Advertisement

Biophysics of the Interaction of Electromagnetic Energy with Cells and Membranes

  • H. P. Schwan
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 49)

Abstract

Appropriate consideration of the mechanism of interaction of electrical fields outside and inside a living being requires discussions of macroscopic “field coupling” effects and the effects of fields on cellular structures as well as molecular effects. We shall present here these coupling considerations as they pertain to potentials which are induced across membranes and inside cells for thT vrious dielectric dispersion ranges α, β, γ discussed before1, 2. In addition, we consider field interactions with cells as a whole, i. e. field induced cellular force effects. But we will not consider field effects on macromolecules. Macromolecular properties have been summarized in detail by Grant3 in this volume. Theoretical predictions based on the Langevin-equation and experimental evidence indicated that significant interactions with single macromolecules require substantial field strength levels well above those of interest here4. We shall also not summarize “subtle” interactions since they are discussed by Adey in this volume5 and by us previously6, 7. Their mechanism remains unknown and it is not clear if they occur at the molecular or cellular level or are caused by more macroscopic transduction phenomena.

Keywords

Membrane Potential Field Strength Electromagnetic Energy Internal Field Ponderomotoric Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. Schwan, Dielectric Properties of Biological Tissue and Cells at RF- and MW-Frequencies in: “Advances in Biological Effects and Dosimetry of Low Energy Electromagnetic Fields”, this volume (1981).Google Scholar
  2. 2.
    H. P. Schwan, Dielectric Properties of Biological Tissues and Cells at ELF-Frequencies in: “Advances in Biological Effects and Dosimetry of Low Energy Electromagnetic Fields”, this volume (1981).Google Scholar
  3. 3.
    E. H. Grant, Dielectric Properties of Biological Material: Molecular Considerations in: “Advances in Biological Effects and Dosimetry of Low Energy Electromagnetic Fields”, this volume (1981).Google Scholar
  4. 4.
    H. P. Schwan and K. R. Foster, RF-Field Interactions with Biological Systems: Electrical Properties and Biophysical Mechanisms, Proc. IEEE 68: 104 (1980).CrossRefGoogle Scholar
  5. 5.
    W. R. Adey, Biological Effects on the Central Nervous System in: “Advances in Biological Effects and Dosimetry of Low Energy Electromagnetic Fields”, this volume (1981).Google Scholar
  6. 6.
    W. R. Adey, Overview on the Biological Effects of ELF: Fundamentals-1 in: “Advances in Biological Effects and Dosimetry of Low Energy Electromagnetic Fields”, this volume (1981).Google Scholar
  7. 7.
    H. P. Schwan, Classical Theory of Microwave Interactions with Biological Systems in: “The Physical Basis of Electromagnetic Interactions with Biological Systems”, L. S. Taylor and A. Y. Cheung, Eds., Proc. Workshop at Univ. of Maryland, College Park (1977).Google Scholar
  8. 8.
    H. P. Schwan, Dielectric Properties of Biological Tissues and Biophysical Mechanisms of EM-Field Interaction, in: “American Chemical Soc. Symp. Series” (1981).Google Scholar
  9. 9.
    J. C. Lin, A. W. Guy and C. C. Johnson, Power Deposition in a Spherical Model of Man Exposed to 1–20 MHz Electromagnetic Fields, IEEE Trans. Microwave Theory MTT-21 (12): 791 (1973).Google Scholar
  10. 10.
    H. P. Schwan, Determination of Biological Impedances in: “Physical Techniques in Biological Research”, W. L. Nastuk, ed., Academic Press, New York Vol. 1963 ).Google Scholar
  11. 1l.
    H. P. Schwan: Principles, Some Recent Results, and Some Unresolved Problems, in: “The Biophysical Approach to Excitable Systems”, W. J. Adelman, Jr. and D. E. Goldman, eds., Plenum Pub. Corp., New York (1981).Google Scholar
  12. 12.
    G. P. Drago and S. Ridella, Bioelectromagnetics, 1: 216 (1980).Google Scholar
  13. 13.
    S. Ridella, Personal Communication (1981).Google Scholar
  14. 14.
    W. Grundler, Biological Effects of RF and MW Energy at Molecular and Cellular Level-II, in: “Advances in Biological Effects and Dosimetry of Low Energy Electromagnetic Fields”, this volume (1981).Google Scholar
  15. 15.
    Z. Roy, J. R. Scott and G. C. Park, IEEE Trans. (1976).Google Scholar
  16. 16.
    D. A. Driscoll, An Investigation of a Theoretical Model of the Human Head with Application to Current Flow Calculations and EEG Interpretation, Ph.D. Thesis, Univ. of Vermont, (1970).Google Scholar
  17. 17.
    H. P. Schwan, Biological Hazards From Exposure to ELF Electrical Fields and Potentials, NWL Tech. Rpt. TR-2713, USNWL, Dahlgren (1972).Google Scholar
  18. 18.
    U. Zimmermann, G. Pilwat and R. Riemann, Biophys. J. 14: 881 (1974).CrossRefGoogle Scholar
  19. 19.
    E. Neumann and K. Rosenheck, J. Memb. Biol., 10: 279 (1972).CrossRefGoogle Scholar
  20. 20.
    A. W. Friend, E. D. Finch and H. P. Schwan, Science, 187: 357 (1974).ADSCrossRefGoogle Scholar
  21. 21.
    E. M. Goodman, B. Greenebaum and M. T. Marron, Effects of Extremely Low Frequency Electromagnetic Fields on Growth and Differentiation of Physarum Polycephalum; Tech. Report Phase 1 ( Continuous Wave ), Univ. of Wisconsin (1975).Google Scholar
  22. 22.
    E. M. Goodman, B. Greenebaum and M. T. Marron, Effects of Extremely Low Frequency Electromagnetic Fields on Physarum Polycephalum; Tech. Report, ONR, Contract N-00014–76-C-0180, Univ. of Wisconsin (1976).Google Scholar
  23. 23.
    A. A. Teixeira-Pinto, L. L. Nejelski, J. L. Cutler and J. H. Heller, Exp. Cell Res., 20: 548 (1960).CrossRefGoogle Scholar
  24. 24.
    L. L. Sher, Mechanical Effects of AC Fields on Particles Dispersed in a Liquid: Biological Implications, Ph.D. Thesis, Univ. of Penna., Phila. (1963).Google Scholar
  25. 25.
    B. Novak and F. W. Bentrup, Biophyysik, 9: 253 (1973).CrossRefGoogle Scholar
  26. 26.
    H. A. Pohl, J. Biol. Phys., 1: 1 (1973).ADSCrossRefGoogle Scholar
  27. 27.
    R. Elul, J. Physiol., 189: 351 (1967).Google Scholar
  28. 28.
    S. M. Bawin and W. R. Adey, Brain Interactions with Weak Electric and Magnetic Fields, Neurosci. Res. Prog. Bull., MIT Press, 15 (1977).Google Scholar
  29. 29.
    H. P. Schwan, Field Interactions with Biological Matter in: “Electrical Properties of Biological Polymers, Water and Membranes”, eds. S. Takashima and H. M. Fishman, Annals of N.Y. Acad. of Sci., New York Vol. 303 (1977).Google Scholar
  30. 30.
    R. Blakemore, Science, 190: 377 (1975).ADSCrossRefGoogle Scholar
  31. 31.
    M. Saito and H. P. Schwan, The Time Constants of Pearl Chain Formation in: “Biological Effects of Microwave Radiation”, M. F. Peyton, ed., Plenum Press, New York (1961).Google Scholar
  32. 32.
    H. P. Schwan and L. D. Sher, Alternating Current Field Induced Forces and Their Biological Implications, J. Electrochem. Soc., 116: 170 (1969).CrossRefGoogle Scholar
  33. 33.
    L. D. Sher, E. Kresch and H. P. Schwan, On the Possibility of Nonthermal Biological Effects of Pulsed Electromagnetic Radiation, Biophys. J., 10: 970 (1970).CrossRefGoogle Scholar
  34. 34.
    S. Takashima and H. P. Schwan, unpublished.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • H. P. Schwan
    • 1
    • 2
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Institut für Biophysik Boris Rajewsky InstitutUniversität des SaarlandesHomburg/SaarWest Germany

Personalised recommendations