Functional Properties of Parathyroid Hormone Receptors in Kidney and Bone

  • A. P. Teitelbaum
  • N. B. Pliam
  • C. Silve
  • S. R. Abbott
  • R. A. Nissenson
  • C. D. Arnaud
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 151)


It is well established that the renal and skeletal actions of parathyroid hormone (PTH) contribute to the maintenance of calcium and phosphate homeostasis. Considerable evidence exists for the involvement of cAMP in mediating some of the effects of PTH in the kidney: 1) in vivo administration of the hormone rapidly increases urinary cAMP and subsequently induces phosphaturia1; 2) cAMP mimics this response1,2; and 3) renal plasma membranes contain PTH-responsive adenylate cyclase activity3. The role of cAMP in PTH regulation of bone metabolism is less clear. Although it has been shown that PTH stimulates production of cAMP in whole bone4 and in cultured bune cells5, evidence exists both for and against the involvement of cAMP in PTH-induced bone resorption, osteocytic osteolysis, inhibition of bone formation, and skeletal lactate production6.


Parathyroid Hormone Adenylate Cyclase Bone Cell Forward Rate Constant Stimulate cAMP Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.R. Chase and G.D. Aurbach, Parathyroid function and the renal excretion of 3′5′-adenylic acid, Proc Natl Acad Sci USA 58:525 (1967).CrossRefGoogle Scholar
  2. 2.
    N.I. Kaminsky, A.E. Broadus, J.G. Hardman, D.J. Jones Jr., J.H. Ball, E.W. Sutherland and G.W. Liddle, Effects of parathyroid hormone on plasma and urinary adenosine 3′5′-monophosphate in man, J Clin Invest 49:2387 (1970).PubMedCrossRefGoogle Scholar
  3. 3.
    L. Chase and G. Aurbach, Renal adenyl cyclase: anatomically separate sites for PTH and vasopressin, Science 159:545 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    L.R. Chase, S.A. Fedak and G.D. Aurbach, Activation of skeletal adenyl cyclase by parathyroid hormone in vitro, Endocrinology 84:761 (1969).PubMedCrossRefGoogle Scholar
  5. 5.
    W.A. Peck, Cyclic AMP as a second messenger in the skeletal actions of parathyroid hormone: A decade-old hypothesis, Calcif Tiss Int 29:1 (1979).CrossRefGoogle Scholar
  6. 6.
    W.A. Peck and S. Klahr, Cyclic Nucleotides in bone and mineral metabolism, Adv Cyclic Nucleotide Res 11:89 (1979).PubMedGoogle Scholar
  7. 7.
    R.A. Nissenson and C.D. Arnaud, Properties of the parathyroid hormone receptor-adenylate cyclase system in chicken renal plasma membranes, J Biol Chem 254:1469 (1978).Google Scholar
  8. 8.
    G.V. Segre, M. Rosenblatt, B.L. Reiner, J.E. Mahaffey and J.T. Potts Jr., Characterization of parathyroid hormone receptors in canine renal cortical plasma membranes using a radioiodinated sulfur-free hormone analogue, J Biol Chem 254:6980 (1979).PubMedGoogle Scholar
  9. 9.
    R.A. Nissenson, A.P. Teitelbaum, S.R. Abbott, N. Pliam, C. Silve, L. Zitzner, K. Nyiredy and C.D. Arnaud, Parathyroid hormone receptors in kidney and bone: Relation to adenylatecyclase activation, in: “Hormonal Control of Calcium Metabolism, “D.V. Cohn, R.V. Talmage, J.L. Matthews, Eds., Excerpta Medica, Amsterdam, pp.44–54 (1981).Google Scholar
  10. 10.
    N.H. Hunt, T.J. Martin, V.P. Michelangi and J.A. Eisman, Effect of guanyl nucleotides on parathyroid hormone-responsive adenylate cyclase in chick kidney, J Endocrinol 69:401 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    V.P. Michelangeli, N.H. Hunt and T.J. Martin, States of activation of chick kidney adenylate cyclase induced by parathyroid hormone and guanyl nucleotides, J Endocrinol 72:69 (1977).CrossRefGoogle Scholar
  12. 12.
    D. Goltzman, E.N. Callahan, G.W. Tregear and J.T. Potts Jr., Influence of guanyl nucleotides on parathyroid hormone stimulated adenylyl cyclase activity in renal cortical membranes, Endocrinology 103:1352 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    R.A. Nissenson, K.O. Nyiredy and C.D. Arnaud, Guanyl nucleotide potentiation of parathyroid hormone-stimulated adenylate cyclase in chicken renal plasma membranes: A receptor-independent effect, Endocrinology 108:1949 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    T. Pfeuffer, GTP-binding proteins in membranes and the control of adenylate cyclase activity, J Biol Chem 252:7224 (1977).PubMedGoogle Scholar
  15. 15.
    E.M. Ross, A.C. Howlett, K.M. Ferguson and A.G. Gilman, Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme, J Biol Chem 253:6401 (1978).PubMedGoogle Scholar
  16. 16.
    H.B. Brewer Jr., T. Fairwell, R. Ronan, G.W. Sizemore and C.D. Arnaud, Human PTH: amino acid sequence of the amino-terminal residues 1–34, Proc Natl Acad Sci USA 69:3585 (1972).PubMedCrossRefGoogle Scholar
  17. 17.
    H.D. Niall, R.T. Sauer, J.W. Jacobs, H.T. Keutmann, G.V. Segre, J.L.H. O’Riordan, G.D. Aurbach, and J.T. Potts Jr., The aminoacid sequence of the amino-terminal 1–37 residues of human PTH, Proc Natl Acad Sci USA 71:384 (1974).PubMedCrossRefGoogle Scholar
  18. 18.
    D.F. Fitzpatrick, G. R. Davenport, L. Forte, E.J. Landon, Characterization of plasma membrane proteins in mammalian kidney, J Biol Chem 244:3561 (1969).PubMedGoogle Scholar
  19. 19.
    F.P. DiBella, T.P. Dousa, S.S. Miller, C.D. Arnaud, Parathyroid receptors of renal cortex: Specific binding of biologically active, 125I-labeled hormone and relationship to adenyl cyclase activation, Proc Natl Acad Sci 71:723 (1974).CrossRefGoogle Scholar
  20. 20.
    P.J. Nijweide, A. Van Der Plas and J.P. Scherft, Calcif Tiss Int (in press).Google Scholar
  21. 21.
    P.J. Sammon, J.S. Brand, W.F. Neuman and L.C Raisz, Metabolism of labeled parathyroid hormone, Endocrinology 92:1596 (1973).PubMedCrossRefGoogle Scholar
  22. 22.
    C Scatchard, The attraction of proteins for small molecules and ions, Ann NY Acad Sci 51:660 (1949).CrossRefGoogle Scholar
  23. 23.
    Y. Salomon, C. Landos and M. Rodbell, A highly sensitive adenylate cyclase assay, Analytical Biochem 58:541 (1974).CrossRefGoogle Scholar
  24. 24.
    A.G. Gilman, A protein binding assay for adenosine 3′5′-cyclic monophosphate, Proc Natl Acad Sci USA 67:305 (1970).PubMedCrossRefGoogle Scholar
  25. 25.
    R.H. Renston, D.C Maloney, A.L. Jones, G.T. Hradek, K.Y. Wong, I.D. Goldfine, Bile secretory apparatus: Evidence for a vesicular transport mechanism for proteins in the rat, using horseradish peroxidase and 125I insulin, Gastroenterology 78: 1373 (1980).PubMedGoogle Scholar
  26. 26.
    I.D. Goldfine, A.L. Jones, G.T. Hradek, K.Y. Wong and J.S. Mooney, Entry of insulin into human cultured lymphocytes: Electron microscope autoradiographic analysis, Science 202: 760 (1978).PubMedCrossRefGoogle Scholar
  27. 27.
    D. Rodbard, Mathematics of hormone-receptor interaction, in: “Advances in Experimental Medicine and Biology” 36:289, Plenum Press (1973).Google Scholar
  28. 28.
    J.T. Potts, T.M. Murray, M. Peacock, H.D. Niall, G.W. Tregear, H.T. Keutmann, D. Powell and L.J. Deftos, Parathyroid hormone: sequence, synthesis, immunoassay studies, Am J Med 50:639 (1971).PubMedCrossRefGoogle Scholar
  29. 29.
    K.J. Martin, J.J. Freitag, M.B. Conrades, K.A. Hruska, S. Klahr and F. Slatopolsky, Selective uptake of the synthetic aminoterminal fragment of bovine parathyroid hormone by isolated perfused bone, J Clin Invest 62:256 (1978).PubMedCrossRefGoogle Scholar
  30. 30.
    G.V. Segre, P. D’Amour, J.T. Potts Jr., Metabolism of radio-iodinated bovine PTH in the rat, Endocrinology 99:1645 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    D. Goltzman, A. Peytremann, E.N. Callahan, G.V. Segre and J.T. Potts, Jr., Metabolism and biological activity of parathyroid hormone in renal cortical membranes, J Clin Invest 57:8 (1976).PubMedCrossRefGoogle Scholar
  32. 32.
    A.P. Teitelbaum, N. Schneider and W.F. Neuman, On the relation between peripheral cleavage of parathyroid hormone and its biological activity in kidney, Metab Bone Pis Rel Res 2:25 (1979).CrossRefGoogle Scholar
  33. 33.
    D. Goltzman, Examination of the requirement for metabolism of parathyroid hormone in skeletal tissue before biological action. Endocrinology 102:155 (1978).CrossRefGoogle Scholar
  34. 34.
    E.M. Ross and A.G. Gilman, Biochemical properties of hormone-sensitive adenylate cyclase, Ann Rev Biochem 49:533 (1980).PubMedCrossRefGoogle Scholar
  35. 35.
    A.R. LaBarbera, N.D. Richert and R.J. Ryan, Nucleotides do not modulate rat luteocyte human chorionic gonadotropin responsiveness by inhibiting human chorionic gonadotropin binding, Arch Biochem Biophys 200:177 (1980).PubMedCrossRefGoogle Scholar
  36. 36.
    M.K. Drezner and W.M. Burch Jr., Altered activity of the nucleotide regulatory site in the parathyroid hormone-sensitive adenylate cyclase from the renal cortex of a patient with pseudohypoparathyroidism, J Clin Invest 62:1222 (1978).PubMedCrossRefGoogle Scholar
  37. 37.
    Z. Farfel and H.R. Bourne, Deficient activity of receptorcyclase coupling protein in platelets of patients with pseudohypoparathyroidism, J Clin Endocrinol Metab 51:1202 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • A. P. Teitelbaum
    • 1
    • 2
  • N. B. Pliam
    • 1
    • 2
  • C. Silve
    • 1
    • 2
  • S. R. Abbott
    • 1
    • 2
  • R. A. Nissenson
    • 1
    • 2
  • C. D. Arnaud
    • 1
    • 2
  1. 1.Medical ServiceVeterans Administration Medical CenterSan FranciscoUSA
  2. 2.Department of MedicineUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations