Calcium as Intracellular Messenger in Hormone Action

  • Howard Rasmussen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 151)


Over the past 15 years, our knowledge has grown in two related fields: cellular calcium metabolism and calcium as intracellular messengers (1,2). This knowledge presents us with an apparent paradox. On the one hand is the evidence that the cell has developed an elaborate set of mechanisms for keeping intracellular calcium constant, and on the other that the cell employs changes in cytosolic calcium ion concentration to convey information from its surface to its interior. The paradox is how it can accomplish the latter in the face of the former.


Response Element Myosin Light Chain Kinase Cellular Calcium Messenger System Mitochondrial Calcium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borle, A. (1981) Control, modulation and regulation of cell calcium. Rev. Physiol. Biochem. Pharmacol. 90: 14–152.Google Scholar
  2. 2.
    Rasmussen, H. and Waisman, D.M. (1981) The messenger function of calcium in endocrine systems. Bioch. Actions of Hormones VIII: 1–115.Google Scholar
  3. 3.
    Katz, B. Nerve, Muscle and Synapse. (1966) McGraw-Hill, New York.Google Scholar
  4. 4.
    Douglas, W.W. and Rubin, R.P. (1961) The role of calcium in the secondary response of the adrenal medulla to acetylcholine J. Physiol. London 159: 40–57.PubMedGoogle Scholar
  5. 5.
    Rasmussen, H. (1980) Calcium and cAMP in stimulus-response coupling. Ann. N.Y. Acad. Sci. 356: 346–353.PubMedCrossRefGoogle Scholar
  6. 6.
    Rasmussen, H. Calcium and cAMP as Synarchic Messengers. John Wiley and Sons, New York (1981).Google Scholar
  7. 7.
    Berridge, M.J. (1975) The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv. Cyclic Nuc. Res. 6: 1–98.Google Scholar
  8. 8.
    O’Doherty, J., Youmans, S.J., Armstrong, W.McD and Stark, R.J. (1980) Calcium regulation during stimulus-secretion coupling: continuous measurement of intracellular calcium activities. Science 209: 510–513.PubMedCrossRefGoogle Scholar
  9. 9.
    Borle, A. and Uchikawa, T. (1978) Effects of parathyroid hormone on the distribution and transport of calcium in cultural kidney cells. Endocrinology 102: 1725–1732.PubMedCrossRefGoogle Scholar
  10. 10.
    Schanne, F.A.X., Kane, A.B., Young, E.E. and Farber, J.L. (1979) Calcium dependence of toxic cell death: A final common pathway. Science 206: 206–208.CrossRefGoogle Scholar
  11. 11.
    Fleckenstein, A. (1974) Drug-induced changes in cardiac energy Adv. Cardiol. 12: 183–197.Google Scholar
  12. 12.
    Wrogemann, K. and Pena S.D.J. (1976) Mitochondrial calcium overload: a general mechanism for cell necrosis in muslce disease. Lancet I: 672:673.Google Scholar
  13. 13.
    Crouch, T.H. and Klee, C.B. (1980) Positive cooperative binding of calcium to bovine brain calmodulin. Biochemistry 19: 3692–3698.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang, J.H., Sharma, R.K., Huang, C.Y. and Chau, V. and Chock, P.B. (1980) On the mechanism of activation of cyclic nucleotide phosphodiesterase by calmodulin. Ann. N.Y. Acad. Sci. U.S.A. 356: 190–204.CrossRefGoogle Scholar
  15. 15.
    Huang, C.Y., Chau, V., Chock, P.B., Wang, J.H. and Sharma, R. K. (1981) Mechanism of activation of cyclic nucleotide phosphodiesterase: requirement of the bindingof four Ca2+ to calmodulin for activation. Proc. Natl. Acad. Sci. USA 18: 871–874.CrossRefGoogle Scholar
  16. 16.
    Wang, J.H., Teo, T.S. Ho, H.C. and Stevens, F.C. (1975) Bovine heart protein activator of cyclic nucleotide phosphodiesterase. Adv. Cyclic Nucl. Res. 5: 179–194.Google Scholar
  17. 17.
    Cheung, W.Y., Lynch, T.J., Wallace, R.W. and Tallant, E.C. (1981) cAMP renders Ca2+-dependent phosphodiesterase refractory to inhibition by a calmodulin-binding protein (cal-cineuria). J. Biol. Chem. 256: 4439–4443.PubMedGoogle Scholar
  18. 18.
    Penniston, J.T., Graf, E. and Itano, T. (1980) Calmodulin regulation of the Ca2+ pump of erythrocyte membranes. Ann. N.Y. Acad. Sci. 356: 245–257.PubMedCrossRefGoogle Scholar
  19. 19.
    Vincenzi, F.F., Hinds, T.R. and Raess, B.V. (1980) Calmodulin and the plasma membrane calcium pump. Ann. N.Y. Acad. Sci. 256: 233–244.Google Scholar
  20. 20.
    Waisman, D.M., Gimble, J., Goodman, D.B.P. and Rasmussen, H. (1981) Studies of the Ca2+ transport mechanism of human inside-out plasma membrane vesicles. 1. Regulation of the Ca2+ pump by calmodulin. J. Biol. Chem. 256: 409–414.PubMedGoogle Scholar
  21. 21.
    Blumenthal, D.K. and Stuff, J.T. (1980) Activation of skeletal muscle myosin light kinase by calcium and calmodulin Biochemistry 19: 5608–5614.PubMedCrossRefGoogle Scholar
  22. 22.
    Scharff, P. (1981) Calmodulin and its role in cellular activation. Cell Calcium 21: 1–28.CrossRefGoogle Scholar
  23. 23.
    Berridge, M.J. and Lipke, H. (1979) Changes in calcium transport across Calliphora salivary glands induced by 5-hydroxytry-ptamine and cyclic nucleotides. J. Exp. Bio. 78: 137–158.Google Scholar
  24. 24.
    Nicholls, D.G. (1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem. J. 1979: 511–522.Google Scholar
  25. 25.
    Murphy, E. Catt, K. Rich, T.L. and Williamson, J.R. (1980). Hormonal effects on calcium homeostasis in isolated hepato-cytes. J. Bio. Chem. 255: 6600–6608.Google Scholar
  26. 26.
    Bronstrom, C.O. and Hunkeler, R.L. and Krebs, E.G. (1971). The regulation of skeletal muscle Phosphorylase kinase by Ca2+. J. Biol. Chem. 246: 1961–1967.Google Scholar
  27. 27.
    Shenolikar, S., Cohen, P.T.W., Cohen, P. Nairn, A.C. and Perry, S.V. (1979) The role of calmodulin in the structure and regulation of Phosphorylase kinase from rabbit skeletal muscle. Eur. J. Biochem. 100: 327–329.CrossRefGoogle Scholar
  28. 28.
    Hartshorne, D.J. and Persechini, A.J. (1980) Phosphorylation of myosin as a regulatory component in smooth muscle. Ann. N.Y. Acad. Sci. 356: 130–141.PubMedCrossRefGoogle Scholar
  29. 29.
    Adelstein, R.S., Conti, M.A. and Pato, M.D., (1980) Regulation of myosin light chain kinase by reversible phosphorylation and calcium-calmodulin. Ann. N.Y. Acad. Sci 356: 142–150.PubMedCrossRefGoogle Scholar
  30. 30.
    Kerrick, W.G.L., Hoar, P.E. and Cassidy, P.S. (1980) Calcium-activated tension: the role of myosin light chain phosphorylation. Fed. Proc. 39: 1558–1563.PubMedGoogle Scholar
  31. 31.
    Silver, P.J., Holroyde, M.J., Solaro, J. and Disalvo, J. (1981) Ca2+, calmodulin and cyclic AMP-dependent modulation of actin-myosin interactions in aorta. Biochim. Biophys. Acta 674: 65–70.PubMedCrossRefGoogle Scholar
  32. 32.
    Rasmussen, H. (1970) Cell communication, calcium ion and cyclic adenosine monophosphate. Science 170: 404–412.PubMedCrossRefGoogle Scholar
  33. 33.
    Smith, S.B., White, H.D., Siegel, J.B. and Krebs, E.G. (1981) Cyclic AMP-dependent protein kinase I: cyclic nucleotide binding, structural changes, and release of catalytic sub-units. Proc.Natl. Acad. Sci. USA 78: 1591–1595.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Howard Rasmussen
    • 1
  1. 1.Yale University School of MedicineNew HavenUSA

Personalised recommendations