Dihydrofolate Reductase Gene Amplification, Altered Dihydrofolate Reductase, and Methotrexate Resistance in Cultured 3T6 Cells Associated with Unstable Amplification of an Altered Dihydrofolate Reductase Gene

  • Robert T. Schimke
  • Daniel A. Haber
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 50)


Resistance of human neoplasms to various cancer chemotherapeutic agents has been a frustrating problem. Extensive studies in many laboratories have investigated the development of resistance to the 4-amino analog of folate, methotrexate (MTX) and have defined three general mechanisms for such resistance, including reduction in MTX transport,1 alteration in affinity of MTX for the target enzyme of MTX inhibition, dihydrofolate reductase (DHFR)2–5 and increased levels of DHFR. 7–13 Our laboratory has shown that the elevated DHFR enzyme levels in various MTX-resistant cell lines result from a corresponding increase in the number of DHFR genes, i.e., gene amplification6,14 irrespective of whether the karyotype is grossly aneuploid or is relatively stable, and irrespective of whether the MTX-resistance is phenotypically stable or unstable.


Dihydrofolate Reductase Chinese Hamster Ovary Cell Line Altered Enzyme DHFR Gene Somatic Cell Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. M. Sirotnak, S. Kurita, and D. J. Hutchison, On the nature of a transport alteration determining resistance to amethopterin in the L1210 leukemia. Cancer Research 28:75 (1968).PubMedGoogle Scholar
  2. 2.
    A. M. Albrecht, J. L. Biedler, and D. J. Hutchison, Two different species of dihydrofolate reductase in mammalian cells differentially resistant to amethopterin and methasquin. Cancer Research 32:1539 (1972).PubMedGoogle Scholar
  3. 3.
    W. F. Flintoff, S. V. Davidson, and L. Siminovitch, Isolation and partial characterization of three methotrexate-resistant phenotypes from Chinese hamster ovary cells. Somatic Cell Genetics 2:245 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    R. C. Jackson and D. Niethammer, Acquired methotrexate resistance in lymphoblasts resulting from altered kinetic properties of dihydrofolate reductase. Eur. J. Cancer 13:567 (1977).PubMedCrossRefGoogle Scholar
  5. 5.
    J. H. Goldie, G. Krystal, D. Hartley, G. Gudauskas, and S. Dedhar, A methotrexate insensitive variant of folate reductase present in two lines of methotrexate-resistant L5178Y cells. Europ. J. Cancer 16:1539 (1980).CrossRefGoogle Scholar
  6. 6.
    M. T. Hakala, S. F. Zakrzewski, and C. A. Nichol, Relation of folic acid reductase to amethopterin resistance in cultured mammalian cells. J. Biol. Chem. 236:952 (1961).PubMedGoogle Scholar
  7. 7.
    F. W. Alt, R. E. Kellems, J. R. Bertino, and R. T. Schimke, Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J. Biol. Chem. 253:1357 (1978).PubMedGoogle Scholar
  8. 8.
    R. C. Jackson, L. I. Hart, and K. R. Harrap, Intrinsic resistance to methotrexate of cultured mammalian cells in relation to the inhibition kinetics of their dihydrofolate reductases. Cancer Research 36:1991 (1976).Google Scholar
  9. 9.
    W. F. Flintoff, and K. Essani, Methotrexate-resistant Chinese hamster ovary cells contain a dihydrofolate reductase with an altered affinity for methotrexate. Biochem. 19:4321 (1980).CrossRefGoogle Scholar
  10. 10.
    R. P. Raunio, and M. T. Hakala, Comparison of folate reductases of sarcoma 180 cells, sensitive and resistant amethopterin. Mol. Pharmacol. 3:279 (1967).PubMedGoogle Scholar
  11. 11.
    H. Nakamura and J. W. Littlefield, Purification, properties, and synthesis of dihydrofolate reductase from wild type and methotrexate-resistant hamster cells. J. Biol. Chem. 247:179 (1972).PubMedGoogle Scholar
  12. 12.
    U. J. Hanggi and J. W. Littlefield, Altered regulation of the rate of synthesis of dihydrofolate reductase in methotrexate-resistant hamster cells. J.Biol. Chem. 251:3075 (1976).PubMedGoogle Scholar
  13. 13.
    F. W. Alt, R. E. Kellems, and R. T. Schimke, Synthesis and degradation of folate reductase in sensitive and methotrexate-resistant lines of S-180 cells. J. Biol. Chem. 251:3063 (1976).PubMedGoogle Scholar
  14. 14.
    R. T. Schimke, R. J. Kaufman, J. H. Nunberg, and S. L. Dana, Studies on the amplification of dihydrofolate reductase genes in methotrexate resistant cultured mouse cells. Cold Sprg. Harbor Symp. Quant. Biol. 43:1297 (1979).CrossRefGoogle Scholar
  15. 15.
    G. M. Wahl, R. A. Padgett, and G. R. Stark, Gene amplification causes over production of the first three enzymes of UMP synthesis in N-(phosphoacetyl 1-aspartate)-resistant hamster cells. J. Biol. Chem. 254:8679 (1979).PubMedGoogle Scholar
  16. 16.
    L. R. Beach and R. D. Palmiter, Amplification of the metallothionein-1 gene in cadmium-resistant mouse cells. Proc. Natl. Acad. Science, USA (1981) in press.Google Scholar
  17. 17.
    F. Baskin, S. C. Carlin, P. Kraus, M. Friedkin, and R. N. Rosenberg, Experimental chemotherapy of neuroblastoma. II. Increased thymidylate synthetase activity in a 5-fluorodeoxyuridine-resistant variant of mouse neuroblastoma. Molecular Pharma. 11:105 (1975).Google Scholar
  18. 18.
    M. Sinensky, Isolation of a mammalian cell mutant resistant to 25 hydroxycholesterol. Biochem. Biophys. Res. Comm. 78:863 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Meuth and H. Green, Alterations leading to increased ribonucleotide reductase in cells selected for resistance to deoxynucleosides. Cell 3:367 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    F. Baskin, R. Rosenberg, and V. Dev, Correlation of double minute chromosomes with unstable multi-drug cross-resistance in nueroblastoma uptake mutants. Proc. Natl. Acad. Sci., USA (1981) in press.Google Scholar
  21. 21.
    J. A. Wright, W. H. Lewis, and C. L. J. Parfett, Somatic cell genetics: A review of drug resistance, lectin resistance and gene transfer in mammalian cells in culture. Can. J. Genet. Cytol. 22:443 (1980).PubMedGoogle Scholar
  22. 22.
    P. C. Brown, S. M. Beverley, and R. T. Schimke, Relationship of amplified dihydrofolate reductase genes to double minute chromosomes in unstably resistant mouse fibroblast cell lines. Molecular and Cellular Biol. (1981) in press.Google Scholar
  23. 23.
    J. N. Nunberg, R. J. Kaufman, R. T. Schimke, G. Urlaub, and L. A. Chasin, Amplified dihydrofolate reductase genes are localized to a homogeneously staining region of a single chromosome in a methotrexate resistant Chinese hamster ovary cell line. Proc. Natl. Acad. Sci., USA 75:5553 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    B. J. Dolnick, R. J. Berenson, J. R. Bertino, R. J. Kaufman, J. H. Nunberg, and R. T. Schimke, Correlation of dihydrofolate reductase elevation with gene amplification in a homogeneously staining chromosomal region of L5178Y cells. J. Cell Biol. 83:394 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    R. J. Kaufman, P. C. Brown, and R. T. Schimke, Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. Proc. Natl. Acad. Sc., USA 76:5669 (1979).CrossRefGoogle Scholar
  26. 26.
    J. L. Biedler and B. A. Spengler, Metaphase chromosome anomaly: Association with drug resistance and cell-specific products. Science 191:185 (1976).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Roberts, K. M. Huttner, R. T. Schimke, and F. H. Ruddle, Chromosomal assignment for the native Chinese hamster dihydrofolate reductase gene. J. Cell Biol.(1980) in press.Google Scholar
  28. 28.
    P. E. Barker and T. C. Hsu, Double minutes in human carcinoma cell lines, with special reference to breast tumors. J. Natl. Cancer Inst. 62:257 (1979).PubMedGoogle Scholar
  29. 29.
    R. J. Kaufman, P. C. Brown, and R. T. Schimke, Loss and stabilization of amplified dihydrofolate reductase genes in mouse sarcoma S-180 cell lines. Molecular and Cellular Biol. (1981) in press.Google Scholar
  30. 30.
    R. J. Kaufman and R. T. Schimke, Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line. Molecular and Cellular Biol. (1981) in press.Google Scholar
  31. 31.
    R. J. Kaufman, J. R. Bertino, and R. T. Schimke, Quantitation of dihydrofolate reductase in individual parental and methotrexate-resistant murine cells. J. Biol. Chem. 253:5852 (1978).PubMedGoogle Scholar
  32. 32.
    D. A. Haber, S. M. Beverley, M. L. Kiely, and R. T. Schimke, Properties of an altered dihydrofolate reductase encoded by amplified genes in cultured mouse fibroblasts. J. Biol. Chem. (1981) in press.Google Scholar
  33. 33.
    D. A. Matthews, R. A. Alden, S. T. Bolin, S. T. Freer, R. Hamlin, N. Xuong, J. Kraut, M. Poe, M. Williams, and K. Hoogsteen, Dihydrofolate reductase: X-ray structure of the binary complex with methotrexate. Science 197:452 (1977).PubMedCrossRefGoogle Scholar
  34. 34.
    R. T. Schimke, P. C. Brown, R. J. Kaufman, M. McGrogan, and D. L. Slate, Chromosomal and extrachromosomal localization of amplified dihydrofolate reductase genes in cultured mammalian cells. Cold Sprg. Harbor Symp. Quant. Biol. Vol. XLV, 785–797 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Robert T. Schimke
    • 1
  • Daniel A. Haber
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations