Possible Relationship of Gluconeogenesis to Modulation of Phosphate Transport in the Proximal Tubule

  • Thomas P. Dousa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 151)


The renal cortex, specifically the proximal tubule (1–3), is the only tissue besides the liver capable of synthesizing glucose from smaller carbon fragments. Contribution of renal gluconeogene-sis (GNG) to the maintenance of blood glucose homeostasis is relatively minor, in comparison with GNG in the liver (4). Numerous studies in the past have shown that the rate of renal GNG changes in response to a variety of hormonal or pharmacologic stimuli and in various pathophysiologic situations (4,5). Whether and how the GNG pathway in renal proximal tubules relates to specific functions of this segment of the nephron remains unknown. Recent observations from our laboratory (6,7) taken together with reports by other investigators in the past, led us to propose a hypothesis (Fig. 1) according to which the rate of GNG in the cells of proximal tubules might modulate the rate of phosphate (Pi) reab-sorption from luminal fluid across the epithelium of the proximal tubules (7,8,9).


Proximal Tubule Nicotinamide Adenine Dinucleotide Brush Border Membrane Nicotinamide Adenine Dinucleotide Unilateral Ureteral Obstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Maleque, H. Endou, C. Koseki, and F. Sakai, Nephron heterogeneity: Gluconeogenesis from pyruvate in rabbit nephron, Febs Lett. 116:154 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Vandewalle, G. Wirthensohn, H-G. Heidrich, and W. Guder, Distribution of hexokinase and phosphoenolpyruvate car-boxykinase along the rabbit nephron, Am. J. Physiol. 240:F492 (1981).PubMedGoogle Scholar
  3. 3.
    H. B. Burch, R. G. Narins, C. Chu, S. Fagioli, S. Choi, W. McCarthy, and O. H. Lowry, Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation, Am. J. Physiol. 235:F246 (1978).PubMedGoogle Scholar
  4. 4.
    C. I. Pogson, D. Longshaw, A. Roobol, S. A. Smith, and G. A. O. Alleyne, Phosphoenolpyruvate carboxykinase and renal gluconeogenesis, in: “Gluconeogenesis: Its Regulation in Mammalian Species,” R. W. Hanson and M. A. Mehlman, ed., John Wiley & Sons, New York, pp. 335–368 (1976).Google Scholar
  5. 5.
    J. J. Cohen, and D. M. Kamm, Renal metabolism relation to renal function, in: “The Kidney,” B. M. Brenner and F. C. Rector, Jr., ed., W. B. Saunders Co., Philadelphia, pp. 144–248 (1981).Google Scholar
  6. 6.
    S. A. Kempson, G. Colon-Otero, S-Y. L. Ou, S. T. Turner, and T. P. Dousa, Possible role of nicotinamide adenine dinucleotide as an intracellular regulator of renal transport of phosphate in the rat, J. Clin. Invest. 67:1347 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Y. L. Ou, S. A. Kempson, and T. P. Dousa, Relationship between rate of gluconeogenesis and content of nicotinamide adenine dinucleotide in renal cortex, Life Sci. 29:1195–1202 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    T. P. Dousa, and S. A. Kempson, Role of nicotinamide adenine dinucleotide (NAD) in control of proximal renal tubular phosphate transport, in: “Urolithiasis Clinical and Basic Research,” L. H. Smith, W. G. Robertson, and B. Finlayson, ed., Plenum Press, New York (1981).Google Scholar
  9. 9.
    T. P. Dousa, and S. A. Kempson, Regulation of renal brush border membrane transport of phosphate, Mineral Electrolyte Metab. vol. 6 in press (1981).Google Scholar
  10. 10.
    N. O. Kaplan, The pyridine coenzymes, in: “The Enyzmes,” P. D. Boyer, H. Lardy, and K. Myrback, ed., Academic Press, Inc., New York, pp. 39–56 (1960).Google Scholar
  11. 11.
    M. E. Tischler, D. Friedrichs, K. Coll, and J. R. Williamson, Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch. Biochem. Biophys. 184:222 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Bûcher, and H. Sies, Mitochondrial and cytosolic redox states in perfused rat liver: Methods and problems in metabolic compartmentation. in: “Use of Isolated Liver Cells and Kidney Tubules in Metabolic Studies,” J. M. Tager, H. D. Soling, and J. R. Williamson, ed., North Holland Publishing Co., Amsterdam, pp. 41–64 (1976).Google Scholar
  13. 13.
    K. Daziel, Kinetics and mechanism of nicotinamide-nucleotidelinked dehydrogenases, In: “The Enzymes,” P. D. Boyer, ed., Academic Press, New York, pp. 1–66 (1975).Google Scholar
  14. 14.
    S. Subramanian and P. D. Ross, Thermodynamics of binding of oxidized and reduced nicotinamide adenine dinucleotides, adenosine 5′-diphosphoribase and 5′-iodosalycilate to dehydrogenases, Biochemistry 17:2192 (1978).CrossRefGoogle Scholar
  15. 15.
    K. S. Gumaa, P. McLean, and A. L. Greenbaum, Compartmentation in relation to metabolic control in liver, in: “Essays in Biochemistry,” P. N. Campbell, and F. Dickens, ed., Academic Press, London, 7:39–85 (1971)Google Scholar
  16. 16.
    J. L. Braun, B. A. Jackson, and T. P. Dousa, Interaction of nicotinamide adenine dinucleotide (NAD) with renal cortical brush border membranes (BBM). Clin. Res.:in press (1981).Google Scholar
  17. 17.
    S. T. Turner, T. A. Haugen, and T. P. Dousa, Mechanism of phosphaturia induced by glucocorticoids (GCD) in rats adapted to low phosphate diet (LPD), Clin. Res. 29:556A (1981).Google Scholar
  18. 18.
    S. Czekalski, M. Onsgard, T. J. Berndt, R. Holets, T. P. Dousa, and F. G. Knox, Phosphaturia and restoration of the Phosphaturic response to parathyroid hormone (PTH) by glucocorticoid treatment in rats fed low phosphate diet (LPD), Clin. Res. 29:553A (1981).Google Scholar
  19. 19.
    R. C. Haynes, Jr., Mitochondrial metabolism in hormonal stimulation of gluconeogenesis, in: The Regulation of Carbohydrate Formation and Utilization in Mammals, C. M. Veneziale, ed., University Press, Baltimore, pp. 345–362 (1981).Google Scholar
  20. 20.
    W. J. Kreusser, C. Descoeudres, Y. Oda, S. G. Massry, and K. Kurokawa, Effect of phosphate depletion on renal gluconeogenesis, Mineral Electrolyte Metab. 3:312 (1980).Google Scholar
  21. 21.
    S. A. Kempson, Renal brush border membrane adaptation to low phosphate diet: Effect of metabolic acidosis, The American Society of Nephrology 14th Annual Meeting, in press (1981).Google Scholar
  22. 22.
    S. A. Kempson, S. V. Shah, P. G. Werness, T. Berndt, P. H. Lee, L. H. Smith, F. G. Knox, and T. P. Dousa, Renal brush border membrane adaptation to phosphorus deprivation: Effects of fasting versus low-phosphorus diet. Kidney Int. 18:36 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    N. Beck, S. K. Webster, and H. J. Reineck, Effect of fasting on tubular phosphorus reabsorption, Am. J. Physiol. 237:F241 (1979).PubMedGoogle Scholar
  24. 24.
    S. Czekalski, S. T. Turner, M. Onsgard, F. G. Knox, and T. P. Dousa, Reversal of renal adaptation to low phosphate diet (LPD) by stimulation of renal gluconeogenesis (GNG). Proceedings VIIIth International Congress of Nephrology, Athens, Greece, June, RM-034, p. 61 (1981).Google Scholar
  25. 25.
    H. Rasmussen, D. B. P. Goodman, N. Friedmann, N. E. Allen, and K. Kurokawa, Ionic control of metabolism, in: “Handbook of Physiology,” G. D. Aurbach, ed., Am. Physiol. Soc, pp. 225–264 (1976).Google Scholar
  26. 26.
    T. J. Berndt, F. G. Knox, S. A. Kempson, and T. P. Dousa, Nicotinamide adenine dinucleotide and renal response to parathyroid hormone. Endocrinology 108:2005 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    R. Kinne, W. Berner, N. Hoffman, and H. Murer, Phosphate transport by isolated renal and intestinal plasma membranes, Adv. Exp. Med. Biol. 81:265 (1976).Google Scholar
  28. 28.
    M. R. Hammerman, I. E. Karl and K. A. Hruska, Regulation of canine renal vesicle Pi transport by growth hormone and parathyroid hormone, Biochim. Biophys. Acta 603:322 (1980).CrossRefGoogle Scholar
  29. 29.
    M. L. Purkerson, D. B. Rolf, L. R. Chase, E. Slatopolsky, and S. Klahr, Tubular reabsorption of phosphate after release of complete ureteral obstruction in the rat, Kidney Int. 5:326 (1974).PubMedCrossRefGoogle Scholar
  30. 30.
    J. Blondin, M. D. Purkerson, D. Rolf, A. C. Schoolwerth, and S. Klahr, Renal functions and metabolism after relief of unilateral ureteral obstruction. Proc. Soc. Exp. Biol. Med. 150:71 (1975).PubMedGoogle Scholar
  31. 31.
    H. Nito, C. Descoeudres, K. Kurokawa, and S. G. Massry, Effect of unilateral ureteral obstruction on renal cell metabolism and function, J. Lab. Clin. Med. 91:60 (1978).PubMedGoogle Scholar
  32. 32.
    S. Angielski, L. Pempkowiak, P. Gmaj, A. Hoppe, and C. Nowicka, The effect of maleate and lithium on renal function and metabolism, in: “Current Problems in Clinical Biochemistry: Renal Metabolism in Relation to Renal Function,” U. Schmidt and U. C. Dubach, ed., Hans Huber Publishers, Bern, pp. 142–152 (1976).Google Scholar
  33. 33.
    S. Angielski and M. Szczepanska, Restoration of the Phosphaturic effect of parathyroid hormone in lithium-treated rats, in: “Current Problems in Clinical Biochemistry: Biochemical Nephrology”, W. G. Guder and Ü. Schmidt, ed., Hans Huber Publishers, Bern, pp. 463–471 (1978).Google Scholar
  34. 34.
    S. Angielski, K. Drewnowska, A. Ryboczynska, M. Szczepanska, and J. Stepinski, Renal metabolism of citrate and oxoglu-tarate in lithium-treated rats, in: Proceedings, 8th International Congress of Neprology, Athens, Greece, W.. Zurukzoglu, M. Papadimitriou, M. Pyrpasopoulos, M. Sion, C. Zamboulis, S. Karger, Basal, pp. 807–813 (1981).Google Scholar
  35. 35.
    A. Nizet, P. Lefebvre, A. Luyckx, and J. Crabbe, Hormones and non-specific humoral factors in the interferences between sodium, glucose and phosphate handling by dog kidney, in: “Current Problems in Clinical Biochemistry: Renal Metabolism in Relation to Renal Function,” U. Schmidt and U. C. Dubach, ed., Hans Huber Publishers, Bern, pp. 262–271 (1976).Google Scholar
  36. 36.
    J. A. Lupianez, K. N. Dileepan, and S. R. Wagle, Interrelationship of somatostatin, insulin, and calcium in the control of gluconeogenesis in kidney cortex slices, Biochem. Biophys. Res. Comm. 90:1153 (1979).CrossRefGoogle Scholar
  37. 37.
    T. E. Northrup, Insulin (INS) induced increases in phosphate (Pi) transport across renal luminal brush border membranes (LBBM), Fed. Proc. 40:462 (1981).Google Scholar
  38. 38.
    S. T. Turner and T. P. Dousa, Differences in transport capacity of phosphate (Pi) of luminal brush border membrane (BBM) prepared from subcapsular (SC) and juxtamedullary (JM) cortex. Abstr. of l4th Annual Meeting of the American Society of Nephrology, 1981, Washington, D.C., November, 1981, in press.Google Scholar
  39. 39.
    M. Watford, P. Vinay, G. Lemieux, and A. Gougoux, Inhibition of renal gluconeogenesis and phosphoenopyruvate car-boxykinase activity by -3-mercaptopicolinic acid: studies in rat, guinea pig, dog, rabbit, and man, Can. J. Biochem. 58:440 (1980).PubMedCrossRefGoogle Scholar
  40. 40.
    H. Rasmussen and D. Waisman, The messenger function of calcium in endocrine systems, in: Biochemical Actions of Hormones, Vol. VIII, G. Litmach, ed., Academic Press, New York, pp. 2–117 (1981).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Thomas P. Dousa
    • 1
  1. 1.Nephrology Research LaboratoriesMayo Clinic and FoundationRochesterUSA

Personalised recommendations