Expression of Liver Mono-Oxygenase Functions Induced by Xenobiotics

  • M. C. Lechner
  • C. M. Sinogas
  • M. T. Freire
  • J. Bràz
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 50)


Living cells possess accurately programed mechanisms for regulating the relative amounts of different proteins synthesized. Regulation of gene expression in somatic cells is complex, and is not yet completely understood, affording one of the most interesting and important challenges in contemporary biochemical research. In the highly differentiated eucaryotic cells of vertebrates, a large fraction of the genome is permanently repressed. Only a relatively small fraction of the total genome can be induced or depressed reversibly. These cells do in fact have the capacity for induction of some enzymes by their substrates, although their responses to inducing agents tend to be slow and less dramatic than in procaryotes.


Orotic Acid Polycyclic Hydrocarbon Aryl Hydrocarbon Hydroxylase Cytosolic Receptor Liver Microsomal Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    WILLIAMS, R.T. (1959) Detoxification mechanisms, in the Metabolism and Detoxification of Drugs, Toxic Substances and other Organic Compounds, 2nd. ed. John Wiley & Sons, New York.Google Scholar
  2. 2).
    HOEVEN VAN DER, T.A., COON, M.J. (1974) Preparation and Properties of Partially Purified Nicotinamide Adenine Dinucleotide Phosphate — Cytochrome P450 Reductase from Rabbit Liver Microsomes. J. Biol. Chem., 249, 6302.PubMedGoogle Scholar
  3. 3).
    MANNERING, G.J. (1971). Properties of Cytochrome P450 as affected by environmental factors: qualitative changes due to administration of Polycyclic Hydrocarbons. Metabolism, 20, 228.PubMedCrossRefGoogle Scholar
  4. 4).
    FOUTS, J.R., ADAMSON, R.H. (1959). Drug Metabolism in the Newborn Rabbit. Science, 129, 897.PubMedCrossRefGoogle Scholar
  5. 5).
    DALLNER, G., SIEKEVITZ, P. AND PALADE, G.E. (1966) Biogenesis of Endoplasmic Reticulum Membranes II. Synthesis of Constitutive Microsomal Enzymes in Developing Rat Hepatocyte. J. Cell Biol. 30, 97.PubMedCrossRefGoogle Scholar
  6. 6).
    LU, A.Y.H. (1979). Multiplicity of Liver Drug Metabolizing Enzymes. Drug Metabolism Reviews, 10, 187.PubMedCrossRefGoogle Scholar
  7. 7).
    GUENGERICH, F.P. (1977). Separation and purification of multiple forms of microsomal cytochrome P450- Activities of different forms of cytochrome P450 towards several compounds of environmental interest. J. Biol. Chem., 252, 3970.PubMedGoogle Scholar
  8. 8).
    NEBERT D. W., JENSEN, N.M. (1979). The Ah Locus: genetic regulation of the metabolism of carcinogens, drugs and other environmental chemicals by cytochrome P450 mediated mono-oxygenases CRC Critical Reviews in Biochemistry, Fasman, G.D. ed., CRC Press, Inc. Cleveland, Ohio, 6, 401.Google Scholar
  9. 9).
    KUMAKI, K., JENSEN, N.M. SHIRE, J.G.M., NEBERT, D.W. (1977). Genetic Differences in Induction of cytosol reduced-NAD(P): Menadione Oxydoreductase and Microsomal Aryl Hydrocarbon Hydroxylase in the Mouse. J. Biol. Chem. 252, 157.PubMedGoogle Scholar
  10. 10).
    POLAND, A., GLOVER, E. (1975). Genetic expression of Aryl Hydrocarbon Hydroxylase by 2,3,7,8, — Tetrachlorodibenzo-p--dioxin: Evidence for a receptor Mutation in Genetically Non-responsive Mice. Mol. Pharmacol, 11, 389.Google Scholar
  11. 11).
    CARLSTEDT-DUKE, J., GILLNER, M., HANSSON, L.-A, TOFTGåRD, R, GUSTAFSSON, S., HÖGBERG, B., GUSTAFSSON, J.-A.(1930). The molecular basis for the induction of aryl hydrocarbon hydroxylase: characteristics of the receptor protein for 2,3,7,8 -tetra- chlorodibenzo-p-dioxin (TCDD) in Biochemistry, Biophysics and Regulation of Cytochrome P 450 J.A. Gustafsson et al. eds. Elsevier/North Holland, 147.Google Scholar
  12. 12).
    NEBERT, D.W., ROBINSON, J.R., NIWA KUMAKI., POLAND, A.P. (1975). Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. J.Cell Physiol., 83, 393.CrossRefGoogle Scholar
  13. 13).
    POLAND, A., GLOVER, E., KENDE, A.S. (1976). Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol: evidence that the binding species is the receptor for the induction of aryl hydrocarbon hydroxylase. J. Biol. Chem. 251, 4936.PubMedGoogle Scholar
  14. 14).
    OKEY, A.B., BONDY, G.T., MASON, M.E., KAHL, G.F., EISEN, H. J., GUENTHNER, T.M., NEBERT, D.W. (1979). Regulatory Gene Product of the Ah Locus. Characterization of the cytosolic inducer--receptor complex and evidence for its nuclear translocation. J. Biol. Chem., 254, 11636.PubMedGoogle Scholar
  15. 15).
    KOURI, R.E. RUDE, T.H., JOGLEKAR, R., DANSETTE, P.M., JERINA, D.M. ATLAS, S.A., OWENS, I.S. NEBERT, D.W. (1978). 2,3,7,8 — -Tetrachlorodibenzo-p-dioxin acts as cocarcinogen in causing 3-methylcholanthrene-initiated subcutaneous tumors in mice genetically “nonresponsive” at ah locus:Cancer Res. 38, 2777.Google Scholar
  16. 16).
    NEBERT, D.W., ATLAS, S.A., GUENTHNER, T.M., KOURI, R.E. (1978). The Ah locus: genetic regulation of the enzymes which metabolize polycyclic hydrocarbons and the risk for cancer, in Polycyclic Hydrocarbons and Cancer: Chemistry, Molecular Biology and Environment, Ts’o, P.O.P. and Gelboin, H.V., Eds., Academic Press, New York, 345.Google Scholar
  17. 17).
    KOURI, R.E. (1976) Relationship between levels of aryl hydrocarbon hydroxylase activity and susceptibility to 3-methyl-cholanthrene and” Benz[a]pyrene-induced cancers in inbred strains of mice, in Polynuclear Aromatic Hydrocarbons: Chemistry, Metabolism and Cancerigenesis, Freudenthal, R.I., and Jones, P.W. Eds., Raven Press, New York, 139.Google Scholar
  18. 18).
    KOURI, R.E. NEBERT, D.W. (1977). Genetic Regulation of susceptibility to polycyclic hydrocarbon-induced tumors in the mouse, in Origins of Human Cancer, Hiatt, H.H., Watson, J.D. and Winsten, J.A., eds. Cold Spring Harbor Laboratory, New York, 811.Google Scholar
  19. 19).
    KAWALEK, J.C., LEVIN, W., RYAN, D., THOMAS, P.E., LU, A.Y.H. (1975). Purification of liver microsomal cytochrome P448 from 3-M.C. treated rabbits. Mol. Pharmacol., 11, 374.Google Scholar
  20. 20).
    RYAN, D.E., THOMAS, P.E. KORZENIOWSKI, D., LEVIN, W. (1979). Separation and characterization of highly purified forms of liver microsomal cytochrome P450 from rats treated with poly-chlorinated biphenyls, phenobarbital and 3-Methylcholanthrene. J. Biol. Chem. 254, 1365.PubMedGoogle Scholar
  21. 21).
    THOMAS, P.E., REIK, L.M. RYAN, D.E., LEVIN, W. (1981). Regulation of three forms of cytochrome P450 and epoxide hydratase in rat liver microsomes. Effects of age, sex and inductions. J. Biol. Chem., 256, 1044.PubMedGoogle Scholar
  22. 22).
    LANG, M.A., NEBERT, D.W. NEGISHI, M. (1980). Structural gene products of the Ah complex. Separation of multiple forms of liver microsomal cytochrome P450 and characterization of mRNA associated with P1–450 from 3-methylcholanthrene-treated mice. in Biochemistry, Biophysics and Regulation of Cytochrome P 450. J. A. Gustafsson et al. eds. Elsevier/North Holland. 415.Google Scholar
  23. 23).
    MANNERING, G.J. (1968).Significance of stimulation and inhibition of drug metabolism in pharmacological testing -in Selected Pharmacological Testing Methods. Ed. M. Burger, Dekker- New York. 51.Google Scholar
  24. 24).
    ORRENIUS, S., ERNSTER, L. (1964). Phénobarbital induced synthesis of the oxidative demethylating enzyme of rat liver microsomes. Biochim. Biophys. Res. Commun. 16, 60.CrossRefGoogle Scholar
  25. 25).
    ERNSTER, L., ORRENIUS, S. (1965). Substrate induced synthesis of the hydroxylating enzyme system of liver microsomes. Fed. Proc. 24, 1190.PubMedGoogle Scholar
  26. 26).
    KATO, R., LOEB, L. GELBOIN, H.V. (1965). Microsome-specific stimulation by phénobarbital of amino-acid incorporation in vivo. Biochem. Pharmacol., 14, 1164.PubMedCrossRefGoogle Scholar
  27. 27).
    ARIAS, I.M., DOYLE, A., SCHIMKE, R.T. (1969). Studies on the synthesis and Degradation of Protein of the Endoplasmic Reticulum of Rat Liver. J. Biol. Chem., 244, 3303.PubMedGoogle Scholar
  28. 28).
    LECHNER, M.C., POUSADA, C.R. (1971). A possible role of liver microsomal alkaline ribonuclease in the stimulation of oxidative drug metabolism by phénobarbital, chlorodane and chlorophenothane (DDT). Biochem. Pharmacol., 20, 3021.PubMedCrossRefGoogle Scholar
  29. 29).
    GLAZER, R.I., SARTORELLI, A.C. (1972). The effect of Phénobarbital on the Synthesis of Nascent Protein on Free and Membrane-Bound Polyribosomes of Normal and Regenerating Liver. Molec. Pharmacol., 8, 701.Google Scholar
  30. 30).
    MCCAULEY, R., COURT, D. (1971). Early effects of phénobarbital on cytoplasmic RNA in rat liver. Biochim. Biophys. Acta, 238,Google Scholar
  31. 31).
    HOLTZMAN, J., GILLETTE, J.R. (1968). The effect of Phénobarbital on the turnover of Microsomal Phospholipid in Male and Female Rats. J. Biol. Chem., 243, 3020.PubMedGoogle Scholar
  32. 32).
    STEELE, W.J., (1970). Phenobarbital induced prolongation of the half-life of ribosomal-RNA of rat liver. Fed. Proc. Fed. Am. Societies Exp. Biol., 29, 737.Google Scholar
  33. 33).
    SCHIMKE, R.T. (1973). Control of enzyme levels in mammalian tissues. Adv. Enzymol., 37, 135.PubMedGoogle Scholar
  34. 34).
    LECHNER, M.C. (1976). Effect of phénobarbital treatment on poly(A)-rich RNA in rat liver microsomes. I.U.B. X th Int. Congr. Biochem., HAMBURG, 03–6–130.Google Scholar
  35. 35).
    LECHNER, M.C. (1974). Studies of RNA from rat liver endoplasmic reticulum sub-fractions. Effect of phénobarbital treatment. Naunyn-Schmiedeberg’s Arch. Pharm. Supp. 285, R50.Google Scholar
  36. 36).
    LECHNER, M.C., SINOGAS, CM. (1980). Changes in gene expression during liver microsomal enzyme induction by phénobarbital, in Biochem. Biophys. and Regulation of Cytochrome P 450 . J.A. Gustafsson et al. eds. Elsevier/North-Holland, 405.Google Scholar
  37. 37).
    SCHERRER, K., IMAIZUMI-SCHERRER, M.T., REYNAUD, C.A., THERWATH, A. (1979). On pre-messenger RNA and Transcriptions A review. Molec. Biol. Rep., 5, 5.CrossRefGoogle Scholar
  38. 38).
    LINDRELL, T.J., ELLïNGER, R., WARREN, J.T., SUNDHEIMER, D., O’MALLEY, A.F. (1977). The effect of acute and chronic phénobarbital treatment on the activity of rat liver DNA dependent RNA polymerases, Molec. Pharm., 13, 426.Google Scholar
  39. 39).
    KUMAR, A., SATYANARAYANA RAO, R., PADMANABAN, G. (1980). A comparative study on the early effects of Phenobarbital and3-Methylcholanthrene on the synthesis and transport of ribonucleic acid in rat liver. Biochem. J., 186, 81.PubMedGoogle Scholar
  40. 40).
    SCHUMM, D.E., WEBB, T.E. (1974). Modified messenger ribonucleic acid release from isolated hepatic nuclei after inhibition of polyadenylate formation. Biochem. J., 139, 191.PubMedGoogle Scholar
  41. 41).
    LECHNER, M.C., SINOGAS, CM. (1978). Studies on liver poly(A)--rich RNA during microsomal enzyme induction. 12th. FEBS Meeting Dresdenm July 2–8, 1157, (124).Google Scholar
  42. 42).
    MAUNDRELL, K., MAXWELL, E.S., CIVELLI, O., VINCENT, A., GOLDENBERG, S, BURI, J.F. Imaizumi — Scherrer, M.T., Scherrer, K. (1979). Messenger RNP complexes in avian erythroblasts: Carriers of post-transcriptional regulation? Molec. Biol. Rep., 5, 43.CrossRefGoogle Scholar
  43. 43).
    HEMMINKI, K. (1975). Labbeling kynetics of RNA containing poly (A) in liver subcellular fractions. Molec. and Cell. Biochem., 8, 123.CrossRefGoogle Scholar
  44. 44).
    ZäHRINGER, J., BALIGA, B.S., MUNRO, H.N. (1976). Novel mechanism for translation control in regulation of ferritin synthesis by iron. Proc. Natl. Acad. Sci., 73, 857.PubMedCrossRefGoogle Scholar
  45. 45).
    YAP, S.H., STRAIR, R.K., SHAFRITZ, D.A. (1978). Effect of a short term fast on the distribution of cytoplasmic albumin messenger ribonucleic acid in rat liver. J. Biol. Chem., 253 4944.PubMedGoogle Scholar
  46. 46).
    BHAT, K.S., PADMANABAN, G. (1978). Cytochrome P450, synthesis in vivo and in a cell-free system from rat liver. FEBS Lett., 89, 337.PubMedCrossRefGoogle Scholar
  47. 47).
    DUBOIS, R.N., WATERMAN, M.R., (1979). Effect of phénobarbital administration to rats on the level of the in vitro synthesis of cytochrome P450 directed by total rat liver RNA. Biochem. Biophys. Res. Commun., 90, 150.PubMedCrossRefGoogle Scholar
  48. 48).
    LECHNER, M.C., FREIRE, M.T., GRONER, B. (1979). In vitro biosynthesis of liver cytochrome P450 mature peptide sub-unit by translation of isolated poly(A) +mRNA from normal and phenobarbital induced rats. Biochem. Biophys. Res. Commun., 90, 531.PubMedCrossRefGoogle Scholar
  49. 49).
    LECHNER, M.C., SINOGAS, C.M., manuscript in preparation.Google Scholar
  50. 50).
    NOKIN, P., HUEZ, G., MARBAIX, G., BURNAY, A., CHANTRENNE, H. (1976) Molecular Modifications associated with aging of globin messenger RNA in vivo. Eur. J. Biochem., 62, 509.PubMedCrossRefGoogle Scholar
  51. 51).
    CARDELI, J., LONG, B., PITOT, H.C (1976). Direct association of messenger RNA labelled in the presence of fluoro-orotate with membranes of the endoplasmic reticulum in rat liver. J. Cell Biol., 70, 47.CrossRefGoogle Scholar
  52. 52).
    LANE, M.A., ADESNIK, M., SUMIDA, M., TASHIRO, Y., SABATINI, D.D. (1975). Direct association of messenger RNA with microsomal membranes in humam diploid fibroblasts. J. Cell. Biol., 65, 513.CrossRefGoogle Scholar
  53. 53).
    BAR-NUN, S., KREIBICH, G., ADESNIK, M., ALTERMAN, L., NEGISHI, M., SABATINI, D.D. (1980). Synthesis and insertion of cytochrome P450 into endoplasmic reticulum membranes. Proc. Natl. Sci., 77, 965.CrossRefGoogle Scholar
  54. 54).
    SHIRES, T.K., PITOT, H.C. (1974). The membron: a functional hypothesis for the translational regulation of genetic expression in Biomembranes, 5, 81. Ed. Lidnel A. Manson. Plenum Press. New York — London.Google Scholar
  55. 55).
    LECHNER, M.C., SINOGAS, C.M. (1981). The importance of RNP’s/ membrane interactions for stimulation of protein synthesis by phenobarbital. Biochem. Society Transact., 9, 156P.Google Scholar
  56. 56).
    MCCAULEY, COURI, D. (1971). Early effects of phenobarbital on cytoplasmic RNA in rat liver. Biochim. Biophys. Acta, 238, 233.PubMedGoogle Scholar
  57. 57).
    COHEN, A.M., RUDDON, R.W. (1971). Stability of polyribosomes isolated from rat liver after phénobarbital administration. Mol. Pharmacol., 7, 484.PubMedGoogle Scholar
  58. 58).
    STEELE, W.J. (1970). Phenobarbital-induced prolongation of the half-life ribosomal-RNA of rat liver. Fed. Proc, 29, 737.Google Scholar
  59. 59).
    ORRENIUS, S., ERICSSON, J.L.E., ERNSTER, L. (1965). Phenobarbital-induced synthesis of the microsomal drug-metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes. A morphological and Biochemical study. J. Cell Biol., 25, 627.PubMedCrossRefGoogle Scholar
  60. 60).
    SUNSHINE, G.H., WILLIAMS, D.J. RABIN, B.R. (1971). Role for steroid-hormones in interaction of ribosomes with endoplasmic membranes of rat-liver. Nature, Biol., 230, 133.Google Scholar
  61. 61).
    BRAZ, J., LECHNER, M.C. (1980). Nuclear poly(ADP-R) polymerase activity in rat liver during enzyme induction by phénobarbital. Effect of 5′-methyl-nicotinamide. Cienc. Biol. (Portugal), 5, 437.Google Scholar
  62. 62).
    BRAZ, J., LECHNER, M.C. (1980). Studies on poly(ADP-Ribose) polymerase activities in isolated nuclei from normal and phenobarbital induced rat livers. 1° Congr. Luso-Espanhol de Bioquimica P-157,23/26 Setembro,Coimbra-Portugal.Google Scholar
  63. 63).
    OGATA, N., UEDA, K., HAYAISHI, O. (1980). ADP-ribosylation of Histone H2 B. Identification of glutamic acid residue 2 as the modification site. J. Biol. Chem., 255, 7610.PubMedGoogle Scholar
  64. 64).
    OGATA, N., UEDA, K., KAGAMIYAMA, H., HAYAISHI, O. (1980). ADP--ribosylation of Histone Hi. Identification of glutamic acid residues 2,14, and the COOH-terminal, lysine residue as modification sites. J. Biol. Chem., 255, 7616.PubMedGoogle Scholar
  65. 65).
    OKAYAMA, H., UEDA, K., HAYAISHI (1978). Purification of ADP--ribosylated nuclear proteins by covalent chromatography on dihydroxyboryl Polyacrylamide beads and their characterization. Proc. Natl. Acad. Sci., USA, 75, 1111.PubMedCrossRefGoogle Scholar
  66. 66).
    HAYAISHI, O., UEDA, K., OKAYAMA, H., KAWAICHI, M., OGATA, N., OKA, J., IKAI, K., ITO, S., SHIZUTA, Y., (1979). Poly (ADP--ribose) and ADP-ribosylation of proteins, in Enzymes, 151 Academic Press, Inc.Google Scholar
  67. 67).
    LEVIN, W., THOMAS, P.E., REIK, L., BRESNICK, E., RYAN, D.E. (1981). Characterization and regulation of rat liver microsomal cytochrome P450. Biochem. Soc. Transaction, 9, 95P.Google Scholar
  68. 68).
    FUJII-KURIYAMA, Y., TANIGUCHI, T., MIZUKAMI, Y., SAKAY, M. TASHIRO, Y., MURAMATSU, M. (1980). Molecular cloning of a complementary DNA of phenobarbital-inducible Cytochrome P450 messenger RNA from the rat. Proc. Japan Acad., 56, Ser. B., 603.CrossRefGoogle Scholar
  69. 69).
    MICHALOPOULOS, G., SATTLER, C.A., SATTLER, G.L., PITOT, H.C. (1976). Cytochrome P450 induction by phénobarbital and 3-methyl cholanthrene in primary cultures of hepatocytes. Science, 193, 907.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • M. C. Lechner
    • 1
  • C. M. Sinogas
    • 1
  • M. T. Freire
    • 1
  • J. Bràz
    • 1
  1. 1.Instituto Gulbenkian de CiênciaOeirasCodex - Portugal

Personalised recommendations