Inherited and Acquired Disorders of Vitamin D Metabolism

  • John G. Haddad
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 151)


Many human diseases have previously been characterized by their sensitivity or resistance to vitamin D, although direct information about mechanisms has been lacking. The development and application of radioisotopic materials and specific quantitative assays for vitamin D sterols have permitted direct analyses of vitamin D metabolism in patients affected by these diseases. Since there have been reviews of vitamin D metabolism in recent years (1–3), I shall confine this review to more recent studies of conditions which reflect inherited or birth-related, and acquired difficulties in vitamin D sterols’ supply, metabolism and biological effects.


Secondary Hyperparathyroidism Idiopathic Hypercalciuria Maternal Vitamin Oncogenic Osteomalacia Connective Tissue Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.R. Fraser, Regulation of the metabolism of vitamin D, Phys. Revs. 60:551 (1980).Google Scholar
  2. 2.
    H.F. DeLuca, and H. Schnoes, Metabolism and mechanics of action of vitamin D, Ann. Rev. Biochem. 929:631 (1977).Google Scholar
  3. 3.
    M. Haussler, and T. McCain, Basic and clinical concepts related to vitamin D metabolism and action, New Eng. J. Med. 297:974 and 1041 (1977).CrossRefGoogle Scholar
  4. 4.
    R. Bouillon, F. Van Assche, H. Van Baelen, W. Heyns, and P. De Moor, Influence of the vitamin D binding protein on the serum concentration of 1,25-(OH)2D, J. Clin. Invest. 67:589 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    L.S. Hillman, S. Rojanasathit, E. Slatopolsky, and J. Haddad, Serial measurements of serum calcium, magnesium, parathyroid hormone, calcitonin and 25-OHD in premature and term infants during the first week of life, Ped. Res. 11:739 (1977).CrossRefGoogle Scholar
  6. 6.
    L. Hillman, and J. Haddad, Perinatal vitamin D metabolism. I. 25-OHD in maternal and cord blood, J. Pediat. 84:742 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Moncrieff, and T. Fadahunsi, Congenital rickets due to maternal vitamin D deficiency, Arch. Dis. Child 49:810 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    J.C.L. Shaw, Evidence for defective skeletal mineralization in low-birth weight infants: the absorption of calcium and fat, Pediat. 57:16 (1976).Google Scholar
  9. 9.
    L. Hillman, and J. Haddad, Perinatal vitamin D metabolism. II. Serial 25-OHD concentrations in sera of term and premature infants, J. Pediat. 86:928 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    N. Hoff, J. Haddad, S. Teitelbaum, W. McAlister, and L. Hillman, Serum concentrations of 25-OHD in rickets of extremely premature infants, J. Pediat. 94:460 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    D. Fraser, and C.R. Scriver, Familial forms of vitamin D-resistant rickets revisited: x-linked hypophosphatemia and autosomal recessive vitamin D dependency, Am. J. Clin. Nutr. 29: 1315 (1976).PubMedGoogle Scholar
  12. 12.
    C.R. Scriver, T.M. Reade, H.F. DeLuca, and A.J. Hamstra, Serum 1,25-(OH)2D levels in normal subjects and in patients with hereditary rickets or bone disease, New Eng. J. Med. 229:976 (1978).CrossRefGoogle Scholar
  13. 13.
    E. Devlin, F. Glorieux, P. Marie, and J. Pettifor, Vitamin D dependency; replacement therapy with calcitriol, J. Pediat. 99:26 (1981).CrossRefGoogle Scholar
  14. 14.
    M. Brooks, N. Bell, L. Love, P. Stern, E. Orfei, S. Queener, A. Hamstra, and H. DeLuca, Vitamin D-dependent rickets type II. resistance of target organs to 1,25(OH)2D3, New Eng. J. Med. 298:996 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Marx, A. Spiegel, E. Brown, D. Gardner, R. Sowns, M. Attie, A. Hamstra, and H. DeLuca, A familial syndrome of decrease in sensitivity to 1,25-(OH)2D3, J. Clin. Endocrinol. Metab. 47: 1303 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    J. Rosen, A. Fleischman, L. Finberg, A. Hamstra, and H. De Luca, Rickets with alopecia: an inborn error of vitamin D metabolism, J. Pediat. 94:729 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    Y. Tsuchiya, N. Matsuo, H. Cho, M. Kumagai, A. Yasaka, T. Suda, H. Orimo, and M. Shiraki, An unusual form of vitamin D-dependent rickets in a child: alopecia and marked end-organ hyposensitivity to biologically active vitamin D, J. Clin. Endocrinol. Metab. 51:685 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    C. Eil, and S. Marx, Nuclear uptake of {3H}1,25-(OH)2D3 in dispersed fibroblasts cultwad from normal human skin, Proc. Natl. Acad. Sci. U.S.A. 78:2562 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    D. Feldman, T. Chen, M. Huist, K. Colston, K. Karasek, and C. Cone, Demonstration of 1,25-(OH)2D3 receptors in human skin biopsies, J. Clin. Endocrinol. Metab. 51:1463 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    C. Eil, U. Liberman, J. Rosen, and S. Marx, A cellular defect in hereditary vitamin D-dependent rickets Type II: defective nuclear uptake of 1,25-(OH)2D in cultured fibroblasts, New Eng. J. Med. 304:1588 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Haddad, K. Chyu, T. Hahn, and T.C.B. Stamp, Serum concentrations of 25-OHD in sex-linked hypophosphatemic vitamin D-resistant rickets, J. Lab. Clin. Med. 81:22 (1973).PubMedGoogle Scholar
  22. 22.
    J. Dominquez, R. Gray, and J. Lemann, Dietary phosphate deprivation in women and men: effects on mineral and acid balances PTH and the metabolism of 25-OHD, J. Clin. Endocrinol. Metab. 43:1056 (1976).CrossRefGoogle Scholar
  23. 23.
    C. West, J. Blanton, F. Silverman, and N. Holland, Use of phosphate salts as an adjunct to vitamin D in the treatment of hypophosphatemic vitamin D refractory rickets, J. Pediat. 64:469 (1964).PubMedCrossRefGoogle Scholar
  24. 24.
    G. Hirschman, H. DeLuca, and J. Chan, Hypophosphatemic vitamin D-resistant tickets: metabolic balance studies in a child receiving 1,25-(OH)2D3, phosphate and ascorbic acid. Pediatrics 61:451 (1978).PubMedGoogle Scholar
  25. 25.
    H. Rasmussen, M. Pechet, C. Anast, A. Mazur, J. Gertner, and A. Broadus, Long-term treatment of familial hypophosphatemic rickets with oral phosphate and 1∝OHD3, J. of Pediat. 99:16 (1981).CrossRefGoogle Scholar
  26. 26.
    M. Drezner, and M. Feinglos, Osteomalacia due to 1,25-(OH)2D3 deficiency: association with a giant cell tumor of bone,Google Scholar
  27. 27.
    W.F. Loomis, Rickets, Sci. Amer. 223:77 (1970).CrossRefGoogle Scholar
  28. 28.
    J. Haddad, and K. Chyu, Competitive protein-binding radioassay for 25-OHD3, J. Clin. Endocrinol. Metab. 33:992 (1971).PubMedCrossRefGoogle Scholar
  29. 29.
    T.C.B. Stamp, J. Haddad, and C. Twigg, Comparison of oral 25-OHD3, vitamin D and ultraviolet light as determinants of circulating 25-OHD in man, Lancet 1:1341 (1977).PubMedCrossRefGoogle Scholar
  30. 30.
    J. Haddad, and S. Rojanasathit, Acute administration of 25-OHD3 in man, J. Clin. Endocrinol. Metab. 42:284 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    G.A. Lamb, and S.W. Stanbury, Parathyroid function in human vitamin D deficiency and vitamin D deficiency in primary hyperparathyroidism, Am. J. Med. 56:833 (1974).CrossRefGoogle Scholar
  32. 32.
    H. Rasmussen, R. Baron, A. Broadus, R. Defronzo, R. Lang, and R. Horst, 1,25-(OH)2D3 is not the only D metabolite involved in the pathogenesis or osteomalacia, Am. J. Med. 69:360 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    S.E. Papaponlos, L. Fraber, T. Clemes, J. Gleed, and J.L. O’Riordan, Metabolites of vitamin D in human vitamin D deficiency: effect of vitamin D3 or 1,25-(OH)2D3, Lancet 2: 612 (1980).CrossRefGoogle Scholar
  34. 34.
    M. Imawari, Y. Akanuma, J. Itakura, Y. Muto, K. Kosaka, and D. Goodman, The effects of diseases of the liver on serum 25-OHD and on the serum binding protein for vitamin D and its metabolites, J. Lab. Clin. Med. 93:171 (1979).PubMedGoogle Scholar
  35. 35.
    E. Krawitt, M. Grundman, and E.B. Mawer, Absorption, hydroxylation, and excretion of vitamin D3 in primary biliary cirrhosis, Lancet 2:1246 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    L. Mosekilde, F. Meisen, I. Hessov, M. Christensen, B.J. Lund, B.I. Lund, and O.H. Sorensen, Low serum levels of 1,25-(OH) D and histomorphometric evidence of osteomalacia after jejunoileal bypass for obesity, Gut 21:624 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    R. Kumar, The metabolism of 1,25-(OH)2D, Endocrine Reviews 1: 258 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    M. Whyte, J. Haddad, D. Walters, and T.C.B. Stamp, Vitamin D bioavailability: serum 25-OHD levels in man after oral, subcutaneous, intramuscular, and intravenous vitamin D administration. J. Clin. Endocrinol. Metab. 48:906 (1979).PubMedCrossRefGoogle Scholar
  39. 39.
    J. Barragry, N. Carter, M. Beer, W. France, J. Auton, B. Boucher, and R. Cohen, Vitamin D metabolism in nephrotic syndrome, Lancet 2:629 (1977).PubMedCrossRefGoogle Scholar
  40. 40.
    H. Malluche, D. Goldstein, and S. Massry, Osteomalacia and hyperparathyroid bone disease in patients with nephrotic syndrome, J. Clin. Invest. 63:494 (1979).PubMedCrossRefGoogle Scholar
  41. 41.
    M. Drezner, F. Nelson, M. Haussier, H. McPherson, and H. Lebovitz, 1,25-(OH)2D3 deficiency: The probable cause of hypocalcemia and metabolic bone disease in pseudohypoparathyroidism, J. Clin. Endocrinol. Metab. 42:62 (1976).CrossRefGoogle Scholar
  42. 42.
    Y. Tanaka, and H. DeLuca, The control of 25-OHD metabolism by inorganic phosphorus, Arch. Biochem. Biophys. 154:566 (1973).PubMedCrossRefGoogle Scholar
  43. 43.
    K. Hove, R. Horst, and E. Littledike, PTH and plasma Ca: conflicting signals for regulation of plasma 1,25-(OH)2D levels in PTH-infused calves, Program of the 63rd Endocrine Society Meeting, pg. 122 (1981).Google Scholar
  44. 44.
    R. Bouillon, E. Muls, and P. DeMoor, Influence of thyroid function on the serum concentration of 1,25-(OH)2D3, J. Clin. Endocrinol. Metab. 51:793 (1980).PubMedCrossRefGoogle Scholar
  45. 45.
    A. Stewart, R. Horst, L. Deftos, E. Cadman, R. Lang, and A. Broadus, Biochemical evaluation of patients with cancer-associated hypercalcemia, New Eng. J. Med. 303:1377 (1980).PubMedCrossRefGoogle Scholar
  46. 46.
    T. Hahn, B. Hendin, C. Scharp, and J. Haddad, Effect of chronic anticonvulsant therapy on serum 25-OHD levels in adults, New Eng. J. Med. 287:900 (1972).PubMedCrossRefGoogle Scholar
  47. 47.
    H. Sherk, M. Cruz, and J. Stambaugh, Vitamin D prophylaxis and the lowered incidence of fractures in anti-convulsant rickets and osteomalacia, Clin. Orthop. & Rel. Res. 129:251 (1977).Google Scholar
  48. 48.
    P. Stern, J. DeOlazabal, and N. Bell, Evidence for abnormal regulation of circulating 1,25-(OH)2D in patients with sarcoidosis and normal calcium metabolism, J. Clin. Invest. 66:852 (1980).PubMedCrossRefGoogle Scholar
  49. 49.
    G. Barbour, J. Coburn, E. Slatopolsky, A. Norman, and R. Horst, Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-(OH)2D1, New Eng. J. Med. 305:440 (1981).PubMedCrossRefGoogle Scholar
  50. 50.
    A. Caldas, R. Gray, and J. Lemann, The simultaneous measurement of vitamin D metabolites in plasma: studies in healthy adults and in patients with calcium nephrolithiasis, J. Lab. Clin. Med. 91:840 (1978).PubMedGoogle Scholar
  51. 51.
    Y. Fukumoto, S. Tarin, K. Tsukujama, K. Ichihara, K. Moriwaki, K. Nonaka, T. Mizushima, Y. Kobayashi, S. Dokoh, M. Fukumaga, and R. Marita, Tumor-induced vitamin D-resistant hypophospha-temic osteomalacia associated with proximal renal tubular dysfunction and 1,25-(OH)2D deficiency, J. Clin. Endocrinol. Metab. 49:873 (1979).PubMedCrossRefGoogle Scholar
  52. 52.
    F. Llach, A. Felsenfeld, and M. Haussler, The pathophysiology of altered calcium metabolism in rhabdomyolysis-induced acute renal failure, New Eng. J. Med. 305:117 (1981).PubMedCrossRefGoogle Scholar
  53. 53.
    R. Horst, H. DeLuca, and N. Jorgensen, The effect of age on calcium absorption and accumulation of 1,25-(OH)2D3 in intestinal mucosa of rats, Metab. Bone Dis. Relat. Res. 1:29 (1978).CrossRefGoogle Scholar
  54. 54.
    H. Armbrecht, T. Zenser, and B. Davis, Effect of age on the conversion of 25-OHD3 to 1,25-(OH)2D3 by kidney of rat, J. Clin. Invest. 66:1118 (1980).PubMedCrossRefGoogle Scholar
  55. 55.
    J. Haddad, and J. Walgate, Radioimmunoassay of the binding protein for vitamin D and its metabolites in human serum. Concentrations in normal subjects and patients with disorders of mineral homeostasis, J. Clin. Invest. 58:1217 (1976).PubMedCrossRefGoogle Scholar
  56. 56.
    J. Gallagher, and B.E.C. Nordin, Treatment with estrogens of primary hyperparathyroidism in postmenopausal women, Lancet, 1:503 (1972).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • John G. Haddad
    • 1
  1. 1.Endocrine Section, Department of Internal MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations