collapse are neutron stars. If born in this violent fashion, neutron stars are extremely hot initially, although they cool down quickly due to the profuse emission of energetic neutrinos. Once they are produced in collisions of nucleons or electrons, the weakly-interacting neutrinos have little problem escaping from the star (except perhaps in the first few hundred seconds2). Neutrinos thus lead to a direct local cooling of the interior stellar matter in contrast to cooling due to photons, which is diffusive and radiative from the surface.


Neutron Star Effective Thermal Conductivity Supernova Remnant Impurity Diffusion Electron Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Helfand, G. Chanan and R. Novick, Nature, 283, 337 (1980).CrossRefGoogle Scholar
  2. 2.
    R. Sawyer and A. Soni, Astrophys. J. 216, 73 (1977).CrossRefGoogle Scholar
  3. 3.
    J. Bahcall and R. Wolf, Phys. Rev. 140B, 1452 (1965); S. Tsuruta, Physics Reports (in press); R. C. Malone, Ph.D. thesis, Cornell University, Ithaca (1974)Google Scholar
  4. O. Maxwell, Astrophys. J. 231, 201 (1979)CrossRefGoogle Scholar
  5. M. Richardson, H. Van Horn and M. Savedoff, Astrophys. J. Suppl. 39, 29 (1979)CrossRefGoogle Scholar
  6. G. Glen and P. Sutherland, Ap. J. 239, 671 (1980).CrossRefGoogle Scholar
  7. 4.
    G. Baym, H. Bethe and C. Pethick, Nucl. Phys. A165, 225 (1971).CrossRefGoogle Scholar
  8. 5.
    M. Hoffberg, A. Glassgold, R. Richardson, and M. Ruderman, Phys. Rev. Lett. 24, 775 (1970)CrossRefGoogle Scholar
  9. C. Yang and J. Clark, Nucl. Phys. A179, 210 (1971)Google Scholar
  10. T. Takatsuka, Prog. Theor. Phys. 48 1517 (1972).CrossRefGoogle Scholar
  11. 6.
    E. Flowers and N. Itoh, Astrophys. J. 206, 218 (1976)CrossRefGoogle Scholar
  12. E. Flowers and N. Itoh, Astrophys. J. 230, 847 (1979).CrossRefGoogle Scholar
  13. 7.
    A. Solinger, Astrophys. J. 161, 553 (1970).CrossRefGoogle Scholar
  14. 8.
    A. Ray, Ph.D. thesis, Columbia University, New York (1979).Google Scholar
  15. 9.
    R. Marshak, Ann. N. Y. Acad. Sci. 41, 49 (1941)CrossRefGoogle Scholar
  16. L. Mestel, Proc. Cambr. Phil. Soc. 48, 331 (1950)CrossRefGoogle Scholar
  17. T.-D. Lee, Ap. J. 111, 625 (1950).CrossRefGoogle Scholar
  18. 10.
    J. Ziman, Electrons and Phonons, Oxford University Press, London (1960).Google Scholar
  19. 11.
    D. Pines, Elementary Excitations in Solids, W. A. Benjamin, New York (1964).Google Scholar
  20. 12.
    G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170, 299 (1971).CrossRefGoogle Scholar
  21. 13.
    J. Negele and D. Vautherin, Nucl. Phys. A207, 298 (1973).CrossRefGoogle Scholar
  22. 14.
    I. M. Khalatnikov and D. Zharkov, JETP (Soviet Physics)5, 905 (1957).Google Scholar
  23. 15.
    L. D. Landau and I. M. Lifshitz, Statistical Physics, Addison-Wesley, Reading (1965).Google Scholar
  24. 16.
    M. Ruderman, private communication (1979).Google Scholar
  25. 17.
    A. Ray, Preprint (1979).Google Scholar
  26. 18.
    D. Helfand, private communication (1980) AAS annual meeting).Google Scholar

Copyright information

© Purdue Research Foundation 1983

Authors and Affiliations

  • Alak Ray
    • 1
  1. 1.Department of PhysicsColumbia UniversityNew YorkUSA

Personalised recommendations