Effects of Systemic pH on Calcium Regulating Hormones and Bone

  • John Cunningham
  • Louis V. Avioli
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 151)


Bone disease has long been recognized as a potential complication of chronic acidotic states1. By far the commonest of these is uremic acidosis, a situation in which deranged bone and mineral metabolism is invariably present. However, attempts to treat uremic bone disease by correction of an associated metabolic acidosis have been consistently unsuccessful2, suggesting that factors other than systemic pH dominate the pathophysiology of this disease.


Parathyroid Hormone Metabolic Acidosis Renal Tubular Acidosis Osteitis Fibrosa Chronic Metabolic Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Albright, C.H. Burnett, W. Parson, F.C. Reifenstein and A. Roos, Osteomalacia and late rickets: the various etiologies met in the United States with emphasis on that resulting from specific forms of renal acidosis, the therapeutic indication for each etiological subgroup and the relationship between osteomalacia and Milkman’s syndrome, Medicine 25:399 (1946).PubMedCrossRefGoogle Scholar
  2. 2.
    S.W. Stanbury and G.A. Lumb, Metabolic studies of renal osteodystrophy 1. Calcium, phosphorus and nitrogen metabolism in rickets, osteomalacia and hyperparathyroidism complicating chronic uremia and in the osteomalacia of the adult Fanconi syndrome, Medicine 41:1 (1962).PubMedCrossRefGoogle Scholar
  3. 3.
    K.L. Pines and G.H. Mudge, Renal tubular acidosis with osteomalacia, Am. J. Med. 11:302 (1951).PubMedCrossRefGoogle Scholar
  4. 4.
    P. Richards, M.J. Chamberlain and O.M. Wrong, Treatment of osteomalacia of renal tubular acidosis by sodium bicarbonate alone, Lancet 2:994 (1972).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Siklos, M. Davie, R.T. Jung and T.M. Chalmers, Osteomalacia in ureterosigmoidostomy: healing by correction of the acidosis, Brit. J. Urol. 52: 61 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    W. Perry, L.N. Allen, T.C.B. Stamp, and P.G. Walker, Vitamin D resistance in osteomalacia after ureterosigmoidostomy, N. Engl. J. Med. 297:1110 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    G. Ponchon and H.F. DeLuca, The role of the liver in the metabolism of vitamin D, J. Clin. Invest. 48:1273 (1969).PubMedCrossRefGoogle Scholar
  8. 8.
    D.R. Fraser and E. Kodicek, Unique biosynthesis by kidney of a biologically active vitamin D metabolite, Nature (London) 228:764 (1970).CrossRefGoogle Scholar
  9. 9.
    M.F. Holick, H.K. Schnoes, H.F. DeLuca, R.W. Gray, I.T. Boyle, and T. Suda, Isolation and identification of 24,25-di-hydroxycholecalciferol: a metabolite of vitamin D3 made in the kidney, Biochemistry 11:4251 (1972).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Garabedian, M.F. Holick, H.F. DeLuca and I.T. Boyle, Control of 25-hydroxycholecalciferol metabolism by parathyroid glands, Proc. Nat. Acad. Sci. 69:1673 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    M.R. Hughes, P.F. Brumbaugh, M.R. Haussler, J.E. Wergedal and D.J. Baylink, Regulation of serum la,25-dihydroxyvitamin D3 by calcium and phosphate in the rat, Science 190:578 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Tanaka and H.F. DeLuca, The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus, Arch. Biochem. Biophys. 154:566 (1973).PubMedCrossRefGoogle Scholar
  13. 13.
    S.J. Birge and J.G. Haddad, 25 hydroxycholecalciferol stimulation of muscle metabolism, J. Clin. Invest. 56:1100 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Arnoy, D. Goodwin, D. Noff and S. Edelstein, 24,25-dihydroxy-vitamin D is a metabolite of vitamin D essential for bone formation, Nature 276:517 (1978).CrossRefGoogle Scholar
  15. 15.
    P. Bordier, H. Rasmussen, P. Marie, L. Miravet, J. Gueris and A. Ryckwaert, Vitamin D metabolites and bone mineralization in man, J. Clin. Endocrinol. Metab. 46:284 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    H.L. Henry and A.W. Norman, Vitamin D: Two dihydroxylated metabolites of vitamin D are required for normal chick hatchability, Science 201:835 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    B. Sauveur, M. Garabedian, C. Fellot, P. Mongin and S. Balsan, The effect of induced metabolic acidosis on vitamin D3 metabolism in rachitic chicks, Calcif. Tiss. Res. 23:121 (1977).CrossRefGoogle Scholar
  18. 18.
    S.W. Lee, J. Russell and L.V. Avioli, 25-hydroxycholecalciferol to 1,25-dihydroxycholecalciferol: conversion impaired by systemic metabolic acidosis, Science 195:994 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Cunningham, D.D. Bikle, A. Fausto and L.V. Avioli, Effect of acidosis on chick renal 25-hydroxyvitamin D (25OHD) la and 24-hydroxylases, Calcif. Tiss. Int. 33:333A (1981).Google Scholar
  20. 20.
    D.T. Baran, S.W. Lee, O.D. Jo and L.V. Avioli, Acquired alterations in vitamin D metabolism in the acidotic state, Calcif. Tiss. Int. in press.Google Scholar
  21. 21.
    U. Gafter, J.A. Kraut, D.B.N. Lee, V. Silis, M.W. Walling, K. Kurokawa, M.R. Haussler and J.W. Coburn, Effect of metabolic acidosis on intestinal absorption of calcium and phosphorus, Am. J. Physiol. 239:G480 (1980).PubMedGoogle Scholar
  22. 22.
    E.D. Brewer, H.C. Tsai and R.C. Morris, Evidence for impairment of metabolism of 25-hydroxyvitamin D3 (25OHD3) in children with Fanconi’s syndrome (FS), Clin. Res. 24:154A (1976).Google Scholar
  23. 23.
    H.P. Weber, R.W. Graw, J.H. Dominquez and J. Lemann, The lack of effect of chronic metabolic acidosis on 25-OH vitamin D metabolism and serum parathyroid hormone in humans, J. Clin. Endocrinol. Metab. 43:1047 (1976).PubMedCrossRefGoogle Scholar
  24. 24.
    N.D. Adams, R.W. Gray and J. Lemann, The calciuria of increased fixed acid production in humans: evidence against a role for parathyroid hormone and 1,25(OH)2 vitamin D, Calcif. Tiss. Int. 28:233 (1979).CrossRefGoogle Scholar
  25. 25.
    F.L. Coe, J.J. Firpo, D.L. Hollandsworth, L. Segil, J.M. Canterbury and E. Reiss, Effect of acute and chronic metabolic acidosis on serum immunoreactive parathyroid hormone in man, Kidney Int. 8:262 (1975).CrossRefGoogle Scholar
  26. 26.
    N. Beck, H.P. Kim and K.S. Kim, Effect of metabolic acidosis on renal action of parathyroid hormone, Am. J. Physiol. 228:1483 (1975).PubMedGoogle Scholar
  27. 27.
    J.C.M. Chan and F.C. Bartter, Effect of metabolic acidosis and alkalosis on the renal response to parathyroid hormone infusion in normal man, Kidney Int. 14 Suppl:637 (1978).Google Scholar
  28. 28.
    N. Beck and S.K. Webster, Effects of acute metabolic acidosis on parathyroid hormone action and calcium mobilization, Am. J. Physiol. 230:127 (1976).PubMedGoogle Scholar
  29. 29.
    K.J. Martin, J.J. Freitag, E. Bellorin-Font, M.B. Conrades, S. Klahr and E. Slatopolsky, The effect of acute acidosis on the uptake of parathyroid hormone and the production of adenosine 3’,5’-monophosphate by isolated perfused bone, Endocrinology 106:1607 (1980).PubMedCrossRefGoogle Scholar
  30. 30.
    R.M. Blitz, E.D. Pellegrino and J.M. Letteri, Skeletal carbonates and acid base regulation, Min. Elec. Metab. 5:1 (1981).Google Scholar
  31. 31.
    J. Lemann, J.R. Litzow and E.J. Lennon, The effects of chronic acid loads in normal man: further evidence for the paticipation of bone mineral in the defense against chronic metabolic acidosis, J. Clin. Invest. 45:1608 (1966).PubMedCrossRefGoogle Scholar
  32. 32.
    D.S. Fraley and S. Adler, An extrarenal role for parathyroid hormone in the disposal of acute acid loads in rats and dogs, J. Clin. Invest. 63:985 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • John Cunningham
    • 1
  • Louis V. Avioli
    • 1
  1. 1.School of MedicineThe Jewish Hospital and Washington UniversitySt. LouisUSA

Personalised recommendations