Hypophosphatemia and Glucose Intolerance

  • Donald Simonson
  • Ralph A. DeFronzo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 151)


Hypophosphatemia is frequently observed in a variety of disease states including ketoacidosis, chronic alcoholism, malabsorption, severe burns, hyperparathyroidism, renal tubular defects, and re-feeding after starvation (1, 2). Since phosphate is a ubiquitous anion involved in such diverse functions as maintaining the structural integrity of the cell membrane, regulating a variety of intracellular enzymes, energy storage in the form of ATP, and regulating tissue delivery of oxygen through 2,3-DPG levels (2), it is not surprising that the clinical syndromes associated with phosphate depletion are equally diverse. Pathophysiologic disturbances associated with hypophosphatemia include hemolytic anemia, rhabdomyoly-sis, myopathy, impaired cardiac output, CNS abnormalities (encephalopathy, seizures), abnormal liver function tests, and platelet and leukocyte dysfunction (1, 2).


Insulin Secretion Beta Cell Glucose Intolerance Plasma Glucose Concentration Glucose Infusion Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Knochel, “Hypophosphatemia”, Clin. Nephrology 7 (4): 131 (1977).Google Scholar
  2. 2.
    J. P. Knochel, “The pathophysiology and clinical characteristics of severe hypophosphatemia”, Arch. Int. Med. 137: 203 (1977).CrossRefGoogle Scholar
  3. 3.
    U. Keller and W. Berger, “Prevention of hypophosphatemia by phosphate infusion during treatment of diabetic ketoacidosis and hyperosmolar coma”, Diabetes 29:87 (1980).PubMedGoogle Scholar
  4. 4.
    R. Mahnensmith, S. O. Thier, C. R. Cooke, A. Broadus, and R. A. DeFronzo, “Effect of acute metabolic acidemia on renal electrolyte transport in man”, Metabolism 28:831 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    R. A. DeFronzo, C. R. Cooke, R. Andres, G. R. Faloona, and P. J. Davis, “The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man”, J. Clin. Invest. 55:845 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    R. A. DeFronzo, M. Goldberg, and Z. S. Agus, “The effects of glucose and insulin on renal electrolyte transport”, J. Clin. Invest. 58:83 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    D. W. Seldin and R. Tarail, “The metabolism of glucose and electrolytes in diabetic acidosis”, J. Clin. Invest. 29: 552 (1950).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Friedlander, and W. G. Rosenthal, “Uber der Einflus des Phosphorsaureions auf den Blutund Harnzucker des normalen und des diabetischen Organismus”, Arch. Exp. Path. Pharmakol 112:66 (1926).CrossRefGoogle Scholar
  9. 9.
    H. Kim, R. K. Kalkhoff, N. V. Costrini, J. M. Cerletty, and M. Jacobson, “Plasma insulin disturbances in primary hyperparathyroidism”, J. Clin. Invest. 50:2596 (1971).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Yasuda, Y. Hurukawa, M. Okuyama, M. Kikuchi and K. Yashinaga, “Glucose tolerance and insulin secretion in patients with parathyroid disorders”, N. Eng. J. Med. 292:501 (1975).CrossRefGoogle Scholar
  11. 11.
    H. R. Harter, J. V. Santiago, W. E. Rutherford, E. Slatopolsky, and S. Klahr, “The relative roles of calcium, phosphorous, and parathyroid hormone on glucose- and tolbutamide-mediated insulin release”, J. Clin. Invest. 58:359 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    R. A. DeFronzo, J. D. Tobin, and R. Andres, “Glucose clamp technique: a method for quantifying insulin secretion and resistance”, Am. J. Physiol. 237:E214 (1979).PubMedGoogle Scholar
  13. 13.
    R. A. DeFronzo, and R. Lang, “Hypophosphatemia and glucose intolerance: evidence for tissue insensitivity to insulin”, N. Engl. J. Med. 303:1259 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    R. A. DeFronzo, “Glucose intolerance and aging. Evidence for tissue insensitivity to insulin”, Diabetes 28:1095 (1979).PubMedGoogle Scholar
  15. 15.
    E. A. H. Sims, E. Danforth, E. S. Horton, G. A. Bray, J. A. Glennon, and L. B. Salans, “Endocrine and metabolic effects of experimental obesity in man”, Rec. Prog. Horm. Res. 29:457 (1973).PubMedGoogle Scholar
  16. 16.
    O. G. Kolterman, J. Insel, M. Saekow, and J. M. Olefsky, “Mechanisms of insulin resistance in human obesity”, J. Clin. Invest. 65:1272 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    J. E. Campillo, J. I. Osuna, M. T. Pages, A. Blazquez, M. Castillo, and C. Osorio, “Effect of inorganic phosphate on basal and glucose-induced insulin release in vitro. Influence of magnesium concentration,” Diabetologia 21:256 (1981).Google Scholar
  18. 18.
    G. A. Harrop, and E. M. Benedict, “The participation of inorganic substances in carbohydrate metabolism”, J. Biol. Chem. 59:683 (1924).Google Scholar
  19. 19.
    A. P. Briggs, I. Koechig, E. A. Daisy, and C. J. Weber, “Some changes in the composition of blood due to the injection of insulin”, J. Biol. Chem. 58:721 (1924).Google Scholar
  20. 20.
    H. Pollack, R. F. Millet, H. E. Essex, F. C. Mann, and J. L. Bollman, “Serum phosphate changes induced by injections of glucose into dogs under various conditions”, Am. J. Physiol. 110:117 (1934).Google Scholar
  21. 21.
    O. Walaas, E. Walaas, and A. M. Wick, “The stimulatory effect by insulin on the incorporation of 32P radioactive inorganic phosphate into intracellular inorganic phosphate, adenine nucleotides, and guanine nucleotides of the intact isolated rat diaphragm”, Diabetologia 5:79 (1969).PubMedCrossRefGoogle Scholar
  22. 22.
    I. H. Chaudry, and M. K. Gould, “Kinetics of glucose uptake in isolated soleus muscle”, Biochem. Biophys. Acta 177: 527 (1969).PubMedCrossRefGoogle Scholar
  23. 23.
    P. J. Randle, and G. H. Smith, “Regulation of glucose uptake by muscle”, Biochem. J. 70:501 (1958).PubMedGoogle Scholar
  24. 24.
    D. M. Kipnis, “Regulation of glucose uptake by muscle: Functional significance of permeability and phosphorylating activity”, Ann. N. Y. Acad. Sci. 82:355 (1959).Google Scholar
  25. 25.
    P. G. LeFevre, K. I. Habich, H. S. Hess, and M. R. Hudson, “Phospholipid-sugar complexes in relation to cell membrane monosaccharide transport”, Science 143:955 (1964).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Donald Simonson
    • 1
  • Ralph A. DeFronzo
    • 1
  1. 1.Department of MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations