Transformation and Expression of TK Sequences

  • Adele El Kareh
  • Michael Ostrander
  • Saul Silverstein
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 50)


Cells lacking thymidine kinase (Ltk-)can be converted to the tk+ phenotype following exposure to UV-irradiated herpes simplex virus (HSV) and selection in HAT medium (1,2,3,). These experiments suggested to us that isolation of the virus sequences encoding tk was feasible. Accordingly, virus DNA cleaved with a variety of restriction endonucleases was assayed for its ability to convert tk- cells to a HAT resistant phenotype using the calcium phosphate precipitation technique (4). Digestion of HSV DNA with Bam H I resulted in the appearance of numerous colonies following application of the DNA and selection in HAT (5). Subsequent analysis of Bam H I cleaved, size-fractionated DNA identified a unique 3.5 kb fragment that contained the information required to convert tk- cells to the tk+ phenotype. Colonies that arise following application of DNA and HAT selection are said to be transformed. Transformation results from integration of the virus and carrier DNA sequences into cellular DNA (6,7,8,). The cells’ transcriptional and translational apparatus recognize the virus tk sequences to form a functional virus specified tk.


Deletion Mutant Herpes Simplex Virus Type Thymidine Kinase Immediate Early Thymidine Kinase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Munyon, W., Kraiselburd, E., Davis, D. and Mann, R. (1971) Transfer of thymidine kinase to thymidine kinaseless L-cells by infection with ultraviolet-irradiated herpes simplex virus J. Virol., 7, 813PubMedGoogle Scholar
  2. 2).
    Davidson, R.L., Adelstein, S.J. and Oxman, M. (1973) Herpes simplex virus as a source of thymidine kinase for thymidine kinase deficient mouse cells: Supression and reactivation of the viral enzyme. Proc. Natl. Acad. Sci. U.S.A., 70, 1912PubMedCrossRefGoogle Scholar
  3. 3).
    Munyon, W., Buchsbaum, R., Paoletti, E., Mann, J., Kraiselburd, E. and Davis, D. (1972) Electrophoresis of thymidine kinase activity synthesized by cells transformed by herpes simplex virus. Virology, 49, 683PubMedCrossRefGoogle Scholar
  4. 4).
    Graham, F.L. and van der Eb, A.I. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology, 52, 456PubMedCrossRefGoogle Scholar
  5. 5).
    Wigier, M., Silverstein, S., Lee, L.S., Pellicer, A., Cheng, Y.C. and Axel, R. (1977) Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell, 11, 223CrossRefGoogle Scholar
  6. 6).
    Pellicer, A., Wigier, M., Axel, R. and Silverstein, S. (1978) The transfer and stable integration of the HSV thymidine kinase gene into mouse cells. Cell, 14, 133PubMedCrossRefGoogle Scholar
  7. 7).
    Robins, D.M., Ripley, S., Henderson, A.S. and Axel, R. (1981) Transforming DNA integrates into the host chromosome. Cell, 23, 29PubMedCrossRefGoogle Scholar
  8. 8).
    Perucho, M., Hanahan, D. and Wigier, M. (1980) Genetic and physical linkage of exogenous sequences in transformed cells. Cell, 21, 309CrossRefGoogle Scholar
  9. 9).
    McKnight, S.L. (1980) The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucl. Acids Res., 8, 5949PubMedCrossRefGoogle Scholar
  10. 10).
    Wagner, M.J., Sharp, J.A. and Summers, W.C. (1981) Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type-1. Proc. Natl. Acad. Sci. U.S.A., 78, 1441PubMedCrossRefGoogle Scholar
  11. 11).
    Smiley, J.R., Wagner, M.J., Summers, W.P. and Summers, W.C. (1980) Genetic and physical evidence for the polarity of the thymidine kinase gene of herpes simplex virus. Virology, 102, 83PubMedCrossRefGoogle Scholar
  12. 12).
    McKnight, S.L. and Gavis, E.R. (1980) Expression of the herpes thymidine kinase gene in Xenopus laevis oocytes: An assay for the study of deletion mutants. Nucl. Acids Res., 8, 5931PubMedCrossRefGoogle Scholar
  13. 13).
    McKnight, S.L., Gavis, E.R., Kingsbury, R. and Axel, R. Analysis of the HSV thymidine kinase gene: Identification of an upstream control region, (submitted for publication)Google Scholar
  14. 14).
    Lin, S.S. and Munyon, W. (1974) Expression of the viral thymidine kinase gene in herpes simplex virus transformed L-cells. J. Virol., 14, 1199PubMedGoogle Scholar
  15. 15).
    Garfinkle, B. and McAuslan, B.R. (1974) Regulation of herpes simplex virus induced thymidine kinase. Biochem. Biophys. Res. Commun., 58, 822Google Scholar
  16. 16).
    Leiden, J.M., Buttyan, R. and Spear, P.G. (1976) Herpes simplex virus gene expression in transformed cells 1: Regulation of the viral thymidine kinase gene in transformed L cells by products of superinfecting virus. J. Virol., 20, 413PubMedGoogle Scholar
  17. 17).
    Kit, S., Dubbs, D.R. and Schaffer, P.A. (1978) Thymidine kinase activity of biochemically transformed mouse cells after superinfection by thymidine kinase negative temperature sensitive herpes simplex virus mutants. Virology, 85, 456PubMedCrossRefGoogle Scholar
  18. 18).
    Preston, C.M. (1979) Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature sensitive mutant tsK. J. Virol., 29, 275PubMedGoogle Scholar
  19. 19).
    Colbere-Garapin, F., Chousterman, S., Horodniceanu, F., Kourilsky, P. and Garapin, A. (1979) Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in Escherichia coli K-12. Proc. Natl. Acad. Sci. U.S.A., 76, 3755Google Scholar
  20. 20).
    Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol., 98, 503PubMedCrossRefGoogle Scholar
  21. 21).
    Efstradiatis, A., Posakony, J.W., Maniatis, T., Lawn, R.M., O’Connell, C., Spritz, R.A., DeRiel, J., Forget, B.G., Weissman, S.A., Slightom, J.L., Blechl, A.E., Smithies, O., Baralle, F.E., Shaulders, C.C. and Proudfoot, N.J. (1980) The structure and evolution of the human β-globin gene family. Cell, 21, 653CrossRefGoogle Scholar
  22. 22).
    Smiley, J. (1980) Construction in vitro and rescue of a thymidine kinase deficient deletion mutant of herpes simplex virus. Nature, 285, 333PubMedCrossRefGoogle Scholar
  23. 23).
    Sweet, R., Jackson, J., Lowy, I., Ostrander, M., Pellicer, A., Roberts, J., Robins, D., Sim, G.-K., Wold, B., Axel, R. and Silverstein, S. (1981) The expression, arrangement and rearrangement of genes in DNA-transformed cells, in Genes, Chromosomes and Neoplasia, F.E. Arrighi, P.N. Rao, and E. Stubblefield, ed. Raven Press, N.Y.Google Scholar
  24. 24).
    McGhee, J. and Ginder, M. (1979) Specific DNA methylation sites in the vicinity of the chicken β-globin genes. Nature, 280, 419PubMedCrossRefGoogle Scholar
  25. 25).
    Weintraub, H. and Groudine, M. (198.1) α-Globin gene switching during the development of chicken embryos: Expression and chromosome structure. Cell, in pressGoogle Scholar
  26. 26).
    Taylor, S.M. and Jones, P.A. (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell, 17, 771PubMedCrossRefGoogle Scholar
  27. 27).
    Jones, P.A. and Taylor, S.M. (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell, 20, 85PubMedCrossRefGoogle Scholar
  28. 28).
    Rothstein, S.J., Jorgensen, R.A. Postle. K. and Reznikoff, W.S. (1980) The inverted repeats of Tn5 are functionally different. Cell, 19, 795PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Adele El Kareh
    • 1
  • Michael Ostrander
    • 1
  • Saul Silverstein
    • 1
  1. 1.College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations