Skip to main content

The Creatine-Creatine Phosphate Shuttle for Energy Transport — Compartmentation of Creatine Phosphokinase in Muscle

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 151))

Abstract

There are two viewpoints regarding the role of the enzyme creatine Phosphokinase (CPK), which catalyzes the reversible transphosphorylation of creatine and adenine nucleotides in energy transport. The classical viewpoint (Fig. 1) regards CPK as a near equilibrium enzyme buffering cytosolic changes in nucleotide concentration (1,2), with creatine phosphate representing a reservoir of high energy phosphate equivalents (3) and with regulation of energy production relegated to the adenine nucleotides whether in the form of energy charge (4), adenylate phosphate potential (5,6), or ATP/ADP ratio (7). The second viewpoint places CPK and its products, creatine and creatine phosphate, in the central role of energy transport (8–11). The evidence for the latter viewpoint has come about from several diverse lines of reasoning (reviewed in 9). Jacobs et al discovered a distinct isoenzyme of CPK bound to mitochondria in 1964 (12). The significance of this mitochondrial bound form of CPK was studied by Bessman and Fonyo (13) in pigeon breast mitochondria where the possibility of feedback regulation of respiration through production of acceptor creatine was suggested, in accordance with Bessman’s earlier observation on the insulin-like effect of exercise in diabetics (14).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Williamson, Mitochondrial function in the heart, Ann, Rev. Physiol. 41:485 (1979).

    Article  CAS  Google Scholar 

  2. R.A. Altshuld and G.P. Brierly, Interaction between the creatine kinase of heart mitochondria and oxidative phosphorylation, J. Molec. Cell. Cardiol. 9:875 (1977).

    Article  Google Scholar 

  3. E.A. Newsholme and C. Start, “Regulation in Metabolism”, John Wiley and Sons, New York (1973).

    Google Scholar 

  4. D.E. Atkinson, “Cellular Energy Metabolism and its Regulation”, Academic Press, New York (1977).

    Google Scholar 

  5. M. Erecinska, R.L. Veech and D.F. Wilson, Thermodynamic relationships between the oxidation-reduction reactions and the ATP synthesis in suspensions of isolated pigeon heart mitochondria. Arch. Biochem. Biophys. 160:412 (1974).

    Article  PubMed  CAS  Google Scholar 

  6. K. Nishiki, M. Erecinska and D.F. Wilson, Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart, Am. J. Physiol. 234:C73 (1978).

    PubMed  CAS  Google Scholar 

  7. E.J. Davis and W.I.A. Davis-van Thienen, Control of mitochondrial metabolism by the ATP/ADP ratio, Biochem. Biophys. Res. Commun. 83:1260 (1978).

    Article  PubMed  CAS  Google Scholar 

  8. S.P. Bessman, Hexokinase acceptor theory of insulin action, new evidence, Israel J. Med. Sci. 8:344 (1972).

    PubMed  CAS  Google Scholar 

  9. S.P. Bessman and P.J. Geiger, Transport of energy in muscle: the phosphorylcreatine shuttle, Science 211:448 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. W.E. Jacobus, Myocardial energy transport, current concepts of the problem, in: “Heart Creatine Kinase, the Integration of Isoenzymes for Energy Distribution”, W.E. Jacobus and J.S. Ingwall, eds., Williams and Wilkins, Maryland (1980).

    Google Scholar 

  11. M. Seraydarian, The correlation of creatine phosphate with muscle function, in: “Heart Creatine Kinase, the Integration of Isoenzymes for Energy Distribution”, W.E. Jacobus and J.S. Ingwall, eds., Williams and Wilkins, Maryland (1980).

    Google Scholar 

  12. H. Jacobs, H.W. Heldt and M. Klingenberg, High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme for creatine kinase, Biochem. Biophys. Res. Commun. 16:516 (1964).

    Article  PubMed  CAS  Google Scholar 

  13. S.P. Bessman and A. Fonyo, The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration, Biochem. Biophys. Res. Commun. 22:597 (1966).

    Article  PubMed  CAS  Google Scholar 

  14. S.P. Bessman, A contribution to the mechanism of diabetes mellitus, in: “Fat Metabolism”, V. Najjar, ed., Johns Hopkins Press, Maryland (1954).

    Google Scholar 

  15. S.P. Bessman, Diabetes mellitus: observations, theoretical and practical, J. Pediatr. 56:191 (1960).

    Article  PubMed  CAS  Google Scholar 

  16. S.P. Bessman, A molecular basis for the mechanism of insulin action, Am. J. Med. 40:740 (1966).

    Article  PubMed  CAS  Google Scholar 

  17. W.E. Jacobus and A.L. Lehninger, Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J. Biol. Chem. 248:4803 (1973).

    PubMed  CAS  Google Scholar 

  18. D.C. Turner, T. Walliman and H.M. Eppenberger, A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle forms of creatine kinase. Proc. Natl. Acad. Sci. 70:702 (1973).

    Article  PubMed  CAS  Google Scholar 

  19. W.E. Jacobus and R.J. Baskin, Cardiac creatine kinase (MM) bound to isolated sarcoplasmic reticulum. Circulation 50:111 (1974).

    Google Scholar 

  20. V.A. Saks, N.V. Lipina, G.B. Chernousova, V.G. Sharov, V.N. Smirnov, E.I. Chasov and R. Grosse, Functional coupling of isoenzyme MM of creatine Phosphokinase with Mg-ATPase of myofibrils and Na,K-ATPase of plasma membrane of heart cells. Biokhimiya 41:2099 (1976).

    CAS  Google Scholar 

  21. S. Gudbjarnason, P. Mathes and K.G. Ravens, Functional compartmentation of ATP and creatine phosphate in heart muscle. J. Molec. Cello Cardiol. 1:325 (1970).

    Article  CAS  Google Scholar 

  22. R.L. Nunnally and D.P. Hollis, Adenosine triphosphate compartmentation in living hearts, a phosphorous NMR saturation transfer study, Biochemistry 18:3641 (1979).

    Article  Google Scholar 

  23. V.A. Saks, N.V. Lipina, V.N. Smirnov and E.I. Chazov, The functional coupling between mitochondrial creatine Phosphokinase and ATP-ADP translocase: Kinetic evidence, Arch. Biochem. Biophys. 173:34 (1976).

    Article  PubMed  CAS  Google Scholar 

  24. V.A. Saks, V.V. Kupriyanov, G.V. Elizarova and W.E. Jacobus, Studies of energy transport in heart cells, the importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation. J. Biol. Chem. 255:755 (1980).

    PubMed  CAS  Google Scholar 

  25. V.A. Saks, G.B. Chernousova, R. Vetter, V.N. Smirnov and E.I. Chasov, Kinetic properties and the functional role of particulate MM-isoenzyme of creatine Phosphokinase bound to heart muscle myofibrils, FEBS Letters 62:293 (1976).

    Article  PubMed  CAS  Google Scholar 

  26. W.C.T. Yang, P.J. Geiger, S.P. Bessman and B. Borrebaek, Formation of creatine phosphate from creatine and 32P-labeled ATP by isolated rabbit heart mitochondria. Biochem. Biophys. Res. Commun. 76:882 (1977).

    Article  PubMed  CAS  Google Scholar 

  27. P.J. Geiger, S. Ahn and S.P. Bessman, Separation and automated analysis of phosphorylated intermediates, in: “Methods in Carbohydrate Chemistry”, R. Whistler, ed. Vol. 8, Academic Press, New York (1980).

    Google Scholar 

  28. S. Erickson-Viitanen, Ph.D. Dissertation, University of Southern California (1981).

    Google Scholar 

  29. S.P. Bessman, W.C.T. Yang, P.J. Geiger and S. Erickson-Viitanen, Intimate coupling of creatine Phosphokinase and myofibrillar adenosinetriphosphatase. Biochem. Biophys. Res. Commun. 96:1414 (1980).

    Article  PubMed  CAS  Google Scholar 

  30. H.R. Scholte, P.J. Weijers and E.M. Wit-Peeters, The localization of mitochondrial creatine kinase and its use for the determination of the sidedness of submitochondrial particles, Biochim. Biophys. Acta 291:764 (1973).

    Article  PubMed  CAS  Google Scholar 

  31. P.V. Vignais, Molecular and physiological aspects of adenine nucleotide transport in mitochondria. Biochim. Biophys. Acta 456:1 (1976).

    PubMed  CAS  Google Scholar 

  32. W.A. Coty and P.L. Pedersen, Phosphate transport in rat liver mitochondria. Kinetics and energy requirements, J. Biol. Chem. 249:2593 (1974).

    PubMed  CAS  Google Scholar 

  33. M.W. Seraydarian and B.C. Abbott, The role of the creatine phosphocreatine system in muscle. J. Molec. Cell. Cardiol. 8:741 (1976).

    Article  CAS  Google Scholar 

  34. V.A. Saks, L.V. Rosenshtraukh, V.N. Smirnov and E.I. Chasov, Role of creatine Phosphokinase in cellular function and metabolism, Can. J. Physiol. Pharmacol. 56:691 (1978).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Erickson-Viitanen, S., Geiger, P., Yang, W.C.T., Bessman, S.P. (1982). The Creatine-Creatine Phosphate Shuttle for Energy Transport — Compartmentation of Creatine Phosphokinase in Muscle. In: Massry, S.G., Letteri, J.M., Ritz, E. (eds) Regulation of Phosphate and Mineral Metabolism. Advances in Experimental Medicine and Biology, vol 151. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4259-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4259-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4261-8

  • Online ISBN: 978-1-4684-4259-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics