Ideal Thermal Conductivity of Pd and Nb

  • F. J. Pinski
  • W. H. Butler
  • P. B. Allen

Abstract

We have calculated the electron-phonon contribution to the thermal conductivity of Pd and Nb. The Boltzmann equation describes the electronic distribution function in the presence of a thermal gradient. We solved the Boltzmann equation within the rigid-muffin-tin approximation, using a very dense mesh of first-principles, Korringa-Kohn-Rostoker wave vectors on the Fermi surface. Phonon frequencies and polarizations were obtained from Born-von Kármán force-constant fits of neutron scattering data. The electron-phonon matrix elements were calculated by using the rigid-muffin-tin approximation. Our calculation is free of adjustable parameters. Agreement with experiment is at the 15% level at room temperature.

Keywords

Anisotropy Carbide Univer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. F. Mott, Proc. Phys. Soc. (London) 47: 571 (1935).CrossRefGoogle Scholar
  2. 2.
    A. H. Wilson, Proc. Camb. Phys. Soc. 33: 371 (1937).CrossRefGoogle Scholar
  3. 3.
    P. G. Klemens, Handb. der Physik, 14: 198 (1956).Google Scholar
  4. 4.
    J. M. Ziman, pp. 267 in: Electrons and Phonons, Oxford University Press, London, 1960.Google Scholar
  5. 5.
    P. B. Allen, Phys. Rev. B 13: 1416 (1976).CrossRefGoogle Scholar
  6. 6.
    P. B. Allen, Phys. Rev. B 17: 3725 (1978).CrossRefGoogle Scholar
  7. F. J. Pinski, Phys. Rev. B 21: 4380 (1980)CrossRefGoogle Scholar
  8. 8.
    P. G. Klemens, Proc Phys. Soc. (London) A67: 194 (1954);CrossRefGoogle Scholar
  9. E. H. Sondheimer, Proc. Phys. Soc. (London) A203: 75 (1950).Google Scholar
  10. 9.
    A. H. Wilson, The Theory of Metals, Cambridge University Press, London, 1954.Google Scholar
  11. 10.
    M. Kohler, Z. Phys. 124: 772 (1948); also see Ref. 4, p. 275.Google Scholar
  12. 11.
    J. S. Faulkner, H. L. Davis and H. W. Joy, Phys. Rev. 161: 656 (1967);CrossRefGoogle Scholar
  13. W. H. Butler, J. J. Olson, J. S. Faulkner and B. L. Gyorffy, Phys. Rev. B 14: 3823 (1976).CrossRefGoogle Scholar
  14. 12.
    W. H. Butler, F. J. Pinski and P. B. Allen, Phys. Rev. B 19: 3708 (1978);CrossRefGoogle Scholar
  15. F. J. Pinski and W. H. Butler, Phys. Rev. B 19: 6010 (1979).CrossRefGoogle Scholar
  16. 13.
    G. D. Gaspari and B. L. Gyorffy, Phys. Rev. Lett. 28: 801 (1972);CrossRefGoogle Scholar
  17. R. Evans, G. D. Gaspari and B. L. Gyorffy, J. Phys. F 3: 39 (1973).CrossRefGoogle Scholar
  18. 14.
    A. P. Miiller and B. M. Blockhouse, Can. J. Phys. 49: 704 (1971);CrossRefGoogle Scholar
  19. B. M. Powell, P. Martel and A.D.B. Woods, Phys. Rev. 171: 727 (1968).CrossRefGoogle Scholar
  20. 15.
    F. J. Pinski, P. B. Allen and W. H. Butler, Phys. Rev. Lett. 41: 431 (1978).CrossRefGoogle Scholar
  21. 16.
    G. K. White and S. B. Woods, Phil. Trans. Roy. Soc. (London) 251: 273 (1959).CrossRefGoogle Scholar
  22. 17.
    M. J. Laubitz and T. Matsumura, Can. J. Phys. 50, 196 (1972).CrossRefGoogle Scholar
  23. 18.
    G. K. White and S. B. Woods, Can J. Phys. 35, 892 (157).Google Scholar
  24. 19.
    F. J. Pinski, P. B. Allen and W. H. Butler, Physical Review B (in press).Google Scholar

Copyright information

© Purdue Research Foundation 1983

Authors and Affiliations

  • F. J. Pinski
    • 1
    • 2
  • W. H. Butler
    • 1
  • P. B. Allen
    • 1
    • 2
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of PhysicsState University of New YorkStony BrookUSA

Personalised recommendations