Phosphate and Vanadate Reduce the Efficiency of the Chemo-Mechanical Energy Transformation in Cardiac Muscle

  • Joachim W. Herzig
  • John W. Peterson
  • Ross J. Solaro
  • Johann C. Rüegg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 151)


Trabecular preparations from the hog heart right ventricle were “skinned” by treatment with Lubrol WX and glycerol. Ca++ activated isometric contractions were gradedly relaxed by inorganic phosphate (Pi) in the millimolar range or vanadate (Vi) in the micromolar range while tension cost (ATP split/force generated) was increased by a factor of 1.75. From measurements of force, ATPase activity, immediate stiffness and stretch activation, evidence is provided that the mechanical deactivation and the increase in tension cost may result from an acceleration of the myosin cross-bridge cycle, due to a direct interference of Pi and Vi with the chemomechanical energy transformation at the contractile proteins. The possible significance of such a mechanism in cardiac failure or muscle fatigue is discussed.


ATPase Activity Millimolar Range Stretch Activation Actomyosin ATPase Contractile System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Furchgott, R.F., and Lee, K.S., 1961, High energy phosphates and the force of contraction of cardiac muscle, Circ. Res., 24:416.Google Scholar
  2. Goodno, C.C., 1979, Inhibition of the myosin ATPase by vanadate ion, Proc. Nat. Acad. Sci., 76:2620.PubMedCrossRefGoogle Scholar
  3. Hackbarth, I., Schmitz, W., Scholz, H., Erdmann, E., Krawietz, W., and Philipp, G., 1978, Positive inotropism of vanadate in cat papillary muscle, Nature, 275:67.PubMedCrossRefGoogle Scholar
  4. Herzig, J.W., 1978, A cross-bridge model for inotropism as revealed by stiffness measurements in cardiac muscle, Basic Res. Cardiol., 73:273.PubMedCrossRefGoogle Scholar
  5. Herzig, J.W., and Herzig, U.B., 1974, Effect of Ca-ions on contraction speed and force generation in glycerinated heart muscle, Symp. Biol. Hung., 17:85.Google Scholar
  6. Herzig, J.W., Peterson, J.W., Rüegg, J.C., and Solaro, R.J., 1981a, Vanadate and phosphate ions reduce tension and increase cross-bridge kinetics in chemically skinned heart muscle, Biochem. Biophys. Acta, 672:191.PubMedCrossRefGoogle Scholar
  7. Herzig, J.W., and Rüegg, J.C., 1977, Myocardial cross-bridge activity and its regulation by Ca++, phosphate and stretch, in: “Myocardial Failure”, G. Riecker, A. Weber, J. Goodwin, eds., Springer, Berlin-Heidelberg-New York.Google Scholar
  8. Herzig, J.W., and Rüegg, J.C., 1980, Investigations on glycerinated cardiac muscle fibres in relation to the problem of regulation of cardiac contractility — effects of Ca++ and c-AMP, Basic Res. Cardiol., 75:26.PubMedCrossRefGoogle Scholar
  9. Herzig, J.W., Yamamoto, T., and Rüegg, J.C., 1981b, Dependence of force and immediate stiffness on sarcomere length and Ca++ activation in frog skinned muscle fibres, Pflüger’s Arch. Eur. J. Physiol., 389:97.CrossRefGoogle Scholar
  10. Huxley, A.F., and Simmons, R.M., 1971, Proposed mechanism of force generation in striated muscle, Nature, 233:533.PubMedCrossRefGoogle Scholar
  11. Jacobus, W.E., Taylor, G.J., Hollis, D.P., and Nunnally, R.L., 1977, Phosphorus nuclear magnetic resonance of perfused working rat hearts, Nature, 265:756.PubMedCrossRefGoogle Scholar
  12. Kübier, W., and Katz, A.M., 1977, Mechanism of early “pump” failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation, Amer. J. Cardiol., 40:467.CrossRefGoogle Scholar
  13. Lowry, O.H., Rosebrough, N.D., Farr, A.C., and Randall, R.J., 1951, Protein measurements with the Folinphenol reagent, J. Biol. Chem., 193:265.PubMedGoogle Scholar
  14. McClellan, G.B., and Winegrad, S., 1978, The regulation of the calcium sensitivity of the contractile system in mammalian cardiac muscle, J. Gen. Physiol., 72:737.PubMedCrossRefGoogle Scholar
  15. Nassar-Gentina, V., Passonneau, J.V., Vergara, J.L., and Rapoport, S.I., 1976, Relation of fatigue state in frog single muscle fibres to concentrations of glycogen, phosphocreatine (PCr) and ATP, Biophys. J., 16:206.Google Scholar
  16. Peterson, J.W., 1980, Vanadate ion inhibits actomyosin interaction in chemically skinned vascular smooth muscle, Biochem. Biophys, Res. Com., 95:1846.CrossRefGoogle Scholar
  17. Portzehl, H., Caldwell, P.C., and Rüegg, J.C., 1964, The dependence of contraction and relaxation of muscle fibres from the crab maia squinado on the internal concentration of free calcium ions, Biochim. Biophys. Acta, 79:581.PubMedGoogle Scholar
  18. Ray, K.P., and England, P., 1976, Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of cardiac myofibril adenosine triphosphatase, FEBS Lett., 70:11.PubMedCrossRefGoogle Scholar
  19. Reiermann, H.J., Herzig, J.W., and Rüegg, J.C., 1977, Ca++ activation of ATPase activity, ATP-Pi exchange, and tension in briefly glycerinated heart muscle, Basic Res. Cardiol., 72:133.PubMedCrossRefGoogle Scholar
  20. Rüegg, J.C., Schädler, M., Steiger, G.J., and Müller, G., 1971, Effects of inorganic phosphate on the contractile mechanism, Pflüger’s Arch. Eur. J. Physiol., 325:359.CrossRefGoogle Scholar
  21. Schädler, M.H., 1967, Proportionale Aktivierung von ATPase-Aktivität und Kontraktionsspannung durch Calciumionen in isolierten contractilen Strukturen verschiedener Muskelarten, Pflüger’s Arch. Eur. J. Physiol., 296:70.CrossRefGoogle Scholar
  22. Solaro, R.J., Holroyde, M.J., Herzig, J.W., and Peterson, J., 1980a, Cardiac relaxation and myofibrillar interactions with phosphate and vanadate, Eur. Heart. J., 1 (Suppl. A):21.Google Scholar
  23. Solaro, R.J., Holroyde, M.J., Matlib, A., Wang, T., Grupp, I., Grupp, G., and Schwartz, A., 1980b, Effects of vanadate on biochemical and contractile properties of rabbit hearts, J. Cardiovasc. Pharmacol., 2:445.PubMedCrossRefGoogle Scholar
  24. Taylor, E.W., 1979, Mechanism of actomyosin ATPase and the problem of muscle contraction, CRC Critical Rev. Biochem., 6:103.CrossRefGoogle Scholar
  25. Thorson, J., and White, D.C.S., 1969, Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle, Biophys. J., 9:360.PubMedCrossRefGoogle Scholar
  26. White, D.C.S., 1973, Links between mechanical and biochemical kinetics of muscle, Cold Spring Harb. Symp. quant. Biol., 37:201.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Joachim W. Herzig
    • 1
  • John W. Peterson
    • 2
  • Ross J. Solaro
    • 3
  • Johann C. Rüegg
    • 4
  1. 1.Preclinical ResearchSandoz Ltd.BasleSwitzerland
  2. 2.Massachusetts General HospitalNeurosurgical ServiceBostonUSA
  3. 3.Department of PhysiologyUniversity of CincinnatiCincinnatiUSA
  4. 4.Department of Physiology IIUniversity of HeidelbergHeidelbergGermany

Personalised recommendations