Dielectric Properties of Biological Tissue and Cells at RF- and MW-Frequencies

  • Herman P. Schwan
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 49)


The electrical properties are important for our understanding of the mechanism of interaction of electromagnetic fields with biological systems, including biopolymers, membranes and cells. Our knowledge of dielectrical properties is rather advanced1,2 I shall first summarize the state of our present knowledge of such properties. Then, in the last lecture which I present in this course, I draw conclusions about possible mechanisms of interactions.


Dielectric Constant Dielectric Property Dielectric Permittivity Biological Tissue Normal Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. P. Schwan, Electrical properties of tissue and cell suspensions, in “Advances in Biological and Medical Physics”, Vol. V, Academic Press, Inc., New York (1957).Google Scholar
  2. 2.
    H. P. Schwan, Electrical properties of cells: principles, some recent results and some unresolved problems, in “The Biophysical Approach to Excitable Systems: Proc. Symp. Honoring K. S. Cole’s 80th Birthday”, W. J. Adelman and D. E. Goldman, eds., Plenum Press, New York (1981).Google Scholar
  3. 3.
    H. Fricke, Phys. Rev. 21: 708 (1923).Google Scholar
  4. 4.
    K. S. Cole, “Membranes, Ions and Impulses”, University of California Press, Berkeley, Cal. (1972).Google Scholar
  5. 5.
    H. P. Schwan and H. J. Morowitz, Electrical properties of the pleuropneumonia-like organism A 5969, Biophys. J. 2: 395 (1962).CrossRefGoogle Scholar
  6. 6.
    H. P. Schwan, S. Takashima, V. K. Miyamoto and W. Stoeckenius, Electrical properties of phospholipid vesicles, Biophys. J. 10: 1102 (1970).CrossRefGoogle Scholar
  7. 7.
    H. Pauly and H. P. Schwan, The impedance of a suspension of spherical particles surrounded by a shell, ZS. f. Naturforschung 14b: 125 (1959).Google Scholar
  8. 8.
    K. R. Foster, J. L. Schepps and H. P. Schwan, Microwave dielectric relaxation in muscle, Biophys. J. 29: 271 (1980).CrossRefGoogle Scholar
  9. 9.
    M. N. Afsar and J. B. Hasted, J. Opt. Soc. Amer. 67: 902 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    R. Höber, Eine methode die electrische leitfähigkeit im innern von zellen zu messen, Arch. ges. Physiol. 148: 189 (1912).CrossRefGoogle Scholar
  11. 11.
    H. P. Schwan and K. Li, Capacity and conductivity of body tissues at ultra-high frequencies, Proc. of I.R.E. 41: 1735 (1953).CrossRefGoogle Scholar
  12. 12.
    H. Pauly and H. P. Schwan, Dielectric Properties and Ion mobility in erythrocytes, Biophys. J. 6: 621 (1966).CrossRefGoogle Scholar
  13. 13.
    J. F. Herrick, D. G. Jelatis and G. M. Lee, Personal communication as cited in Ref. 1.Google Scholar
  14. 14.
    G. N. Ling, C. Miller and M. M. Ochsenfeld, The physical state of solutes and water in living cells according to the association induction hypothesis, Ann. New York Acad. Sci. 204 C. F. Hazlewood Ed., (1973).Google Scholar
  15. 15.
    W. Drost-Hansen, Water and biological interfaces: Structural and functional aspects, Phys. Chem. Liq. 7: 243 (1977)CrossRefGoogle Scholar
  16. 16.
    M. M. Hovey, A. F. Bak and D. O. Carpenter, Low internal conductivity of aplysia neuron somata, Science 176: 1329 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    K. R. Foster, J. M. Bidinger and D. O. Carpenter, The electrical resistivity of cytoplasm, Biophys. J. 16:991 (1976):CrossRefGoogle Scholar
  18. 18.
    G. Masszi, A. Szuarto and P. Grof, Investigations on the ion-and water-binding of muscle by microwave measurements, Acta Biochim. Biophys. Acad. Sci. Hung. 11: 129 (1976).Google Scholar
  19. 19.
    G. Masszi, Dielectric relaxation and water structure in gelatin solutions, Acta Biochim. Biophys. Acad. Sci. Hung. 7: 349 (1972).Google Scholar
  20. 20.
    H. P. Schwan and K. R. Foster, Microwave dielectric properties of tissue: Some comments on the rotational mobility of tissue water, Biophys. J. 17: 193 (1977).CrossRefGoogle Scholar
  21. 21.
    H. P. Schwan, R. J. Shepard and E. H. Grant, Complex Permittivity of water at 25 C, J. Chem. Phys. 64: 2257 (1976).ADSCrossRefGoogle Scholar
  22. 22.
    H. P. Schwan, Electrical properties of bound water, Ann. New York Acad. Sci. 125: 344 (1965).ADSCrossRefGoogle Scholar
  23. 23.
    B. Pennock and H. P. Schwan, Further observations on the electrical properties of hemoglobin bound water, J. Phys. Chem. 73: 2600 (1969).CrossRefGoogle Scholar
  24. 24.
    E. H. Grant, The structure of water, neighbouring proteins, peptides and amino acids as deduced from dielectric measurements, Ann. New York Acad. Sci. 125: 418 (1965).ADSCrossRefGoogle Scholar
  25. 25.
    P. C. Jenin and H. P. Schwan, Some Observations on the dielectric properties of hemoglobin’s suspending medium inside human erythrocytes, Biophys. J. 30: 285 (1980).CrossRefGoogle Scholar
  26. 26.
    S. Takashima, Dielectric properties of proteins. 1. Dielectric relaxation, in:”Physical Principles and Techniques of Protein Chemistry”, J. S. Leach, ed., Academic Press, New York (1969)Google Scholar
  27. 27.
    S. Takashima and A. Minikate, Dielectric behavior of biological macromolecules, in: “Digest of Dielectric Literature”, National Research Council, Washington, D.C. 37:602 (1975).Google Scholar
  28. 28.
    C. C. Johnson and A. W. Guy, Nonionizing electromagnetic wave effects in biological materials and systems, Proc. IEEE 60: 692 (1972).CrossRefGoogle Scholar
  29. M. A. Stuchly, J. of Microwave Power (1980).Google Scholar
  30. 30.
    B. Rajewsky, Ultrakurzwellen, Ergebnisse der biophysikalischen Forschung, Bd. 1 Georg Thieme, Leipzig, Germany (1938).Google Scholar
  31. 31.
    R. D. Stoy, K.R. Foster and H. P. Schwan, Dielectric properties of mamalian tissues from 0.1 to 100 MHz. A summary of recent data, Submitted for publication.Google Scholar
  32. 32.
    K. Osswald, Messung der Leitfaehigkeit und dielektrizitaetskonstante biologischer gewebe und fluessigkeiten bei kurzen wellen, Hochfrequenz. Elektroakustik 49: 40 (1937).Google Scholar
  33. 33.
    H. P. Schwan and C. F. Kay, Specific resistance of body tissues, Circulation Research 1V: 664 (1956).Google Scholar
  34. 34.
    H. P. Schwan and C. F. Kay, Capacitive properties of living tissues, Circulation Research 5: 439 (1957).Google Scholar
  35. 35.
    H. P. Schwan and C. F. Kay, Conductivity of living tissues, Annals N. Y. Acad. of Sci. 65: 1007 (1957).ADSCrossRefGoogle Scholar
  36. 36.
    K. R. Foster, R. D. Stoy and H. P. Schwan, Dielectric properties of brain tissue between 0.01 and 7 GHz. Physics in Med. and Bio. 24: 1177 (1979).ADSCrossRefGoogle Scholar
  37. 37.
    H. P. Schwan, Electrical propeties of muscle tissue at low frequencies, ZS. F. Naturforschung 9b: 245 (1954).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Herman P. Schwan
    • 1
    • 2
  1. 1.Max-Planck-Institut für BiophysikFrankfurt a.M.Germany
  2. 2.Department of Bioengineering/D3University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations